1
|
Du J, Wang Y, Su S, Wang W, Guo T, Hu Y, Yin N, An X, Qi J, Xu X. Supplementation with Complex Phytonutrients Enhances Rumen Barrier Function and Growth Performance of Lambs by Regulating Rumen Microbiome and Metabolome. Animals (Basel) 2025; 15:228. [PMID: 39858228 PMCID: PMC11758348 DOI: 10.3390/ani15020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Complex phytonutrients (CPS) have attracted extensive interest due to their anti-inflammatory effects. This investigation focused on the impact of CPS on rumen health in lambs on high-concentrate diets, emphasizing growth performance, ruminal fermentation, epithelial barrier integrity, ruminal metabolism, and microbial communities. A total of 54 lambs, 3 months old and with a 30.42 ± 0.54 kg body weight, were randomly assigned to three treatment groups, with six replicates per treatment and three lambs per replicate. The lambs received a basal diet (the ratio of concentrate to forage was 75:25) without CPS supplementation (CON) or with the inclusion of 2.5 g/kg (CPS2.5) or 5.0 g/kg CPS (CPS5.0) for a total of 60 days. The CPS groups exhibited increased growth performance and improved rumen fermentation parameters. Mechanistically, CPS enhanced rumen epithelial barrier function, thereby lowering inflammation and inhibiting the overactivation of the JNK/p38 MAPK signaling pathway, and the effect of CPS5.0 was better than that of CPS2.5. Notably, CPS5.0 could optimize the composition of rumen microbiota and increase the levels of Ursolic acid and other metabolites. The strong associations between rumen bacteria and health-related indicators and differential metabolites were further highlighted. Our findings suggest that adding CPS to lambs' diets has widespread positive impacts, including improved growth performance, reduced inflammation and mRNA relative expression of apoptosis-related genes, enhanced barrier function, and beneficial changes in the rumen microbiome and metabolite profiles.
Collapse
Affiliation(s)
- Juan Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Shaohui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Tao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Yuchao Hu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Na Yin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (J.D.); (S.S.); (W.W.); (T.G.); (Y.H.); (N.Y.); (X.A.); (J.Q.)
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Integrated Research Platform of Smart Animal Husbandry at Universities of Inner Mongolia Autonomous Region, Hohhot 010018, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot 010018, China
- National Center of Technology Innovation for Dairy-Breeding and Production Research Center, Hohhot 010018, China
| | - Xuan Xu
- Department of Statistics, Kansas State University, Manhattan, KS 66061, USA
- 1DATA Consortium, Kansas State University Olathe, Olathe, KS 66061, USA
| |
Collapse
|
2
|
Wei X, Tang D. Effect of Bacteroides on Crohn's disease. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024. [PMID: 39586813 DOI: 10.1055/a-2435-2659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Crohn's disease (CD), also known as cicatrizing enteritis, is an inflammatory bowel disease that occurs in the distal ileum and right colon of unknown cause and is also called inflammatory bowel disease (IBD) with ulcerative colitis (UC). In recent years, intestinal biota have been confirmed to play a significant role in various gastrointestinal diseases. Studies have found that intestinal microbiota disorders are closely associated with the onset and progression of Crohn's disease. Bacteroidetes, the second largest microbiota in the intestine, are crucial for equilibrium in the microbiota and intestinal environment. Certain Bacteroides can induce the development of Crohn's disease and aggravate intestinal inflammation directly or through their metabolites. Conversely, certain Bacteroides can reduce intestinal inflammation and symptoms of Crohn's disease. This article reviews the effect of several intestinal Bacteroides in the onset and progression of Crohn's disease and their impact on its treatment.
Collapse
Affiliation(s)
- Xuanyu Wei
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou University, Yangzhou, China
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Nanjing University, Yangzhou, China
| |
Collapse
|
3
|
Sóki J, Wybo I, Baaity Z, Stefán G, Jeverica S, Ulger N, Stingu CS, Mahmood B, Burián K, Nagy E. Detection of the antibiotic resistance genes content of intestinal Bacteroides, Parabacteroides and Phocaeicola isolates from healthy and carbapenem-treated patients from European countries. BMC Microbiol 2024; 24:202. [PMID: 38851699 PMCID: PMC11162026 DOI: 10.1186/s12866-024-03354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 05/28/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Bacteroides fragilis group (BFG) species are the most significant anaerobic pathogens and are also the most antibiotic-resistant anaerobic species. Therefore, surveying their antimicrobial resistance levels and investigating their antibiotic resistance mechanisms is recommended. Since their infections are endogenous and they are important constituents of the intestinal microbiota, the properties of the intestinal strains are also important to follow. The aim of this study was to investigate the main antibiotic gene content of microbiota isolates from healthy people and compare them with the gene carriage of strains isolated from infections. RESULTS We detected 13, mainly antibiotic resistance determinants of 184 intestinal BFG strains that were isolated in 5 European countries (Belgium, Germany, Hungary, Slovenia and Turkey) and compared these with values obtained earlier for European clinical strains. Differences were found between the values of this study and an earlier one for antibiotic resistance genes that are considered to be mobile, with higher degrees for cfxA, erm(F) and tet(Q) and with lower degrees for msrSA, erm(B) and erm(G). In addition, a different gene prevalence was found depending on the taxonomical groups, e.g., B. fragilis and NBFB. Some strains with both the cepA and cfiA β-lactamase genes were also detected, which is thought to be exceptional since until now, the B. fragilis genetic divisions were defined by the mutual exclusion of these two genes. CONCLUSIONS Our study detected the prevalences of a series of antibiotic resistance genes in intestinal Bacteroides strains which is a novelty. In addition, based on the current and some previous data we hypothesized that prevalence of some antibiotic resistance genes detected in the clinical and intestinal BFG strains were different, which could be accounted with the differential composition of the Bacteroides microbiota and/or the MGE mobilities at the luminal vs. mucosal sites of the intestine.
Collapse
Affiliation(s)
- József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary.
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Zain Baaity
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Glória Stefán
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
- Department of Public Health, Government Office of the Capital City, Budapest, Hungary
| | - Samo Jeverica
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
| | - Nurver Ulger
- Department of Microbiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Catalina-Suzana Stingu
- Institute for Medical Microbiology and Virology, University Hospital of Leipzig, Leipzig, Germany
| | - Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
- Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq
| | - Katalin Burián
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Yin Z, Liang J, Zhang M, Chen B, Yu Z, Tian X, Deng X, Peng L. Pan-genome insights into adaptive evolution of bacterial symbionts in mixed host-microbe symbioses represented by human gut microbiota Bacteroides cellulosilyticus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172251. [PMID: 38604355 DOI: 10.1016/j.scitotenv.2024.172251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Animal hosts harbor diverse assemblages of microbial symbionts that play crucial roles in the host's lifestyle. The link between microbial symbiosis and host development remains poorly understood. In particular, little is known about the adaptive evolution of gut bacteria in host-microbe symbioses. Recently, symbiotic relationships have been categorized as open, closed, or mixed, reflecting their modes of inter-host transmission and resulting in distinct genomic features. Members of the genus Bacteroides are the most abundant human gut microbiota and possess both probiotic and pathogenic potential, providing an excellent model for studying pan-genome evolution in symbiotic systems. Here, we determined the complete genome of an novel clinical strain PL2022, which was isolated from a blood sample and performed pan-genome analyses on a representative set of Bacteroides cellulosilyticus strains to quantify the influence of the symbiotic relationship on the evolutionary dynamics. B. cellulosilyticus exhibited correlated genomic features with both open and closed symbioses, suggesting a mixed symbiosis. An open pan-genome is characterized by abundant accessory gene families, potential horizontal gene transfer (HGT), and diverse mobile genetic elements (MGEs), indicating an innovative gene pool, mainly associated with genomic islands and plasmids. However, massive parallel gene loss, weak purifying selection, and accumulation of positively selected mutations were the main drivers of genome reduction in B. cellulosilyticus. Metagenomic read recruitment analyses showed that B. cellulosilyticus members are globally distributed and active in human gut habitats, in line with predominant vertical transmission in the human gut. However, existence and/or high abundance were also detected in non-intestinal tissues, other animal hosts, and non-host environments, indicating occasional horizontal transmission to new niches, thereby creating arenas for the acquisition of novel genes. This case study of adaptive evolution under a mixed host-microbe symbiosis advances our understanding of symbiotic pan-genome evolution. Our results highlight the complexity of genetic evolution in this unusual intestinal symbiont.
Collapse
Affiliation(s)
- Zhiqiu Yin
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Jiaxin Liang
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Mujie Zhang
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Baozhu Chen
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Zhanpeng Yu
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiaoyan Tian
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiaoyan Deng
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China.
| | - Liang Peng
- Department of Clinical Laboratory, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510700, Guangdong, China; KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou 510180, Guangdong, China.
| |
Collapse
|
5
|
Ma W, Zhang L, Chen W, Chang Z, Tu J, Qin Y, Yao Y, Dong M, Ding J, Li S, Li F, Deng Q, Yang Y, Feng T, Zhang F, Shao X, He X, Zhang L, Hu G, Liu Q, Jiang YZ, Zhu S, Xiao Z, Su D, Liu T, Liu S. Microbiota enterotoxigenic Bacteroides fragilis-secreted BFT-1 promotes breast cancer cell stemness and chemoresistance through its functional receptor NOD1. Protein Cell 2024; 15:419-440. [PMID: 38437016 PMCID: PMC11131025 DOI: 10.1093/procel/pwae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Tumor-resident microbiota in breast cancer promotes cancer initiation and malignant progression. However, targeting microbiota to improve the effects of breast cancer therapy has not been investigated in detail. Here, we evaluated the microbiota composition of breast tumors and found that enterotoxigenic Bacteroides fragilis (ETBF) was highly enriched in the tumors of patients who did not respond to taxane-based neoadjuvant chemotherapy. ETBF, albeit at low biomass, secreted the toxic protein BFT-1 to promote breast cancer cell stemness and chemoresistance. Mechanistic studies showed that BFT-1 directly bound to NOD1 and stabilized NOD1 protein. NOD1 was highly expressed on ALDH+ breast cancer stem cells (BCSCs) and cooperated with GAK to phosphorylate NUMB and promote its lysosomal degradation, thereby activating the NOTCH1-HEY1 signaling pathway to increase BCSCs. NOD1 inhibition and ETBF clearance increase the chemosensitivity of breast cancer by impairing BCSCs.
Collapse
Affiliation(s)
- Wei Ma
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weilong Chen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Intelligent Pathology Institute and Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230071, China
| | - Zhaoxia Chang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Juchuanli Tu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuanyuan Qin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Intelligent Pathology Institute and Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230071, China
| | - Yuwen Yao
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengxue Dong
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jiajun Ding
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Siqin Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Fengkai Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qiaodan Deng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yifei Yang
- Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingting Feng
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Fanrong Zhang
- Department of Breast Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiying Shao
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lixing Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guohong Hu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| | - Yi-Zhou Jiang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu Zhu
- Institute of Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhi Xiao
- Department of Breast Surgery, Xiangya Hospital, Changsha 410008, China
| | - Dan Su
- Department of Pathology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Tong Liu
- Department of Breast Surgery, Tumor Hospital of Harbin Medical University, Harbin 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin 150081, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Cancer Institutes, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Key Laboratory of Radiation Oncology, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Mahmood B, Sárvári KP, Orosz L, Nagy E, Sóki J. Novel and rare β-lactamase genes of Bacteroides fragilis group species: Detection of the genes and characterization of their genetic backgrounds. Anaerobe 2024; 86:102832. [PMID: 38360202 DOI: 10.1016/j.anaerobe.2024.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVES This study screened the prevalence of rare β-lactamase genes in Bacteroides fragilis group strains from clinical specimens and normal microbiota and examined the genetic properties of the strains carrying these genes. METHODS blaHGD1, blaOXA347, cblA, crxA, and pbbA were detected by real-time polymerase chain reaction in collections of Bacteroides strains from clinical (n = 406) and fecal (n = 184) samples. To examine the genetic backgrounds of the samples, end-point PCR, FT-IR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used. RESULTS All B. uniformis isolates were positive for cblA in both collections. Although crxA was B. xylanisolvens-specific and associated with carbapenem resistance, it was only found in six fecal and three clinical B. xylanisolvens strains. Moreover, the crxA-positive strains were not clonal among B. xylanisolvens (contrary to cfiA in B. fragilis), implicating a rate of mobility or emergence by independent evolutionary events. The Phocaeicola (B.) vulgatus/P. dorei-specific gene blaHGD1 was detected among all P. vulgatus/P. dorei isolates from fecal (n = 36) and clinical (n = 26) samples. No blaOXA347-carrying isolate was found from European collections, but all US samples (n = 6) were positive. For three clinical isolates belonging to B. thetaiotaomicron (n = 2) and B. ovatus (n = 1), pbbA was detected on mobile genetic elements, and pbbA-positive strains displayed non-susceptibility to piperacillin or piperacillin/tazobactam phenotypically. CONCLUSIONS Based on these observations, β-lactamases produced by rare β-lactamase genes in B. fragilis group strains should not be overlooked because they could encode important resistance phenotypes.
Collapse
Affiliation(s)
- Bakhtiyar Mahmood
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary; Department of Biology, University of Garmian, Kalar, Kurdistan Region, Iraq.
| | - Károly Péter Sárvári
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Laszló Orosz
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| | - József Sóki
- Institute of Medical Microbiology, Albert Szent-Györgyi Health Centre and Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Zhuang X, Fan H, Li X, Dong Y, Wang S, Zhao B, Wu S. Transfer and accumulation of antibiotic resistance genes and bacterial pathogens in the mice gut due to consumption of organic foods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169842. [PMID: 38215844 DOI: 10.1016/j.scitotenv.2023.169842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/14/2024]
Abstract
Over the last few decades, organic food demand has grown largely because of increasing personal health concerns. Organic farming introduces antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) into foods. However, potential effects of organic foods on the gut microbiome and ARGs have been overlooked. Using high-throughput quantitative PCR and 16S rRNA high-throughput sequencing technology, we examined 132 ARGs from major classes, eight transposase genes, universal class I integron-integrase gene (intI), clinical class I integron-integrase gene (cintI), and the bacterial community in mouse gut after 8 weeks with an either organic or inorganic lettuce and wheat diet. A total of 8 types of major ARGs and 10 mobile genetic elements (MGEs) were detected in mice gut, including tetracycline, multidrug, sulfonamide, aminoglycoside, beta-lactamase, chloramphenicol, MLSB and vancomycin resistance genes. We found that abundance and diversity of ARGs, mobile gene elements, and potential ARB in the gut increased with time after consumption of organic foods, whereas no significant changes were observed in inorganic treated groups. Moreover, MGEs, including IS613, Tp614 and tnpA_03 were found to play an important role in regulating ARG profiles in the gut microbiome following consumption of organic foods. Importantly, feeding organic food increased the relative abundance of the potentially antibiotic-resistant pathogens, Bacteroides and Streptococcus. Our results confirm that there is an increasing risk of ARGs and ARB in the gut microbiome, which highlights the importance of organic food industries taking into account the potential accumulation and transmission of ARGs as a risk factor.
Collapse
Affiliation(s)
- Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Fan
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianglong Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Dong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanghua Wu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. Gut diversity and the resistome as biomarkers of febrile neutropenia outcome in paediatric oncology patients undergoing hematopoietic stem cell transplantation. Sci Rep 2024; 14:5504. [PMID: 38448687 PMCID: PMC10918076 DOI: 10.1038/s41598-024-56242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
The gut microbiota of paediatric oncology patients undergoing a conditioning regimen before hematopoietic stem cell transplantation is recently considered to play role in febrile neutropenia. Disruption of commensal microbiota and evolution of opportune pathogens community carrying a plethora of antibiotic-resistance genes play crucial role. However, the impact, predictive role and association of patient´s gut resistome in the course of the therapy is still to be elucidated. We analysed gut microbiota composition and resistome of 18 paediatric oncology patients undergoing hematopoietic stem cell transplantation, including 12 patients developing febrile neutropenia, hospitalized at The Bone Marrow Transplantation Unit of the National Institute of Children´s disease in Slovak Republic and healthy individuals (n = 14). Gut microbiome of stool samples obtained in 3 time points, before hematopoietic stem cell transplantation (n = 16), one week after hematopoietic stem cell transplantation (n = 16) and four weeks after hematopoietic stem cell transplantation (n = 14) was investigated using shotgun metagenome sequencing and bioinformatical analysis. We identified significant decrease in alpha-diversity and nine antibiotic-resistance genes msr(C), dfrG, erm(T), VanHAX, erm(B), aac(6)-aph(2), aph(3)-III, ant(6)-Ia and aac(6)-Ii, one week after hematopoietic stem cell transplantation associated with febrile neutropenia. Multidrug-resistant opportune pathogens of ESKAPE, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli found in the gut carried the significant subset of patient's resistome. Over 50% of patients treated with trimethoprim/sulfamethoxazole, piperacillin/tazobactam and amikacin carried antibiotic-resistance genes to applied treatment. The alpha diversity and the resistome of gut microbiota one week after hematopoietic stem cell transplantation is relevant predictor of febrile neutropenia outcome after hematopoietic stem cell transplantation. Furthermore, the interindividual diversity of multi-drug resistant opportunistic pathogens with variable portfolios of antibiotic-resistance genes indicates necessity of preventive, personalized approach.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Peter Svec
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Paediatric Haematology and Oncology, Children's Haematology and Oncology Clinic and Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
9
|
Sevillano G, Paz Y Miño A, Solís MB, Vaca JP, Zurita-Salinas C, Zurita J. First Report of Antibiotic Resistance Markers cfiA and nim Among Bacteroides fragilis Group Strains in Ecuadorian Patients. Microb Drug Resist 2023; 29:533-539. [PMID: 37733248 DOI: 10.1089/mdr.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
In recent years, increasing resistance of Bacteroides fragilis to several antibiotics has been reported in different countries. The aim of this study was to evaluate the antibiotic resistance profiles of Bacteroides spp. isolated from clinical samples by phenotypic and molecular methods. A total of 40 nonrepetitive isolates of the B. fragilis group were studied from 2018 to 2019. The species was identified by API 20A system. The minimum inhibitory concentrations (MICs) were determined by Sensititre anaerobe MIC plate. The presence of the nim and cfiA genes was checked by conventional PCR. The association between genes and insertion sequence (IS) was performed by whole genome sequencing. Eleven isolates were categorized as metronidazole-resistant and only 2 isolates harbored the nim gene. Five isolates were imipenem-resistant, but cfiA gene was detected in two isolates. cfiA gene was closely related to the cfiA-4 allele and associated with IS614B. The nim gene was not related to any nim gene type and was considered a new variant named nimL. IS612 was found upstream of nimL gene. In view of the scarcity of data on B. fragilis, there is a need to surveil antibiotic resistance levels and molecular mechanisms to implement better antimicrobial therapies against this important group of bacteria.
Collapse
Affiliation(s)
- Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Ariane Paz Y Miño
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - María Belén Solís
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Juan Pablo Vaca
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Camilo Zurita-Salinas
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
- Cátedra de Inmunología, Carrera de Medicina, Universidad Central del Ecuador, Quito, Ecuador
| | - Jeannete Zurita
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
- Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
10
|
Omeershffudin UNM, Kumar S. Emerging threat of antimicrobial resistance in Neisseria gonorrhoeae: pathogenesis, treatment challenges, and potential for vaccine development. Arch Microbiol 2023; 205:330. [PMID: 37688619 DOI: 10.1007/s00203-023-03663-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/11/2023]
Abstract
The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
Collapse
Affiliation(s)
- Umairah Natasya Mohd Omeershffudin
- Post Graduate Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Section 13, 40100, Selangor, Malaysia
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, Seksyen 13, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
11
|
Spigaglia P, Barbanti F, Germinario EAP, Criscuolo EM, Bruno G, Sanchez-Mete L, Porowska B, Stigliano V, Accarpio F, Oddi A, Zingale I, Rossi S, De Angelis R, Fabbri A. Comparison of microbiological profile of enterotoxigenic Bacteroides fragilis (ETBF) isolates from subjects with colorectal cancer (CRC) or intestinal pre-cancerous lesions versus healthy individuals and evaluation of environmental factors involved in intestinal dysbiosis. Anaerobe 2023; 82:102757. [PMID: 37380012 DOI: 10.1016/j.anaerobe.2023.102757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE The aim of this study was to analyze enterotoxigenic Bacteroides fragilis (ETBF) isolates from colorectal biopsies of subjects with a histological analysis positive for colorectal cancer (CRC), pre-cancerous lesions (pre-CRC) or with a healthy intestinal tissue and to evaluate the environmental factors that may not only concur to CRC development but may also affect gut microbiota composition. METHODS ETBF isolates were typed using the ERIC-PCR method, while PCR assays were performed to investigate the bft alleles, the B. fragilis pathogenicity island (BFPAI) region and the cepA, cfiA and cfxA genes. Susceptibility to antibiotics was tested using the agar dilution method. Environmental factors that could play a role in promoting intestinal dysbiosis were evaluated throughout a questionnaire administered to the subjects enrolled. RESULTS Six different ERIC-PCR types were identified. The type denominated C in this study was the most prevalent, in particular among the biopsies of subjects with pre-CRC, while an isolate belonging to a different type, denominated F, was detected in a biopsy from a subject with CRC. All the ETBF isolates from pre-CRC or CRC subjects had a B. fragilis pathogenicity island (BFPAI) region pattern I, while those from healthy individuals showed also different patterns. Furthermore, 71% of isolates from subjects with pre-CRC or CRC were resistant to two or more classes of antibiotics vs 43% of isolates from healthy individuals. The B. fragilis toxin BFT1 was the most frequently detected in this study, confirming the constant circulation of this isoform strains in Italy. Interestingly, BFT1 was found in 86% of the ETBF isolates from patients with CRC or pre-CRC, while the BFT2 was prevalent among the ETBF isolates from healthy subjects. No substantial differences based on sex, age, tobacco and alcohol consumption were observed between healthy and non-healthy individuals included in this study, while most of the subjects with CRC or pre-CRC lesions were subjected to pharmacological therapy (71%) and showed a body mass index (BMI) that falls within the overweight range (86%). CONCLUSIONS Our data suggest that some types of ETBF seem to better adapt and colonize the human gut and that the selective pressure exerted by factors related to lifestyle, such as pharmacological therapy and weight, could facilitate their persistence in the gut and their possible involvement in CRC development.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Elena Angela Pia Germinario
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | | - Giovanni Bruno
- Department of Translational and Precision Medicine, Gastroenterology Unit, Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Lupe Sanchez-Mete
- Gastroenterology and Digestive Endoscopy IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Barbara Porowska
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Vittoria Stigliano
- Gastroenterology and Digestive Endoscopy IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| | - Fabio Accarpio
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Andrea Oddi
- Hepatopancreatobiliary Surgery, IRCCS Regina Elena National Cancer Institute, 00114, Rome, Italy.
| | - Ilaria Zingale
- Digestive Endoscopy UOC CSC03 of the Department of General Surgery, Surgical Specialities "Paride Stefanini", Policlinic Umberto I, University of Rome 'Sapienza', 00161, Rome, Italy.
| | - Silvia Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Roberta De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Alessia Fabbri
- Department of Cardiovascular, Endocrine-Metabolic Diseases and Ageing, Istituto Superiore di Sanità, 00161, Rome, Italy.
| |
Collapse
|
12
|
Kajihara T, Yahara K, Kitamura N, Hirabayashi A, Hosaka Y, Sugai M. Distribution, Trends, and Antimicrobial Susceptibility of Bacteroides, Clostridium, Fusobacterium, and Prevotella Species Causing Bacteremia in Japan During 2011-2020: A Retrospective Observational Study Based on National Surveillance Data. Open Forum Infect Dis 2023; 10:ofad334. [PMID: 37469615 PMCID: PMC10352651 DOI: 10.1093/ofid/ofad334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Background The increasing prevalence of anaerobic bacteremia is a major concern worldwide and requires longitudinal monitoring. Methods We present one of the largest and longest longitudinal studies on the prevalence and antimicrobial resistance of Bacteroides, Clostridium, Fusobacterium, and Prevotella spp. isolated from blood culture samples using national comprehensive surveillance data in Japan during 2011-2020 as part of the Japan Nosocomial Infections Surveillance. Results Data for 41 949 Bacteroides spp., 40 603 Clostridium spp., 7013 Fusobacterium spp., and 5428 Prevotella spp. isolates were obtained. The incidences of bacteremia caused by Bacteroides fragilis, Clostridium perfringens, and Fusobacterium nucleatum significantly increased during the period (P < .0001). Among the 20 species analyzed, 18 showed no significant changes in susceptibility over time, including B. fragilis, C perfringens, and F. nucleatum. However, resistance to clindamycin increased in B. thetaiotaomicron (P = .0312), and resistance to ampicillin increased in B. ovatus (P = .0008). Conclusions Our comprehensive national surveillance data analysis demonstrated a continuous increase in the incidence of anaerobic bacteremia, particularly in B. fragilis, C. perfringens, and F. nucleatum. This may be linked to the increasing number of colorectal cancer cases or advancing methods for species identification and susceptibility testing, requiring cautious interpretation. The discovery of an upsurge in anaerobic bacteremia and potential alterations in susceptibility highlights the necessity for more extensive studies in this field.
Collapse
Affiliation(s)
- Toshiki Kajihara
- Correspondence: Toshiki Kajihara, MD, Phd, Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho Higashimurayama, Tokyo 189-0002, Japan ()
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norikazu Kitamura
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aki Hirabayashi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumiko Hosaka
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
13
|
Kierzkowska M, Majewska A, Karłowicz K, Pituch H. Phenotypic and genotypic identification of carbapenem resistance in Bacteroides fragilis clinical strains. Med Microbiol Immunol 2023:10.1007/s00430-023-00765-w. [PMID: 37178261 DOI: 10.1007/s00430-023-00765-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Bacteroides fragilis is an important etiological agent of serious infections in humans. Rapid methods, readily adaptable to use in medical laboratories, are needed to detect antibiotic resistance and decrease the likelihood of therapy failure. The aim of this study was to determine the prevalence of B. fragilis cfiA-positive isolates. The second purpose was to investigate the carbapenemase activity in B. fragilis strains by Carba NP test. In the study, 5.2% of B. fragilis isolates are phenotypically resistant to meropenem. The cfiA gene was identified in 6.1% of B. fragilis isolates. The MICs of meropenem were significantly higher in cfiA-positive strains. The presence of the cfiA gene along with the IS1186 was detected in one B. fragilis strain which was resistant to meropenem (MIC 1.5 mg/L). The Carba NP test results were positive for all the cfiA-positive strains, including those susceptible to carbapenems based on their MIC values. A review of the literature revealed that the rate of B. fragilis with the cfiA gene varies from 7.6 to 38.9% worldwide. Presented results are in line with the other European studies. Phenotypic testing with the Carba NP test, it seems to be a viable alternative for the cfiA gene detection in B. fragilis isolates. The positive result obtained is of greater clinical importance than the detection of the gene cfiA.
Collapse
Affiliation(s)
- Marta Kierzkowska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| | - Konrad Karłowicz
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Hanna Pituch
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Pei F, Li W, Ni X, Sun X, Yao Y, Fang Y, Yang W, Hu Q. Effect of cooked rice with added fructo-oligosaccharide on faecal microorganisms investigated by in vitro digestion and fermentation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Chaudhry R, Antony B, Batra P, Prakash O. Editorial on the first webinar of the Anaerobic Forum of India. Anaerobe 2022; 78:102650. [PMID: 36273718 DOI: 10.1016/j.anaerobe.2022.102650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/13/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| | - Beena Antony
- Department of Microbiology, Father Muller Medical College, Manglore, India
| | - Priyam Batra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Om Prakash
- National Centre for Cell Science, Pune, India
| |
Collapse
|
16
|
Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells 2022; 11:cells11193091. [PMID: 36231053 PMCID: PMC9563262 DOI: 10.3390/cells11193091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/25/2022] Open
Abstract
Health is influenced by how the gut microbiome develops as a result of external and internal factors, such as nutrition, the environment, medication use, age, sex, and genetics. Alpha and beta diversity metrics and (enterotype) clustering methods are commonly employed to perform population studies and to analyse the effects of various treatments, yet, with the continuous development of (new) sequencing technologies, and as various omics fields as a result become more accessible for investigation, increasingly sophisticated methodologies are needed and indeed being developed in order to disentangle the complex ways in which the gut microbiome and health are intertwined. Diseases of affluence, such as type 2 diabetes (T2D) and cardiovascular diseases (CVD), are commonly linked to species associated with the Bacteroides enterotype(s) and a decline of various (beneficial) complex microbial trophic networks, which are in turn linked to the aforementioned factors. In this review, we (1) explore the effects that some of the most common internal and external factors have on the gut microbiome composition and how these in turn relate to T2D and CVD, and (2) discuss research opportunities enabled by and the limitations of some of the latest technical developments in the microbiome sector, including the use of artificial intelligence (AI), strain tracking, and peak to trough ratios.
Collapse
|
17
|
Antibiotic resistance in the commensal human gut microbiota. Curr Opin Microbiol 2022; 68:102150. [DOI: 10.1016/j.mib.2022.102150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
|
18
|
Tang H, Zhou H, Zhang R. Antibiotic Resistance and Mechanisms of Pathogenic Bacteria in Tubo-Ovarian Abscess. Front Cell Infect Microbiol 2022; 12:958210. [PMID: 35967860 PMCID: PMC9363611 DOI: 10.3389/fcimb.2022.958210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
A tubo-ovarian abscess (TOA) is a common type of inflammatory lump in clinical practice. TOA is an important, life-threatening disease, and it has become more common in recent years, posing a major health risk to women. Broad-spectrum antimicrobial agents are necessary to cover the most likely pathogens because the pathogens that cause TOA are polymicrobial. However, the response rate of antibiotic treatment is about 70%, whereas one-third of patients have poor clinical consequences and they require drainage or surgery. Rising antimicrobial resistance serves as a significant reason for the unsatisfactory medical outcomes. It is important to study the antibiotic resistance mechanism of TOA pathogens in solving the problems of multi-drug resistant strains. This paper focuses on the most common pathogenic bacteria isolated from TOA specimens and discusses the emerging trends and epidemiology of resistant Escherichia coli, Bacteroides fragilis, and gram-positive anaerobic cocci. Besides that, new methods that aim to solve the antibiotic resistance of related pathogens are discussed, such as CRISPR, nanoparticles, bacteriophages, antimicrobial peptides, and pathogen-specific monoclonal antibodies. Through this review, we hope to reveal the current situation of antibiotic resistance of common TOA pathogens, relevant mechanisms, and possible antibacterial strategies, providing references for the clinical treatment of drug-resistant pathogens.
Collapse
Affiliation(s)
- Huanna Tang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Zhou
- Department of Infectious Disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| | - Runju Zhang
- Women’s Reproductive Health Research Key Laboratory of Zhejiang Province and Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hui Zhou, ; Runju Zhang,
| |
Collapse
|
19
|
Cobo F, Pérez-Carrasco V, Franco-Acosta A, García-Salcedo JA, Navarro-Marí JM. Bacteremia due to Parabacteroides distasonis: Experience with 4 cases. Anaerobe 2022; 76:102608. [PMID: 35777724 DOI: 10.1016/j.anaerobe.2022.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To report a series of four uncommon cases of bacteremia due to Parabacteroides distasonis. METHODS We have analyzed the epidemiological characteristics, clinical features, diagnostic methods, treatment and outcome of these patients. RESULTS Two sets of blood cultures of each patient yielded a pure culture of an anaerobic microorganism identified as P. distasonis by MALDI-TOF MS, and confirmed by 16S rRNA gene sequencing. All patients were male and they had risk factors for anaerobic bacteremia. All isolates were susceptible to metronidazole and the outcome was successful in three patients. CONCLUSIONS Bloodstream infections due to P. distasonis are still rare. MALDI-TOF MS appear to be an excellent tool for the correct identification.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.
| | - Virginia Pérez-Carrasco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Ana Franco-Acosta
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José A García-Salcedo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
20
|
Lin X, Xu Y, Han R, Luo W, Zheng L. Migration of antibiotic resistance genes and evolution of flora structure in the Xenopus tropicalis intestinal tract with combined exposure to roxithromycin and oxytetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153176. [PMID: 35063519 DOI: 10.1016/j.scitotenv.2022.153176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The intestinal flora is one of the most important environments for antibiotic resistance development, owing to its diverse mix of bacteria. An excellent medicine model organism, Xenopus tropicalis, was selected to investigate the spread of antibiotic resistance genes (ARGs) in the intestinal bacterial community with single or combined exposure to roxithromycin (ROX) and oxytetracycline (OTC). Seventeen resistance genes (tetA, tetB, tetE, tetM, tetO, tetS, tetX, ermF, msrA, mefA, ereA, ereB, mphA, mphB, intI1, intI2, intI3) were detected in the intestines of Xenopus tropicalis living in three testing tanks (ROX tanks, OTC tanks, ROX + OTC tanks) and a blank tank for 20 days. The results showed that the relative abundance of total ARGs increased obviously in the tank with single stress but decreased in the tank with combined stress, and the genes encoding the macrolide antibiotic efflux pump (msrA), phosphatase (mphB) and integron (intI2, intI3) were the most sensitive. With the aid of AFM scanning, DNA was found to be scattered short chain in the blank, became extended or curled and then compacted with the stress from a single antibiotic, and was compacted and then fragmented with combined stress, which might be the reason for the variation of the abundance of ARGs with stress. The ratio of Firmicutes/Bacteroides related to diseases was increased by ROX and OTC. The very significant correlation between intI2 and intI3 with tetS (p ≤ 0.001) hinted at a high risk of ARG transmission in the intestines. Collectively, our results suggested that the relative abundance of intestinal ARGs could be changed depending on the intestinal microbiome and DNA structures upon exposure to antibiotics at environmental concentrations.
Collapse
Affiliation(s)
- Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ruiqi Han
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wenshi Luo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
21
|
Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 2022; 13:1922241. [PMID: 34196581 PMCID: PMC8253142 DOI: 10.1080/19490976.2021.1922241] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health.
Collapse
Affiliation(s)
- Jessica C. Ezeji
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daven K. Sarikonda
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Austin Hopperton
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,College of Medicine and Life Sciences, University of Toledo, Toledo, Ohio, USA
| | - Hailey L. Erkkila
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel E. Cohen
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | - Fabio Cominelli
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Miki, Kagawa, Japan
| | - Armand E. K. Dichosa
- B-10 Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Caryn E. Good
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Michael R. Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | | | - Alida Veloo
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Rodriguez-Palacios
- Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA,Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, United States,University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA,CONTACT Alexander Rodriguez-Palacios Digestive Diseases Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Sóki J, Lang U, Schumacher U, Nagy I, Berényi Á, Fehér T, Burián K, Nagy E. OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1553-1556. [PMID: 35296904 PMCID: PMC9472255 DOI: 10.1093/jac/dkac088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
Abstract
Objectives Methods Results Conclusions
Collapse
Affiliation(s)
- József Sóki
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Corresponding author. E-mail:
| | - Uwe Lang
- Medical Care Centre Laboratory Münster, Münster, Germany
| | | | - István Nagy
- Institute of Biochemistry, Biological Research Centre, Loránd Eötvös Research Network, Szeged, Hungary
- SEQOMICS Ltd, Mórahalom, Hungary
| | - Ágnes Berényi
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Tamás Fehér
- Institute of Biochemistry, Biological Research Centre, Loránd Eötvös Research Network, Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Elisabeth Nagy
- Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Understanding of the Site-Specific Microbial Patterns towards Accurate Identification for Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Microbiol Spectr 2021; 9:e0125521. [PMID: 34937163 PMCID: PMC8694097 DOI: 10.1128/spectrum.01255-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.
Collapse
|
24
|
Sóki J, Wybo I, Wirth R, Hajdú E, Matuz M, Burián K. A comparison of the antimicrobial resistance of fecal Bacteroides isolates and assessment of the composition of the intestinal microbiotas of carbapenem-treated and non-treated persons from Belgium and Hungary. Anaerobe 2021; 73:102480. [PMID: 34800619 DOI: 10.1016/j.anaerobe.2021.102480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
The antimicrobial susceptibilities of Bacteroides strains isolated from the feces of imipenem-treated patients from Belgium and Hungary were compared with those isolated from the normal microbiota from these two and five other European countries and assessed. Of the 10 antibiotics tested, highly significant differences were found with cefoxitin (decrease for Belgium and for this two and the five countries from the previous study), clindamycin (decrease for Belgium and for this two and the five countries from the previous study) and moxifloxacin (increase for Belgium and for this two and the five countries from the previous study) relative to normal microbiota strains reported earlier. Imipenem treatment brought about modest, but notable differences in the compositions of the microbiomes where there was less diversity in the treated group relative to the non-treated group.
Collapse
Affiliation(s)
- József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Ingrid Wybo
- Department of Microbiology and Infection Control, Universitair Ziekenhuis Brussel,Vrije Universiteit Brussel, Belgium
| | - Roland Wirth
- Department of Biotechnology, Faculty of Sciences and Informatics, University of Szeged, Szeged, Hungary
| | - Edit Hajdú
- Division of Infectious Diseases, First Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mária Matuz
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Katalin Burián
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Department of Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Bakuradze N, Merabishvili M, Makalatia K, Kakabadze E, Grdzelishvili N, Wagemans J, Lood C, Chachua I, Vaneechoutte M, Lavigne R, Pirnay JP, Abiatari I, Chanishvili N. In Vitro Evaluation of the Therapeutic Potential of Phage VA7 against Enterotoxigenic Bacteroides fragilis Infection. Viruses 2021; 13:2044. [PMID: 34696475 PMCID: PMC8538522 DOI: 10.3390/v13102044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Since the beginning of the 20th century, bacteriophages (phages), i.e., viruses that infect bacteria, have been used as antimicrobial agents for treating various infections. Phage preparations targeting a number of bacterial pathogens are still in use in the post-Soviet states and are experiencing a revival in the Western world. However, phages have never been used to treat diseases caused by Bacteroides fragilis, the leading agent cultured in anaerobic abscesses and postoperative peritonitis. Enterotoxin-producing strains of B. fragilis have been associated with the development of inflammatory diarrhea and colorectal carcinoma. In this study, we evaluated the molecular biosafety and antimicrobial properties of novel phage species vB_BfrS_VA7 (VA7) lysate, as well as its impact on cytokine IL-8 production in an enterotoxigenic B. fragilis (ETBF)-infected colonic epithelial cell (CEC) culture model. Compared to untreated infected cells, the addition of phage VA7 to ETBF-infected CECs led to significantly reduced bacterial counts and IL-8 levels. This in vitro study confirms the potential of phage VA7 as an antibacterial agent for use in prophylaxis or in the treatment of B. fragilis infections and associated colorectal carcinoma.
Collapse
Affiliation(s)
- Nata Bakuradze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Department of Biology, Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Maya Merabishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Khatuna Makalatia
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Faculty of Medicine, Teaching University Geomedi, Tbilisi 0114, Georgia
| | - Elene Kakabadze
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
| | - Nino Grdzelishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Cedric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Irakli Chachua
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| | - Mario Vaneechoutte
- Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium; (J.W.); (C.L.); (R.L.)
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, 1120 Brussels, Belgium;
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, IIia State University, Tbilisi 0162, Georgia; (I.C.); (I.A.)
| | - Nina Chanishvili
- Research & Development Department, George Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi 0160, Georgia; (M.M.); (K.M.); (E.K.); (N.G.); (N.C.)
- School of Medicine, New Vision University, Tbilisi 0159, Georgia
| |
Collapse
|
26
|
Jasemi S, Emaneini M, Ahmadinejad Z, Fazeli MS, Sechi LA, Sadeghpour Heravi F, Feizabadi MM. Antibiotic resistance pattern of Bacteroides fragilis isolated from clinical and colorectal specimens. Ann Clin Microbiol Antimicrob 2021; 20:27. [PMID: 33892721 PMCID: PMC8066845 DOI: 10.1186/s12941-021-00435-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Bacteroides fragilis is a part of the normal gastrointestinal flora, but it is also the most common anaerobic bacteria causing the infection. It is highly resistant to antibiotics and contains abundant antibiotic resistance mechanisms. METHODS The antibiotic resistance pattern of 78 isolates of B. fragilis (22 strains from clinical samples and 56 strains from the colorectal tissue) was investigated using agar dilution method. The gene encoding Bacteroides fargilis toxin bft, and antibiotic resistance genes were targeted by PCR assay. RESULTS The highest rate of resistance was observed for penicillin G (100%) followed by tetracycline (74.4%), clindamycin (41%) and cefoxitin (38.5%). Only a single isolate showed resistance to imipenem which contained cfiA and IS1186 genes. All isolates were susceptible to metronidazole. Accordingly, tetQ (87.2%), cepA (73.1%) and ermF (64.1%) were the most abundant antibiotic-resistant genes identified in this study. MIC values for penicillin, cefoxitin and clindamycin were significantly different among isolates with the cepA, cfxA and ermF in compare with those lacking such genes. In addition, 22.7 and 17.8% of clinical and GIT isolates had the bft gene, respectively. CONCLUSIONS The finding of this study shows that metronidazole is highly in vitro active agent against all of B. fragilis isolates and remain the first-line antimicrobial for empirical therapy.
Collapse
Affiliation(s)
- Seyedesomaye Jasemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Fazeli
- Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Fatemah Sadeghpour Heravi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Poursina Street, Engelab-e-Eslami Avenue, Tehran, Iran. .,Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
27
|
Frequency and associated factors for carbapenem-non-susceptible Bacteroides fragilis group bacteria colonization in hospitalized patients: Case control study in a university hospital in Turkey. Indian J Med Microbiol 2021; 39:518-522. [PMID: 33812722 DOI: 10.1016/j.ijmmb.2021.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
PURPUSE The carbapenem-resistant Bacteroides fragilis group (CR-BFG) bacteria have been reported in several countries recently with increasing global attention. The high incidence of CR-BFG isolated from our hospitalized patients has become an important problem. Therefore, we aimed to determine the frequency and associated factors for intestinal colonization by carbapenem-non-susceptible BFG (CNS-BFG) among adult patients hospitalized at intensive care units, neurosurgery and internal medicine wards in our hospital. METHODS Rectal swabs (n = 1200), collected from 766 patients between February 2014 and March 2015, were inoculated onto kanamycin-vancomycin-leaked blood agar containing 0.125 mg/L meropenem. The isolates were identified by MALDI-TOF MS. Susceptibility testing was performed by agar dilution method. The carbapenemase gene (cfiA) was detected by PCR. Logistic regression analysis was used to evaluate the associated factors for intestinal colonization by CNS-BFG. RESULTS A total 180 non-duplicate BFG isolates were obtained from 164 patients. Ten different species, including Parabacteroides distasonis (n = 46, 25.6%), and Bacteroides fragilis (n = 30; 16.6%), were identified. Twenty-five percent of the isolates were non-susceptible to meropenem (MIC >2 mg/L). The highest prevalence of meropenem resistant strains (MIC >8 mg/L) was detected among B. fragilis (n = 12), followed by Parabacteroides spp. (n = 4). All but one B. fragilis strains were cfiA gene positive. Hospital admission, increasing Charlson score, use of antibiotics; including carbapenems in past three months, colonization with other accompanying carbapenem-resistant Gram negative bacteria (Enterobacteriaceae, Acinetobacter baumannii and Pseudomonas aeruginosa), and having undergone surgical operations were significantly associated with RCS- BFG colonization. CONCLUSIONS The high carriage rate of CNS-BFG in hospitalized patients may lead to worse clinical outcomes, such as serious infections and mortality, and deserves attention.
Collapse
|
28
|
Xu J, Xu HM, Peng Y, Zhao C, Zhao HL, Huang W, Huang HL, He J, Du YL, Zhou YJ, Zhou YL, Nie YQ. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research. Appl Microbiol Biotechnol 2021; 105:1669-1681. [PMID: 33511441 DOI: 10.1007/s00253-021-11131-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/01/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
The gut microbiota is closely related to host health and disease. However, there are no suitable animal models available at present for exploring its functions. We analyzed the effect of 3 different antibiotic cocktails (ABx) via two administration routes on the composition of murine gut microbiota, as well as on the general physiological and metabolic indices. High-throughput 16S rRNA sequencing showed that ABx treatment altered the gut microbiota community structure, and also caused low-degree inflammation in the colon. In addition, ad libitum administration of antibiotics depleted the gut microbiota more effectively compared to direct oral gavage, especially with 3ABx. The ABx treatment also had a significant impact on renal and liver functions, as indicated by the altered serum levels of creatinine, urea, total triglycerides, and total cholesterol. Finally, Spearman's correlation analysis showed that the predominant bacterial genera resulting from ABx intervention, including Lactobacillus, Roseburia, and Candidatus-Saccharimonas, were negatively correlated with renal function indices. Taken together, different antibiotic combinations and interventions deplete the gut microbiota and induce physiological changes in the host. Our findings provide the basis for developing an adaptive animal model for studying gut microbiota. KEY POINTS: • Ad libitum administration of 3ABx can effectively deplete intestinal microbiota. • ABx treatment may have slight effect on renal and liver function. • The levels of urea and creatinine correlated with the growth of Roseburia.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Hai-Lan Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Wenqi Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Jie He
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Yan-Lei Du
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China
| | - You-Lian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China.
| | - Yu-Qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, No. 1 Panfu Road, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|