1
|
Jiang Y, Pan Y, Yin J. Prevalence, toxin-genotype distribution, and transmission of Clostridium perfringens from the breeding and milking process of dairy farms. Food Microbiol 2024; 120:104485. [PMID: 38431330 DOI: 10.1016/j.fm.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.
Collapse
Affiliation(s)
- Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jingyi Yin
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Alimolaei M, Afzali S. Prevalence of Clostridium perfringens toxinotypes in antibiotic-associated diarrheal (AAD) patients in Iranian hospitals; can toxinotype D serve as a possible zoonotic agent for humans? Acta Trop 2023; 247:107002. [PMID: 37597720 DOI: 10.1016/j.actatropica.2023.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023]
Abstract
While Clostridium perfringens (C. perfringens) toxinotype F is known as the cause of 15% of antibiotic-associated diarrhea (AAD) and sporadic diarrhea (SD) cases, the association of the other C. perfringens toxinotypes with AAD/SD is not investigated. Therefore, the incidence of C. perfringens-associated diarrhea was investigated in hospitalized patients in six Iranian hospitals. A total of 151 stool specimens from AAD/SD patients were investigated for C. perfringens strains and the isolates were analyzed for the major (cpa, cpb, etx, and iap) and minor (cpe, cpb2, netb, PFO, and tpeL) toxin genes by PCR. C. perfringens isolation ratio was 28.5% (43 of 151 patients). C. perfringens isolation rates were not significant between different gender and age groups (p > 0.05), whereas it was significant between different wards and hospitals (p < 0.01). The cpa gene was detected in all C. perfringens isolates (n = 116). After that, the highest prevalence belonged to tpeL (87.1%), followed by pfo (84.5%), cpb2 (69.8%), cpe (55.2%), etx (12.9%), and netb (1.7%) genes. Based on these gene profiles, 35 (30.2%), 64 (55.2%), 15 (12.9%), and two (1.7%) isolates belonged to toxinotypes A, F, D, and G, respectively, and the other toxinotypes were not detected. This study persists in considering toxinotype F in Iranian AAD patients as it was the dominant C. perfringens toxinotype. Remarkably, the isolation of toxinotype D suggests it as a potential trigger in C. perfringens-associated AAD for the first time and highlights it as a possible zoonotic agent for humans.
Collapse
Affiliation(s)
- Mojtaba Alimolaei
- Research and Development Department, Kerman branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran; Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sadegh Afzali
- Research and Development Department, Kerman branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Kerman, Iran
| |
Collapse
|
3
|
Jin C, Cao J, Zhang K, Zhang X, Cao Z, Zou W. Promotion effects and mechanisms of molybdenum disulfide on the propagation of antibiotic resistance genes in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114913. [PMID: 37062264 DOI: 10.1016/j.ecoenv.2023.114913] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The rapid development of nanotechnology has aroused considerable attentions toward understanding the effects of engineered nanomaterials (ENMs) on the propagation of antibiotic resistance. Molybdenum disulfide (MoS2) is an extensively used ENM and poses potential risks associated with environmental exposure; nevertheless, the role of MoS2 toward antibiotic resistance genes (ARGs) transfer remains largely unknown. Herein, it was discovered that MoS2 nanosheets accelerated the horizontal transfer of RP4 plasmid across Escherichia coli in a dose-dependent manner (0.5-10 mg/L), with the maximum transfer frequency 2.07-fold higher than that of the control. Integration of physiological, transcriptomics, and metabolomics analyses demonstrated that SOS response in bacteria was activated by MoS2 due to the elevation of oxidative damage, accompanied by cell membrane permeabilization. MoS2 promoted bacterial adhesion and intercellular contact via stimulating the secretion of extracellular polysaccharides. The ATP levels were maximally increased by 305.7 % upon exposure to MoS2, and the expression of plasmid transfer genes was up-regulated, contributing to the accelerated plasmid conjugation and increased ARG abundance in soil. Our findings highlight the roles of emerging ENMs (e.g., MoS2) in ARGs dissemination, which is significant for the safe applications and risk management of ENMs under the development scenarios of nanotechnology.
Collapse
Affiliation(s)
- Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Jingxin Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Zhang
- School of Geographic Sciences, Henan Key Laboratory for Synergistic Prevention of Water and Soil Environmental Pollution, Xinyang Normal University, Xinyang 464000, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
4
|
Hashimoto A, Suzuki H, Oonaka K. Prevalence of cpe-positive Clostridium perfringens in surface-attached soil of commercially available potatoes and its significance as a potential source of food poisoning. Anaerobe 2023; 79:102687. [PMID: 36549463 DOI: 10.1016/j.anaerobe.2022.102687] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE We aimed to examine the surface-attached soil of commercially available potatoes in Japan to determine the association between foodborne infection and the circulation of Clostridium perfringens through vegetables, soil, and environments. METHODS C. perfringens spores were isolated from 30 surface-attached soil samples of potatoes obtained from six regions in Japan. We performed multiplex polymerase chain reaction (PCR) and sequencing to detect the presence of six toxin and plasmid-related genes in the isolates. RESULTS Sulfite-reducing clostridial spores were detected in 28 (93%) of 30 potato samples, and toxin gene PCR was performed using 613 isolates. The C. perfringens α toxin gene (cpa) was detected in 288 isolates (288/613; 47%) from 25 potato samples (83%), and these isolates were presumed to be the strains of C. perfringens. The toxin types of C. perfringens were classified into type A, in which 73% of isolates had only cpa, followed by type F in 20%, type C in 6%, and type E in 0.003% (1 isolate). The enterotoxin gene (cpe) related to food poisoning was detected in 64 isolates from 9 potato samples (3%). Of these, 59 isolates had cpa and cpe, whereas five had cpa, C. perfringens β toxin gene, and cpe. All tested cpe-positive isolates had plasmid-type cpe. CONCLUSIONS The isolation of culturable cpe-positive C. perfringens from the surface-attached soil of commercially available potatoes indicates that potatoes are a potential source of foodborne transmission of C. perfringens.
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Life and Environmental Sciences, Faculty of Bioresource, Prefectural University of Hiroshima, 5562, Nanatsuka-cho, Shobara City, Hiroshima, 727-0023, Japan.
| | - Hiroyuki Suzuki
- Research and Development Center, Suzuken Co., Ltd., 5-28-1 Hongo, Bunkyo Ward, Tokyo, 113-0033, Japan.
| | - Kenji Oonaka
- Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71, Fuchinobe, Chuou-ku, Sagamihara City, Kanagawa, 252-5201, Japan.
| |
Collapse
|
5
|
Prevalence, Antibiotic Resistance, Toxin-Typing and Genotyping of Clostridium perfringens in Raw Beef Meats Obtained from Qazvin City, Iran. Antibiotics (Basel) 2022; 11:antibiotics11030340. [PMID: 35326802 PMCID: PMC8944464 DOI: 10.3390/antibiotics11030340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/01/2023] Open
Abstract
Background: Clostridium perfringens is one of the highest prevailing spore-forming foodborne pathogens, which is widely distributed and causes severe disease and outbreaks in humans and animals. Raw meat and poultry are the main vehicles of this pathogen. In this study, we investigated the prevalence, antibiotic resistance pattern, toxin-encoding genes and genetic diversity of C. perfringens isolates from raw whole and minced meat samples purchased from local markets in Qazvin city, Iran (the source of beef cattle production was also located in Qazvin city, Iran). Methods: We used conventional culture-based and Kirby–Bauer disk diffusion and conventional and arbitrary primer PCR methods. Results: A total of 18 C. perfringens strains were isolated from 133 raw meat samples (13.53%). Up to 44.4 and 55.5% of these isolates were detected in raw minced and whole meat samples, respectively. We found that 72.2, 66.6, 61.1, 37.8 and 33.3% of the C. perfringens isolates were resistant to ampicillin, tetracycline, amoxicillin, ciprofloxacin and chloramphenicol antibiotics, respectively. Multidrug resistance was found in 38% of the isolates. Among the four main toxin genes evaluated, the Cpa gene was detected in all isolates, and 61.1% of the isolates were mostly recognized as type A C. perfringens. High levels of genetic diversity were observed among the isolates, and they were classified into five distinct groups. Conclusions: The isolates from whole meat samples were more resistant to antibiotics. However, toxin genes were more detected in the isolates from minced meat samples. Our findings suggest that contamination of raw meat products with multidrug resistant C. perfringens could be regarded as one of the concerning pathogens in these products. Comprehensive monitoring of C. perfringens isolates is strongly recommended.
Collapse
|
6
|
Ahmed HA, El Bayomi RM, Hamed RI, Mohsen RA, El-Gohary FA, Hefny AA, Elkhawaga E, Tolba HMN. Genetic Relatedness, Antibiotic Resistance, and Effect of Silver Nanoparticle on Biofilm Formation by Clostridium perfringens Isolated from Chickens, Pigeons, Camels, and Human Consumers. Vet Sci 2022; 9:vetsci9030109. [PMID: 35324837 PMCID: PMC8949260 DOI: 10.3390/vetsci9030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we determined the prevalence and toxin types of antibiotic-resistant Clostridium perfringens in chicken, pigeons, camels, and humans. We investigated the inhibitory effects of AgNPs on biofilm formation ability of the isolates and the genetic relatedness of the isolates from various sources determined using RAPD-PCR. Fifty isolates were identified using PCR, and all the isolates were of type A. The cpe and cpb2 genes were detected in 12% and 56% of the isolates, respectively. The effect of AgNPs on biofilm production of six representative isolates indicated that at the highest concentration of AgNPs (100 µg/mL), the inhibition percentages were 80.8–82.8%. The RAPD-PCR patterns of the 50 C. perfringens isolates from various sources revealed 33 profiles and four clusters, and the discriminatory power of RAPD-PCR was high. Multidrug-resistant C. perfringens isolates are predominant in the study area. The inhibition of biofilm formation by C. perfringens isolates was dose-dependent, and RAPD-PCR is a promising method for studying the genetic relatedness between the isolates from various sources. This is the first report of AgNPs’ anti-biofilm activity against C. perfringens from chickens, pigeons, camels, and humans, to the best of our knowledge.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| | - Rasha M. El Bayomi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Rehab I. Hamed
- Reference Laboratory for Quality Control on Poultry Production, Department of Poultry Diseases, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt;
| | - Rasha A. Mohsen
- Department of Bacteriology, Animal Health Research Institute, Mansoura Branch, Agriculture Research Center (ARC), Mansoura 12618, Egypt;
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed A. Hefny
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Eman Elkhawaga
- Department of Food Hygiene, Animal Health Research Institute, Mansoura Branch, Agriculture Research Center (ARC), Mansoura 12618, Egypt;
| | - Hala M. N. Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
7
|
Wang L, Liang D, Shi Y. Profiling of co-metabolic degradation of tetracycline by the bio-cathode in microbial fuel cells. RSC Adv 2022; 12:509-516. [PMID: 35424472 PMCID: PMC8978701 DOI: 10.1039/d1ra07600k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed. Overall, the co-metabolic degradation performance of TEC was studied through single factor experiments and the ecological risk was evaluated using the E. coli growth inhibition rate and resistance genes. High throughput sequencing (HTS) was utilized to profile the biofilm community structure of the bio-cathode. Results showed that the degradation rate of TEC reached greater than 90% under optimal conditions, which was 10 mg L−1 initial TEC concentration, 0.2–0.7 g L−1 sodium acetate concentration and 12–18 L h−1 aeration. Furthermore, compared with the aerobic biodegradation of TEC, the degradation efficiency of the MFC bio-cathode for TEC was significantly increased by 50% and the eco-toxicity of TEC after 36 hour degradation was reduced by 60.9%, and TEC ARGs in effluent were cut down. HTS results showed that electrochemically active bacteria Acetobacter and TEC-resistant degradation bacteria Hyphomicrobium, Clostridium and Rhodopseudomonas were the main dominant bacteria in the cathode biofilm. Besides, based on 5 intermediates, degradation pathways involving deamidation, denitro dimethylation, dedimethylation and dehydroxylation of TEC were proposed. The degradation of TEC on the bio-cathode was mainly caused by microbial co-metabolism action. This study would enrich the study of MFC bio-cathodic degradation of antibiotics in water. In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed.![]()
Collapse
Affiliation(s)
- Luxiang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Dongmin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| |
Collapse
|
8
|
Benz R, Piselli C, Hoxha C, Koy C, Glocker MO, Popoff MR. Clostridium perfringens Beta2 toxin forms highly cation-selective channels in lipid bilayers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:15-27. [PMID: 34854958 PMCID: PMC8827211 DOI: 10.1007/s00249-021-01577-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/28/2021] [Accepted: 11/14/2021] [Indexed: 11/27/2022]
Abstract
Clostridium perfringens is a potent producer of a variety of toxins. Well studied from these are five toxins (alpha, Beta (CPB), epsilon, iota and CPE) that are produced by seven toxinotype strains (A-G) of C. perfringens. Besides these toxins, C. perfringens produces also another toxin that causes necrotizing enterocolitis in piglets. This toxin termed consensus Beta2 toxin (cCPB2) has a molecular mass of 27,620 Da and shows only little homology to CPB and no one to the other toxins of C. perfringens. Its primary action on cells remained unknown to date. cCPB2 was heterogeneously expressed as fusion protein with GST in Escherichia coli and purified to homogeneity. Although cCPB2 does not exhibit the typical structure of beta-stranded pore-forming proteins and contains no indication for the presence of amphipathic alpha-helices we could demonstrate that cCPB2 is a pore-forming component with an extremely high activity in lipid bilayers. The channels have a single-channel conductance of about 700 pS in 1 M KCl and are highly cation-selective as judged from selectivity measurements in the presence of salt gradients. The high cation selectivity is caused by the presence of net negative charges in or near the channel that allowed an estimate of the channel size being about 1.4 nm wide. Our measurements suggest that the primary effect of cCPB2 is the formation of cation-selective channels followed by necrotic enteritis in humans and animals. We searched in databases for homologs of cCPB2 and constructed a cladogram representing the phylogenetic relationship to the next relatives of cCPB2.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany.
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Cezarela Hoxha
- Department of Life Sciences and Chemistry, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
- Bacterial Toxins, Institut Pasteur, 28 Rue du Dr Roux, Paris, France
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine Rostock, 18059, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock, 18059, Rostock, Germany
| | - Michel R Popoff
- Bacterial Toxins, Institut Pasteur, 28 Rue du Dr Roux, Paris, France
| |
Collapse
|
9
|
Jiang Y, Ma Y, Liu Q, Li T, Li Y, Guo K, Zhang Y. Tracing Clostridium perfringens strains from beef processing of slaughter house by pulsed-field gel electrophoresis, and the distribution and toxinotype of isolates in Shaanxi province, China. Food Microbiol 2021; 101:103887. [PMID: 34579847 DOI: 10.1016/j.fm.2021.103887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 08/06/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
The purpose of this study was to investigate the distribution and specify the transmission and cross-contamination of Clostridium perfringens (C. perfringens) in the beef slaughtering and butchering process. The prevalence of 21.2% (150/708) yielded 208 isolates of C. perfringens, including 80.8% type A and 19.2% type D, 0.4% (3/708) samples carried both type A and D strains, and 72.5% type D isolates carried both cpe and atyp.cpb2 genes. C. perfringens were identified through the whole slaughtering process but no type F (cpe and cpa isolates) was found. 69 isolates were further analyzed and classified into 28 PFGE genotypes and clade I contained 94.2% isolates and 24 PFGE genotypes, which showed the genetic diversity and epidemic correlation. Our study traced C. perfringens contamination along the handling processes and showed a gradually ascending contamination rate during the whole process, revealing widespread cross-contamination from the feces and hides of slaughtered cattle to the carcass in the slaughtering workshop, so as from tools and personnel to meat of the cutting workshops. Strains from different slaughterhouses (regions) have high homology, and type A is the predominant toxinotype. It is necessary to monitor and control several key points of cross-contamination during slaughtering process to reduce a risk of C. perfringens infection.
Collapse
Affiliation(s)
- Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yinghui Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Qianqian Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tianmei Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yiming Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
10
|
Xiaoting W, Chengcheng N, Chunhui J, Yan L, Jing L, Qingling M, Jun Q, Lixia W, Kuojun C, Jinsheng Z, Zaichao Z, Weiwei Y, Yelong P, Xuepeng C. Antimicrobial resistance profiling and molecular typing of ruminant-borne isolates of Clostridium perfringens from Xinjiang, China. J Glob Antimicrob Resist 2021; 27:41-45. [PMID: 34438107 DOI: 10.1016/j.jgar.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Clostridium perfringens (C. perfringens) can cause intestinal diseases in livestock and humans, which seriously threatens the healthy development of animal husbandry and human food safety. Here, the characteristics of antimicrobial resistance and molecular typing of ruminant-borne strains of C. perfringens in Xinjiang, China were explored and profiled. METHODS A total of 307 clinical feces collected from ruminants (cattle and sheep) with diarrheal symptoms were screened for C. perfringens. The recovered isolates were characterized in respect to their antimicrobial resistance pattern and molecular typing. RESULTS A total of 109 isolates of C. perfringens were isolated from 307 clinical feces of ruminants, most of which displayed the multidrug resistance (MDR) phenotype. Demonstration of the quinolone-resistance gene was the highest among the isolates (70.6%). The multiplex PCR typing based on toxin genes showed that type A and type D strains made up 82.6% (90/109) and 17.4% (19/109), among which, the isolates carrying β2 gene occupied 43.3% (39/90) of type A strains and 31.6% (6/19) of type D strains. These isolates were divided into 6 genotypes (I-VI) by enterobacterial repetitive intergenic consensus sequence-based PCR (ERIC-PCR) method. A total of 33 ST types (ST1-ST33) were identified by multilocus sequence typing (MLST) method. CONCLUSION C. perfringens isolates with multidrug resistance (MDR) were frequent and circulating in ruminants. Among them, type A-Ⅰ-ST19 was the dominant genotype of C. perfringens, displaying obvious genetic diversity. This study provided important epidemiological data for the risk assessment of food safety associated with ruminant-borne C. perfringens in Xinjiang, China.
Collapse
Affiliation(s)
- Wang Xiaoting
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China; Department of Animal Laboratory, Chifeng Municipal Hospital, Chifeng, Inner Mongolia, 024000, China
| | - Ning Chengcheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Ji Chunhui
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Jing
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Meng Qingling
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qiao Jun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wang Lixia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Cai Kuojun
- Center for Animal Disease Prevention and Control, Urumqi, Xinjiang, 830000, China
| | - Zhang Jinsheng
- Center for Animal Disease Prevention and Control, Tacheng, Xinjiang, 834700, China
| | - Zhang Zaichao
- Center for Animal Disease Prevention and Control, Changji, Xinjiang, 831500, China
| | - Yu Weiwei
- Center for Animal Disease Prevention and Control, Korla, Xinjiang, 841000, China
| | - Peng Yelong
- Center for Animal Disease Prevention and Control, Aksu, Xinjiang, 8430000, China
| | - Cai Xuepeng
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| |
Collapse
|
11
|
Holin-Dependent Secretion of the Large Clostridial Toxin TpeL by Clostridium perfringens. J Bacteriol 2021; 203:JB.00580-20. [PMID: 33526612 DOI: 10.1128/jb.00580-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Large clostridial toxins (LCTs) are secreted virulence factors found in several species, including Clostridioides difficile, Clostridium perfringens, Paeniclostridium sordellii, and Clostridium novyi LCTs are large toxins that lack a secretion signal sequence, and studies by others have shown that the LCTs of C. difficile, TcdA and TcdB, require a holin-like protein, TcdE, for secretion. The TcdE gene is located on the pathogenicity locus (PaLoc) of C. difficile, and holin-encoding genes are also present in the LCT-encoded PaLocs from P. sordellii and C. perfringens However, the holin (TpeE) associated with the C. perfringens LCT TpeL has no homology and a different membrane topology than TcdE. In addition, TpeE has a membrane topology identical to that of the TatA protein, which is the core of the twin-arginine translocation (Tat) secretion system. To determine if TpeE was necessary and sufficient to secrete TpeL, the genes from a type C strain of C. perfringens were expressed in a type A strain of C. perfringens, HN13, and secretion was measured using Western blot methods. We found that TpeE was required for TpeL secretion and that secretion was not due to cell lysis. Mutant forms of TpeE lacking an amphipathic helix and a charged C-terminal domain failed to secrete TpeL, and mutations that deleted conserved LCT domains in TpeL indicated that only the full-length protein could be secreted. In summary, we have identified a novel family of holin-like proteins that can function, in some cases, as a system of protein secretion for proteins that need to fold in the cytoplasm.IMPORTANCE Little is known about the mechanism by which LCTs are secreted. Since LCTs are major virulence factors in clostridial pathogens, we wanted to define the mechanism by which an LCT in C. perfringens, TpeL, is secreted by a protein (TpeE) lacking homology to previously described secretion-associated holins. We discovered that TpeE is a member of a widely dispersed class of holin proteins, and TpeE is necessary for the secretion of TpeL. TpeE bears a high degree of similarity in membrane topology to TatA proteins, which form the pore through which Tat secretion substrates pass through the cytoplasmic membrane. Thus, the TpeE-TpeL secretion system may be a model for understanding not only holin-dependent secretion but also how TatA proteins function in the secretion process.
Collapse
|
12
|
Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Sci Rep 2021; 11:475. [PMID: 33436645 PMCID: PMC7804025 DOI: 10.1038/s41598-020-79333-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens (Cp) is a ubiquitous opportunistic pathogen of humans and animals in the natural environment and animal intestines. The pathogenicity of Cp depends on the production of toxins encoded by genes on the chromosomes or plasmids. In contemporary literature, there is no clear consensus about the pathogenicity of CpA β2 toxin. To analyze the homology of the genome of piglet source CpA and its β2 toxin, we sequenced the whole genome of strain JXJA17 isolated from diarrhea piglets using the Illumina Miseq and Pacbio Sequel platforms. The genome was composed of a circular chromosome with 3,324,072 bp (G + C content: 28.51%) and nine plasmids. Genome and 16S rDNA homology analysis revealed a close relation of the JXJA17 strain with the JGS1495, Cp-06, Cp-16, and FORC_003 strains. These strains were isolated from different samples and belonged to different toxin-types. JXJA17 strain was found to carry two toxin genes (plc and cpb2). In contrast to other Cp strains, the cpb2 of JXJA17 was located on a large plasmid (58 kb) with no co-localization of other toxin genes or antibiotic resistance genes. Analysis of JXJA17 genome homology and its cpb2 would facilitate our further study the relationship between β2 toxin and piglet diarrhea.
Collapse
|
13
|
Han T, Zhang Q, Liu N, Wang J, Li Y, Huang X, Liu J, Wang J, Qu Z, Qi K. Changes in antibiotic resistance of Escherichia coli during the broiler feeding cycle. Poult Sci 2020; 99:6983-6989. [PMID: 33248614 PMCID: PMC7704736 DOI: 10.1016/j.psj.2020.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/04/2022] Open
Abstract
The purpose of this study was to investigate the drug-resistant phenotypes and genes of Escherichia coli in animal, environmental, and human samples before and after antibiotic use at a large-scale broiler farm to understand the respective effects on E. coli resistance during the broiler feeding cycle. The antibiotic use per broiler house was 143.04 to 183.50 mg/kg, and included tilmicosin, florfenicol, apramycin, and neomycin. All strains isolated on the first day the broilers arrived (T1; day 1) were antibiotic-resistant bacteria. E. coli strains isolated from animal samples were resistant to ampicillin, tetracycline, and sulfamethoxazole (100%), and those isolated from environmental samples were resistant to 5 different drugs (74.07%, 20 of 27). E. coli strains isolated on the last day before the broilers left (T2; day 47) had a higher resistance rate to florfenicol (100%, 36 of 36) than at T1 (P < 0.05). Multidrug resistance increased from T1 (84.21%, 32 of 38) to T2 (97.22%, 35 of 36). Most strains were resistant to 5 classes of antibiotics, and 2 strains were resistant to 6 classes of antibiotics. Among 13 identified drug resistance genes, 11 and 13 were detected at T1 and T2, respectively. NDM-1 was detected in 4 environmental samples and 1 animal sample. In conclusion, the use of antibiotics during breeding increases E. coli resistance to antibacterial drugs. Drug-resistant bacteria in animals and the environment proliferate during the feeding cycle, leading to the widespread distribution of drug resistance genes and an increase in the overall resistance of bacteria.
Collapse
Affiliation(s)
- Tianfei Han
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China; Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| | - Qingqing Zhang
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Na Liu
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Juan Wang
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Yuehua Li
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Xiumei Huang
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Junhui Liu
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Junwei Wang
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China
| | - Zhina Qu
- Livestock and Poultry Products Quality & Safety Risk Assessment Laboratory (Qingdao) of Ministry of Agriculture and Rural Affairs, China Animal Health and Epidemiology Center, Qingdao, Shandong, China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
14
|
Toxinotyping and molecular characterization of antimicrobial resistance in Clostridium perfringens isolated from different sources of livestock and poultry. Anaerobe 2020; 67:102298. [PMID: 33220406 DOI: 10.1016/j.anaerobe.2020.102298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/26/2023]
Abstract
The present study was designed to understand the presence of antimicrobial resistance among the prevalent toxinotypes of Clostridium perfringens recovered from different animals of Tamil Nadu, India. A total of 75 (10.76%) C. perfringens were isolated from 697 multi-species fecal and intestinal content samples. C. perfringens type A (90.67%), type C (2.67%), type D (4%) and type F (2.67%) were recovered. Maximum number of isolates were recovered from dog (n = 20, 24.10%) followed by chicken (n = 19, 5.88%). Recovered isolates were resistant to gentamicin (44.00%), erythromycin (40.00%), bacitracin (40.00%), and tetracycline (26.67%), phenotypically and most of the isolates were found to be resistant to multiple antimicrobials. Genotypic characterization revealed that tetracycline (41.33%), erythromycin (34.66%) and bacitracin (17.33%) resistant genes were present individually or in combination among the isolates. Combined results of phenotypic and genotypic characterization showed the highest percentage of erythromycin resistance (26.66%) among the isolates. None of the isolates showed amplification for lincomycin resistance genes. The correlation matrix analysis of genotypic resistance showed a weak positive relationship between the tetracycline and bacitracin resistance while a weak negative relationship between the tetracycline and erythromycin resistance. The present study thus reports the presence of multiple-resistance genes among C. perfringens isolates that may be involved in the dissemination of resistance to other bacteria present across species. Further insights into the genome can help to understand the mechanism involved in gene transfer so that measures can be taken to prevent the AMR spread.
Collapse
|
15
|
The Circulation of Type F Clostridium perfringens among Humans, Sewage, and Ruditapes philippinarum (Asari Clams). Pathogens 2020; 9:pathogens9080669. [PMID: 32824805 PMCID: PMC7459516 DOI: 10.3390/pathogens9080669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022] Open
Abstract
Clostridium perfringens is an important pathogen that is responsible for gastroenteritis; the causative agent for the symptoms is C. perfringens enterotoxin (CPE), which is mainly produced by type F C. perfringens. Since shellfishes may gather C. perfringens in the water environment, this study estimated the potential circulation of type F C. perfringens among humans, sewage, and Ruditapes philippinarum (asari clams) as a result of sewage pollution. A comparison of the characteristics among the isolates from 86 sewage influents, 36 effluents, 76 asari clams, and 37 humans was conducted. Serotyping, cpe genotyping, and toxin genotyping showed that C. perfringens with a plasmid IS1151 sequence downstream of cpe was predominant among sewage influents, effluents, humans, and asari clams. Multilocus sequence typing suggested that some isolates from a human, sewage influents, effluents, and asari clams were linked to each other. These results demonstrated that asari clams are the necessary infection sources of C. perfringens responsible for carriers and foodborne diseases, and that these pathogens from humans infected by asari clams can pollute the water environment. It is useful to assess bacteria such as C. perfringens isolates from sewage to estimate the trend of those from the community.
Collapse
|
16
|
Characterization of Clostridium Perfringens Isolates Collected from Three Agricultural Biogas Plants over a One-Year Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155450. [PMID: 32751104 PMCID: PMC7432756 DOI: 10.3390/ijerph17155450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 01/03/2023]
Abstract
Digestate produced by agricultural biogas plants (BGPs) may contain pathogenic bacteria. Among them, Clostridium perfringens deserves particular attention due to its ability to grow under anaerobic conditions and persist in amended soil. The aim of this study was to examine the potential pathogenicity and the antimicrobial resistance of C. perfringens in manure and digestate collected from three agricultural biogas plants (BGPs). A total of 157 isolates (92 from manure, 65 from digestate) were screened for genes encoding seven toxins (cpa, cpb, etx, iapcpe, netB, and cpb2). The 138 cpa positive isolates were then screened for tetA(P), tetB(P), tet(M), and erm(Q) genes and tested for antimicrobial susceptibility. The toxinotypes identified in both manure and digestate were type A (78.3% of the isolates), type G (16.7%), type C (3.6%), and type D (1.4%), whereas none of the isolates were type F. Moreover, half of the isolates carried the cpb2 gene. The overall prevalence of tetA(P) gene alone, tetA(P)-tetB(P) genes, and erm(Q) gene was 31.9, 34.8, and 6.5%, respectively. None of the isolates harbored the tet(M) gene. Multiple antimicrobial resistant isolates were found in samples that were collected from all the manure and digestates. Among them, 12.3% were highly resistant to some of the antibiotics tested, especially to clindamycin (MIC ≥ 16 µg/mL) and tilmicosin (MIC > 64 µg/mL). Some isolates were highly resistant to antibiotics used in human medicine, including vancomycin (MIC > 8 µg/mL) and imipenem (MIC > 64 µg/mL). These results suggest that digestate may be a carrier of the virulent and multidrug resistant C. perfringens.
Collapse
|