1
|
Reynolds MC, Cadillo-Quiroz H. Microbial DNA sample preservation and possible artifacts for field-based research in remote tropical peatlands. J Microbiol Methods 2024; 224:106997. [PMID: 39009285 DOI: 10.1016/j.mimet.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments.
Collapse
Affiliation(s)
- Mark C Reynolds
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States; Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States.
| |
Collapse
|
2
|
Aizpurua O, Dunn RR, Hansen LH, Gilbert MTP, Alberdi A. Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. Crit Rev Biotechnol 2024; 44:1164-1182. [PMID: 37731336 DOI: 10.1080/07388551.2023.2254933] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/27/2023] [Indexed: 09/22/2023]
Abstract
Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.
Collapse
Affiliation(s)
- Ostaizka Aizpurua
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ma X, Brinker E, Lea CR, Delmain D, Chamorro ED, Martin DR, Graff EC, Wang X. Evaluation of fecal sample collection methods for feline gut microbiome profiling: fecal loop vs. litter box. Front Microbiol 2024; 15:1337917. [PMID: 38800749 PMCID: PMC11127567 DOI: 10.3389/fmicb.2024.1337917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Microbial population structures within fecal samples are vital for disease screening, diagnosis, and gut microbiome research. The two primary methods for collecting feline fecal samples are: (1) using a fecal loop, which retrieves a rectal sample using a small, looped instrument, and (2) using the litter box, which collects stool directly from the litter. Each method has its own advantages and disadvantages and is suitable for different research objectives. Methods and results Whole-genome shotgun metagenomic sequencing were performed on the gut microbiomes of fecal samples collected using these two methods from 10 adult cats housed in the same research facility. We evaluated the influence of collection methods on feline microbiome analysis, particularly their impact on DNA extraction, metagenomic sequencing yield, microbial composition, and diversity in subsequent gut microbiome analyses. Interestingly, fecal sample collection using a fecal loop resulted in a lower yield of microbial DNA compared to the litterbox method (p = 0.004). However, there were no significant differences between the two groups in the proportion of host contamination (p = 0.106), virus contamination (p = 0.232), relative taxonomy abundance of top five phyla (Padj > 0.638), or the number of microbial genes covered (p = 0.770). Furthermore, no significant differences were observed in alpha-diversity, beta-diversity, the number of taxa identified at each taxonomic level, and the relative abundance of taxonomic units. Discussion These two sample collection methods do not affect microbial population structures within fecal samples and collecting fecal samples directly from the litterbox within 6 hours after defecation can be considered a reliable approach for microbiome research.
Collapse
Affiliation(s)
- Xiaolei Ma
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily Brinker
- Department of Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, United States
| | - Christopher R. Lea
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Diane Delmain
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Erin D. Chamorro
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Douglas R. Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Center for Advanced Science, Innovation, and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| |
Collapse
|
4
|
Garg D, Patel N, Rawat A, Rosado AS. Cutting edge tools in the field of soil microbiology. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100226. [PMID: 38425506 PMCID: PMC10904168 DOI: 10.1016/j.crmicr.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The study of the whole of the genetic material contained within the microbial populations found in a certain environment is made possible by metagenomics. This technique enables a thorough knowledge of the variety, function, and interactions of microbial communities that are notoriously difficult to research. Due to the limitations of conventional techniques such as culturing and PCR-based methodologies, soil microbiology is a particularly challenging field. Metagenomics has emerged as an effective technique for overcoming these obstacles and shedding light on the dynamic nature of the microbial communities in soil. This review focuses on the principle of metagenomics techniques, their potential applications and limitations in soil microbial diversity analysis. The effectiveness of target-based metagenomics in determining the function of individual genes and microorganisms in soil ecosystems is also highlighted. Targeted metagenomics, including high-throughput sequencing and stable-isotope probing, is essential for studying microbial taxa and genes in complex ecosystems. Shotgun metagenomics may reveal the diversity of soil bacteria, composition, and function impacted by land use and soil management. Sanger, Next Generation Sequencing, Illumina, and Ion Torrent sequencing revolutionise soil microbiome research. Oxford Nanopore Technology (ONT) and Pacific Biosciences (PacBio)'s third and fourth generation sequencing systems revolutionise long-read technology. GeoChip, clone libraries, metagenomics, and metabarcoding help comprehend soil microbial communities. The article indicates that metagenomics may improve environmental management and agriculture despite existing limitations.Metagenomics has revolutionised soil microbiology research by revealing the complete diversity, function, and interactions of microorganisms in soil. Metagenomics is anticipated to continue defining the future of soil microbiology research despite some limitations, such as the difficulty of locating the appropriate sequencing method for specific genes.
Collapse
Affiliation(s)
- Diksha Garg
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Niketan Patel
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Anamika Rawat
- Center of Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
- Computational Bioscience Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah, 23955, Saudi Arabia
| |
Collapse
|
5
|
Hammad MI, Conrads G, Abdelbary MMH. Isolation, identification, and significance of salivary Veillonella spp., Prevotella spp., and Prevotella salivae in patients with inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1278582. [PMID: 38053528 PMCID: PMC10694262 DOI: 10.3389/fcimb.2023.1278582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
The global prevalence of inflammatory bowel disease (IBD) is on the rise, prompting significant attention from researchers worldwide. IBD entails chronic inflammatory disorders of the intestinal tract, characterized by alternating flares and remissions. Through high-throughput sequencing, numerous studies have unveiled a potential microbial signature for IBD patients showing intestinal enrichment of oral-associated bacteria. Simultaneously, the oral microbiome can be perturbed by intestinal inflammation. Our prior investigation, based on 16S rRNA amplicon sequencing, underscored elevated abundance of Veillonella spp. and Prevotella spp. in the salivary microbiomes of IBD patients. Noteworthy, Prevotella salivae emerged as a distinct species significantly associated with IBD. P. salivae is an under-recognized pathogen that was found to play a role in both oral and systemic diseases. In this study, we delve deeper into the salivary microbiomes of both IBD patients and healthy controls. Employing diverse cultivation techniques and real-time quantitative polymerase chain reactions (RT-qPCR), we gauged the prevalence and abundance of Veillonella spp., Prevotella spp., and P. salivae. Our isolation efforts yielded 407 and 168 strains of Veillonella spp., as well as 173 and 90 strains of Prevotella spp., from the saliva samples of IBD patients and healthy controls, respectively. Veillonella-vancomycin agar emerged as the discerning choice for optimal Veillonella spp. cultivation, while Schaedler kanamycin-vancomycin agar proved to be the most suitable medium for cultivating Prevotella spp. strains. Comparing our RT-qPCR findings to the previous 16S rRNA amplicon sequencing data, the results corroborated the higher abundance of Veillonella spp., Prevotella spp., and P. salivae in the saliva of IBD patients compared to healthy controls. However, it's worth noting that in contrast to RT-qPCR, the 16S rRNA amplicon sequencing data revealed greater absolute abundance of all three bacterial groups in both IBD patients and controls.
Collapse
Affiliation(s)
- Moshira I. Hammad
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Mohamed M. H. Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
6
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
7
|
Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res 2022; 264:127154. [DOI: 10.1016/j.micres.2022.127154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/05/2022] [Accepted: 07/29/2022] [Indexed: 01/07/2023]
|
8
|
Lugli GA, Ventura M. A breath of fresh air in microbiome science: shallow shotgun metagenomics for a reliable disentangling of microbial ecosystems. MICROBIOME RESEARCH REPORTS 2022; 1:8. [PMID: 38045646 PMCID: PMC10688782 DOI: 10.20517/mrr.2021.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 12/05/2023]
Abstract
Next-generation sequencing technologies allow accomplishing massive DNA sequencing, uncovering the microbial composition of many different ecological niches. However, the various strategies developed to profile microbiomes make it challenging to retrieve a reliable classification that is able to compare metagenomic data of different studies. Many limitations have been overcome thanks to shotgun sequencing, allowing a reliable taxonomic classification of microbial communities at the species level. Since numerous bioinformatic tools and databases have been implemented, the sequencing methodology is only the first of many choices to make for classifying metagenomic data. Here, we discuss the importance of choosing a reliable methodology to achieve consistent information in uncovering microbiomes.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| |
Collapse
|
9
|
Plauzolles A, Toumi E, Bonnet M, Pénaranda G, Bidaut G, Chiche L, Allardet-Servent J, Retornaz F, Goutorbe B, Halfon P. Human Stool Preservation Impacts Taxonomic Profiles in 16S Metagenomics Studies. Front Cell Infect Microbiol 2022; 12:722886. [PMID: 35211421 PMCID: PMC8860989 DOI: 10.3389/fcimb.2022.722886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiotas play critical roles in human health, yet in most cases scientists lack standardized and reproducible methods from collection and preservation of samples, as well as the choice of omic analysis, up to the data processing. To date, stool sample preservation remains a source of technological bias in metagenomic sequencing, despite newly developed storage solutions. Here, we conducted a comparative study of 10 storage methods for human stool over a 14-day period of storage at fluctuating temperatures. We first compared the performance of each stabilizer with observed bacterial composition variation within the same specimen. Then, we identified the nature of the observed variations to determine which bacterial populations were more impacted by the stabilizer. We found that DNA stabilizers display various stabilizing efficacies and affect the recovered bacterial profiles thus highlighting that some solutions are more performant in preserving the true gut microbial community. Furthermore, our results showed that the bias associated with the stabilizers can be linked to the phenotypical traits of the bacterial populations present in the studied samples. Although newly developed storage solutions have improved our capacity to stabilize stool microbial content over time, they are nevertheless not devoid of biases hence requiring the implantation of standard operating procedures. Acknowledging the biases and limitations of the implemented method is key to better interpret and support true associated microbiome patterns that will then lead us towards personalized medicine, in which the microbiota profile could constitute a reliable tool for clinical practice.
Collapse
Affiliation(s)
- Anne Plauzolles
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
- *Correspondence: Anne Plauzolles,
| | - Eya Toumi
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
- MEPHI, IHU Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Marion Bonnet
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
| | - Guillaume Pénaranda
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
| | - Ghislain Bidaut
- CRCM, Aix‐Marseille Univ U105, Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Marseille, France
| | - Laurent Chiche
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | | | - Frédérique Retornaz
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| | - Benoit Goutorbe
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
- CRCM, Aix‐Marseille Univ U105, Inserm U1068, CNRS UMR7258, Institut Paoli‐Calmettes, Marseille, France
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | - Philippe Halfon
- Clinical Research and R&D Department, Laboratoire Européen Alphabio, Marseille, France
- Infectious and Internal Medicine Department, Hôpital Européen Marseille, Marseille, France
| |
Collapse
|
10
|
Ferravante C, Memoli D, Palumbo D, Ciaramella P, Di Loria A, D'Agostino Y, Nassa G, Rizzo F, Tarallo R, Weisz A, Giurato G. HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities): a specific and comprehensive pipeline for metagenomic shotgun sequencing data analysis. BMC Bioinformatics 2021; 22:106. [PMID: 34225648 PMCID: PMC8256542 DOI: 10.1186/s12859-021-04004-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Next-Generation-Sequencing (NGS) enables detection of microorganisms present in biological and other matrices of various origin and nature, allowing not only the identification of known phyla and strains but also the discovery of novel ones. The large amount of metagenomic shotgun data produced by NGS require comprehensive and user-friendly pipelines for data analysis, that speed up the bioinformatics steps, relieving the users from the need to manually perform complex and time-consuming tasks. Results We describe here HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities), an exhaustive pipeline for metagenomics data analysis, comprising three independent analytical modules designed for an inclusive analysis of large NGS datasets. Conclusions HOME-BIO is a powerful and easy-to-use tool that can be run also by users with limited computational expertise. It allows in-depth analyses by removing low-complexity/ problematic reads, integrating the analytical steps that lead to a comprehensive taxonomy profile of each sample by querying different source databases, and it is customizable according to specific users’ needs.
Collapse
Affiliation(s)
- Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Naples, Italy.,Genomix4Life, via S. Allende 43/L, 84081, Baronissi, SA, Italy
| | - Domenico Memoli
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Naples, Italy
| | - Antonio Di Loria
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Delpino 1, 80137, Naples, Italy
| | - Ylenia D'Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy. .,CRGS - Genome Research Center for Health, University of Salerno Campus of Medicine, 84081, Baronissi, SA, Italy.
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
11
|
Bassey AP, Ye K, Li C, Zhou G. Transcriptomic-proteomic integration: A powerful synergy to elucidate the mechanisms of meat spoilage in the cold chain. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
de Castro DT, Teixeira ABV, do Nascimento C, Alves OL, de Souza Santos E, Agnelli JAM, Dos Reis AC. Comparison of oral microbiome profile of polymers modified with silver and vanadium base nanomaterial by next-generation sequencing. Odontology 2021; 109:605-614. [PMID: 33481145 DOI: 10.1007/s10266-020-00582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/13/2020] [Indexed: 11/25/2022]
Abstract
This study aimed to evaluate two methods of the incorporation of nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into acrylic resin and characterize the profile of early and late microbial communities in class and family taxonomic level by pyrosequencing. The specimens were made by adding different concentrations of AgVO3 (1, 2.5, and 5%) to the heat-activated acrylic resin by two methods: vacuum spatulation (VS) and polymeric film (PF). A control group (0%) without AgVO3 was also obtained for both methods. After 24 h and 7 days of incubation in human saliva, biofilm samples were collected, DNA was extracted, and 16S rRNA genes were sequenced by the 454-Roche sequencing platform. Seventeen classes and 51 families of bacteria were identified. The abundance of Bacteroidia, Bacilli, Negativicutes, Fusobacteria and Betaproteobacteria classes decreased after 7 days of incubation, and Clostridia, Gammaproteobacteria, and unclassified bacteria increased. The Negativicutes and Betaproteobacteria classes were more abundant when the PF method was used, and Gammaproteobacteria was more abundant when VS was used. The incorporation of 5% AgVO3 promoted a reduction in the prevalence of Bacilli, Clostridia, Negativicutes, Betaproteobacteria, and unclassified bacteria, and increased Gammaproteobacteria. The addition of AgVO3 to acrylic resin altered the early and mature microbiome formed on the specimen surface, and the PF method presented a more favorable microbial profile than the VS method.
Collapse
Affiliation(s)
- Denise Tornavoi de Castro
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Ana Beatriz Vilela Teixeira
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Cássio do Nascimento
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil
| | - Oswaldo Luiz Alves
- Laboratory of Solid State Chemistry, Institute of Chemistry, University of Campinas (Unicamp), Cidade Universitária Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Emerson de Souza Santos
- Department of Clinical Toxicological and Bromatologic Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-903, Brazil
| | | | - Andréa Cândido Dos Reis
- Departament of Dental Materials and Prosthesis, School of Dentistry of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Prêto, SP, 14040-904, Brazil.
| |
Collapse
|
13
|
On the Variability of Microbial Populations and Bacterial Metabolites within the Canine Stool. An in-Depth Analysis. Animals (Basel) 2021; 11:ani11010225. [PMID: 33477604 PMCID: PMC7831317 DOI: 10.3390/ani11010225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The present study investigated for the first time the impact that different sampling points have on the abundance of microbial populations and metabolites within the canine stool. We found that inner stool subsamples resulted in higher concentrations of bacterial metabolites but not of microbial populations. These findings suggest that stool subsampling is unlikely to represent the canine microbiota and metabolome uniformly. We believe that complete homogenisation of the whole stool prior to analysis may improve the final outcome when investigating the canine gut microbiome. Abstract Canine faecal microbial populations and metabolome are being increasingly studied to understand the interplay between host and gut microbiome. However, the distribution of bacterial taxa and microbial metabolites throughout the canine stool is understudied and currently no guidelines for the collection, storage and preparation of canine faecal samples have been proposed. Here, we assessed the effects that different sampling points have on the abundance of selected microbial populations and bacterial metabolites within the canine stool. Whole fresh faecal samples were obtained from five healthy adult dogs. Stool subsamples were collected from the surface to the inner part and from three equally sized areas (cranial, central, caudal) along the length axis of the stool log. All samples were finally homogenised and compared before and after homogenisation. Firmicutes, Bacteroidetes, Clostridium cluster I, Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp. populations were analysed, as well as pH, ammonia and short-chain fatty acids (SCFA) concentrations. Compared to the surface of the stool, inner subsamples resulted in greater concentrations of SCFA and ammonia, and lower pH values. qPCR assay of microbial taxa did not show any differences between subsamples. Homogenisation of faeces does not affect the variability of microbial and metabolome data. Although the distribution patterns of bacterial populations and metabolites are still unclear, we found that stool subsampling yielded contradictory result and biases that can affect the final outcome when investigating the canine microbiome. Complete homogenisation of the whole stool is therefore recommended.
Collapse
|
14
|
Cabezas A, Bovio P, Etchebehere C. Commercial formulation amendment transiently affects the microbial composition but not the biogas production of a full scale methanogenic UASB reactor. ENVIRONMENTAL TECHNOLOGY 2020; 41:3119-3133. [PMID: 30919752 DOI: 10.1080/09593330.2019.1600042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The treatment of dairy wastewater in methanogenic reactors cause several problems due to their high lipid content. One strategy to overcome these problems is the use of commercial formulations. Here we studied the effect of adding a commercial formulation, designed to improve fat degradation, on both the microbial community composition and reactor performance. Samples from two full-scale Up-flow Anaerobic Sludge Blanket (UASB) reactors in parallel arrangement were analysed. The commercial product was added to one of the reactors while the other was used as control. The amendment increased significantly the fat removal but an accumulation of volatile fatty acids was detected. Nevertheless, no significant differences were observed in the total Chemical Oxygen Demand (COD) removal and biogas production between reactors. A significant change in the bacterial community was not detected by 16S rRNA gene Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis probably due to the limitation of the technique. A strong change in the composition of the phylum Firmicutes was detected with 16S rRNA gene amplicon sequencing; however, it didn't persist during the whole operation period. The relative abundance of minor Operational Taxonomic Units (OTUs) with sequences related to syntrophic bacteria increased with the amendment. Although a better hydrolytic capacity was obtained when adding the commercial product, the overall process did not improve and no increase in biogas production was detected. Alternative strategies could be applied to avoid the accumulation of intermediary products and improve biogas production as intermittent addition of the commercial product or batch operation of reactors.
Collapse
Affiliation(s)
- A Cabezas
- Environmental Microbiology and Biotechnology Laboratory, Department of Environmental Sciences, Uruguay Technological University (UTEC), Durazno, Uruguay
| | - P Bovio
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - C Etchebehere
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| |
Collapse
|
15
|
Himoto T, Masaki T. Current Trends of Essential Trace Elements in Patients with Chronic Liver Diseases. Nutrients 2020; 12:nu12072084. [PMID: 32674425 PMCID: PMC7400835 DOI: 10.3390/nu12072084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Essential trace elements play crucial roles in the maintenance of health, since they are involved in many metabolic pathways. A deficiency or an excess of some trace elements, including zinc, selenium, iron, and copper, frequently causes these metabolic disorders such as impaired glucose tolerance and dyslipidemia. The liver largely regulates most of the metabolism of trace elements, and accordingly, an impairment of liver functions can result in numerous metabolic disorders. The administration or depletion of these trace elements can improve such metabolic disorders and liver dysfunction. Recent advances in molecular biological techniques have helped to elucidate the putative mechanisms by which liver disorders evoke metabolic abnormalities that are due to deficiencies or excesses of these trace elements. A genome-wide association study revealed that a genetic polymorphism affected the metabolism of a specific trace element. Gut dysbiosis was also responsible for impairment of the metabolism of a trace element. This review focuses on the current trends of four trace elements in chronic liver diseases, including chronic hepatitis, liver cirrhosis, nonalcoholic fatty liver disease, and autoimmune liver diseases. The novel mechanisms by which the trace elements participated in the pathogenesis of the chronic liver diseases are also mentioned.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
- Correspondence: ; Tel.: +81-87-870-1240; Fax: +81-87-870-1202
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0123, Japan;
| |
Collapse
|
16
|
Cox LM, Seekatz AM, Fichorova RN. Introduction to the special issue for The anaerobe society of the America's 14th Biennial congress in Las Vegas. Anaerobe 2019; 58:1-5. [PMID: 31255715 DOI: 10.1016/j.anaerobe.2019.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
In June 2018, the Anaerobe Society of the America's (ASA) held their 14th Biennial Congress in Las Vegas, Nevada. The Congress was attended by over 200 individuals from many different countries. The focus of the meeting was the fast-growing area of anaerobes in human and animal infectious disease, computational tools to understand basic biology and therapeutic development, the role of anaerobes in the microbiome, and clinical trials of novel bacterial-based therapies. To strengthen the community of researchers working on anaerobes, the congress held two training workshops on clinical bacteriology and anaerobes in the microbiome, several networking events, as well as a dinner which honored the lifetime achievement award given to Ellen Jo Baron. The meeting was also attended by the grandfather of anaerobic bacteriology and the founder of (ASA), Sydney Finegold, at the age of 97. In all, there was a broad diversity of research presented that showed new ways that anaerobes play a important role in health and disease.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Anna M Seekatz
- Biological Sciences Department, Clemson University, Clemson, SC, 29634, USA
| | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Conrads G, Wendt LK, Hetrodt F, Deng ZL, Pieper D, Abdelbary MMH, Barg A, Wagner-Döbler I, Apel C. Deep sequencing of biofilm microbiomes on dental composite materials. J Oral Microbiol 2019; 11:1617013. [PMID: 31143408 PMCID: PMC6522937 DOI: 10.1080/20002297.2019.1617013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The microbiome on dental composites has not been studied in detail before. It has not been conclusively clarified whether restorative materials influence the oral microbiome. Methods: We used Illumina Miseq next-generation sequencing of the 16S V1-V2 region to compare the colonisation patterns of bovine enamel (BE) and the composite materials Grandio Flow (GF) and Grandio Blocs (GB) after 48 h in vivo in 14 volunteers. Applying a new method to maintain the oral microbiome ex vivo for 48 h also, we compared the microbiome on GF alone and with the new antimicrobial substance carolacton (GF+C). Results: All in vitro biofilm communities showed a higher diversity and richness than those grown in vivo but the very different atmospheric conditions must be considered. Contrary to expectations, there were only a few significant differences between BE and the composite materials GB and GF either in vivo or in vitro: Oribacterium, Peptostreptococcaceae [XI][G-1] and Streptococcus mutans were more prevalent and Megasphaera, Prevotella oulorum, Veillonella atypica, V. parvula, Gemella morbillorum, and Fusobacterium periodonticum were less prevalent on BE than on composites. In vivo, such preferences were only significant for Granulicatella adiacens (more prevalent on BE) and Fusobacterium nucleatum subsp. animalis (more prevalent on composites). On DNA sequence level, there were no significant differences between the biofilm communities on GF and GF+C. Conclusion: We found that the oral microbiome showed an increased richness when grown on various composites compared to BE in vitro, but otherwise changed only slightly independent of the in vivo or in vitro condition. Our new ex vivo biofilm model might be useful for pre-clinical testing of preventive strategies.
Collapse
Affiliation(s)
- Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Laura Katharina Wendt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | - Franziska Hetrodt
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany.,Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - Zhi-Luo Deng
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative and Preventive Dentistry & Periodontology, RWTH Aachen University Hospital, Aachen, Germany
| | | | - Irene Wagner-Döbler
- Group Microbial Communication, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Christian Apel
- Department of Biohybrid & Medical Textiles, Institute of Applied Medical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|