1
|
Barton JC, Eisenberg AL. Prevotella bivia Infection of a Horse Bite Wound. Cureus 2024; 16:e66571. [PMID: 39258094 PMCID: PMC11385074 DOI: 10.7759/cureus.66571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Horse bites are common non-fatal injuries in the United States. Infections of horse bite wounds in humans are usually due to bacteria that correspond to the oropharyngeal bacterial flora of horses. We report the novel case of a 25-year-old woman who sustained a horse bite wound that was infected with Prevotella bivia, a Gram-negative, non-pigmented anaerobe. We discuss the epidemiology, bacteriology, and clinical management of horse bites.
Collapse
Affiliation(s)
- James C Barton
- Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
- Southern Iron Disorders Center, Brookwood Baptist Medical Center, Birmingham, USA
| | - Alexis L Eisenberg
- Department of Nursing, Veterans Administration Medical Center, Birmingham, USA
| |
Collapse
|
2
|
Reissier S, Penven M, Guérin F, Cattoir V. Recent Trends in Antimicrobial Resistance among Anaerobic Clinical Isolates. Microorganisms 2023; 11:1474. [PMID: 37374976 DOI: 10.3390/microorganisms11061474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Anaerobic bacteria are normal inhabitants of the human commensal microbiota and play an important role in various human infections. Tedious and time-consuming, antibiotic susceptibility testing is not routinely performed in all clinical microbiology laboratories, despite the increase in antibiotic resistance among clinically relevant anaerobes since the 1990s. β-lactam and metronidazole are the key molecules in the management of anaerobic infections, to the detriment of clindamycin. β-lactam resistance is usually mediated by the production of β-lactamases. Metronidazole resistance remains uncommon, complex, and not fully elucidated, while metronidazole inactivation appears to be a key mechanism. The use of clindamycin, a broad-spectrum anti-anaerobic agent, is becoming problematic due to the increase in resistance rate in all anaerobic bacteria, mainly mediated by Erm-type rRNA methylases. Second-line anti-anaerobes are fluoroquinolones, tetracyclines, chloramphenicol, and linezolid. This review aims to describe the up-to-date evolution of antibiotic resistance, give an overview, and understand the main mechanisms of resistance in a wide range of anaerobes.
Collapse
Affiliation(s)
- Sophie Reissier
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Malo Penven
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - François Guérin
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
| | - Vincent Cattoir
- Rennes University Hospital, Department of Clinical Microbiology, F-35033 Rennes, France
- UMR_S1230 BRM, Inserm, University of Rennes, F-35043 Rennes, France
- CHU de Rennes, Service de Bactériologie-Hygiène Hospitalière, 2 Rue Henri Le Guilloux, CEDEX 9, F-35033 Rennes, France
| |
Collapse
|
3
|
Hleba L, Hlebova M, Kovacikova E, Kovacik A. MALDI-TOF MS Indirect Beta-Lactamase Detection in Ampicillin-Resistant Haemophilus influenzae. Microorganisms 2023; 11:microorganisms11041018. [PMID: 37110441 PMCID: PMC10142446 DOI: 10.3390/microorganisms11041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid identification of beta-lactamase-producing strains of Haemophilus influenzae plays key role in diagnostics in clinical microbiology. Therefore, the aim of this study was the rapid determination of beta-lactamase's presence in H. influenzae isolates via indirect detection of degradation ampicillin products using MALDI-TOF MS. H. influenzae isolates were subjected to antibiotic resistance testing using disk diffusion and MIC methodologies. Beta-lactamase activity was tested using MALDI-TOF MS, and results were compared to spectral analysis of alkaline hydrolysis. Resistant and susceptible strains of H. influenzae were distinguished, and strains with a high MIC level were identified as beta-lactamase-producing. Results indicate that MALDI-TOF mass spectrometry is also suitable for the rapid identification of beta-lactamase-producing H. influenzae. This observation and confirmation can accelerate identification of beta-lactamase strains of H. influenzae in clinical microbiology, which can have an impact on health in general.
Collapse
Affiliation(s)
- Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
4
|
Yokoyama S, Hayashi M, Goto T, Muto Y, Tanaka K. Identification of cfxA gene variants and susceptibility patterns in β-lactamase-producing Prevotella strains. Anaerobe 2023; 79:102688. [PMID: 36580990 DOI: 10.1016/j.anaerobe.2022.102688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Antimicrobial-resistant isolates of Prevotella species, especially those resistant to β-lactams, have become increasingly common. Here, we aimed to elucidate the underlying mechanisms contributing to the emergence and spread of antimicrobial resistance in Prevotella species. METHODS Prevotella species were isolated from a variety of clinical specimens. β-lactamase production was determined using nitrocefin discs, and the determination of minimum inhibitory concentration (MIC) to ten antimicrobials was done by the agar dilution method. Four resistance genes (cfxA, tetQ, ermF, and nim) and cfxA-flanking regions were detected using polymerase chain reaction. cfxA and the flanking regions were sequenced, and a phylogenetic tree was constructed based on CfxA amino acid sequences using the UPGMA method. RESULTS Among the 45 Prevotella isolates identified, 35 (77.8%) produced β-lactamases and had the cfxA genes. The tetQ, ermF, and nim genes were detected in 53.3%, 17.8%, and 0% of the 45 isolates, respectively. Among the 33 sequenced cfxA alleles, cfxA2 (45.5%) was the most frequent, followed by cfxA3 (42.4%) and a novel variant (cfxA7, 12.1%). The novel CfxA7 β-lactamase had a novel L155F substitution not previously reported in CfxA variants. The MICs of all β-lactam agents tested, excluding cefmetazole and meropenem, were lower among cfxA7-positive isolates than in cfxA2-and cfxA3-positive isolates. CONCLUSIONS Differences in MICs of penicillins and cephalosporins may be due to amino acid substitutions in the CfxA variants, CfxA2, CfxA3, and CfxA7, among Prevotella isolates. Possession of cfxA-mobA, tetQ, and ermF may increase the risks of the emergence and spread of multidrug-resistant Prevotella species.
Collapse
Affiliation(s)
- Sodai Yokoyama
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Masahiro Hayashi
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Takatsugu Goto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Yoshinori Muto
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan; Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan; Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan.
| |
Collapse
|
5
|
Castillo Y, Delgadillo NA, Neuta Y, Hernández A, Acevedo T, Cárdenas E, Montaño A, Lafaurie GI, Castillo DM. Antibiotic Susceptibility and Resistance Genes in Oral Clinical Isolates of Prevotella intermedia, Prevotella nigrescens, and Prevotella melaninogenica. Antibiotics (Basel) 2022; 11:antibiotics11070888. [PMID: 35884141 PMCID: PMC9312306 DOI: 10.3390/antibiotics11070888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
The Prevotella genus is a normal constituent of the oral microbiota, and is commonly isolated from mechanically treated polymicrobial infections. However, antibiotic treatment is necessary for some patients. This study compared the antibiotic susceptibility and the presence of resistance genes in clinical oral isolates of P. intermedia, P. nigrescens, and P. melaninogenica. Antibiotic susceptibility was assessed using the agar dilution method. PCR confirmed the species and resistance gene frequency in the Prevotella species. The frequencies of species P. intermedia, P. nigrescens, and P. melaninogenica were 30.2%, 45.7%, and 24.1%, respectively. No isolates of P. intermedia were resistant to amoxicillin/clavulanic acid, tetracycline, or clindamycin. P. nigrescens and P. melaninogenica were resistant to amoxicillin/clavulanic acid and tetracycline at frequencies of 40% and 20%, respectively. P. intermedia was resistant to metronidazole at a frequency of 30%, P. nigrescens at 20%, and P. melaninogenica at 40%. P. nigrescens and P. melaninogenica were resistant to 50% and 10% clindamycin, respectively. The gene most frequently detected was tetQ, at 43.3%, followed by tetM at 36.6%, blaTEM at 26.6%, ermF at 20%, cfxA, cfxA2, and nimAB at 16.6%, and nimAEFI at 3.3%. P. nigrescens was the species with the highest resistance to antibiotics such as amoxicillin/clavulanic acid, amoxicillin, and clindamycin, in addition to being the species with the largest number of genes compared to P. intermedia and P. melaninogenica.
Collapse
Affiliation(s)
- Yormaris Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Nathaly Andrea Delgadillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Yineth Neuta
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Andrés Hernández
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Tania Acevedo
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Edwin Cárdenas
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Andrea Montaño
- Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| | - Diana Marcela Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, 110121 Bogotá, Colombia
| |
Collapse
|
6
|
Severgnini M, Morselli S, Camboni T, Ceccarani C, Laghi L, Zagonari S, Patuelli G, Pedna MF, Sambri V, Foschi C, Consolandi C, Marangoni A. A Deep Look at the Vaginal Environment During Pregnancy and Puerperium. Front Cell Infect Microbiol 2022; 12:838405. [PMID: 35656029 PMCID: PMC9152327 DOI: 10.3389/fcimb.2022.838405] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
A deep comprehension of the vaginal ecosystem may hold promise for unraveling the pathophysiology of pregnancy and may provide novel biomarkers to identify subjects at risk of maternal-fetal complications. In this prospective study, we assessed the characteristics of the vaginal environment in a cohort of pregnant women throughout their different gestational ages and puerperium. Both the vaginal bacterial composition and the vaginal metabolic profiles were analyzed. A total of 63 Caucasian women with a successful pregnancy and 9 subjects who had a first trimester miscarriage were enrolled. For the study, obstetric examinations were scheduled along the three trimester phases (9-13, 20-24, 32-34 gestation weeks) and puerperium (40-55 days after delivery). Two vaginal swabs were collected at each time point, to assess the vaginal microbiome profiling (by Nugent score and 16S rRNA gene sequencing) and the vaginal metabolic composition (1H-NMR spectroscopy). During pregnancy, the vaginal microbiome underwent marked changes, with a significant decrease in overall diversity, and increased stability. Over time, we found a significant increase of Lactobacillus and a decrease of several genera related to bacterial vaginosis (BV), such as Prevotella, Atopobium and Sneathia. It is worth noting that the levels of Bifidobacterium spp. tended to decrease at the end of pregnancy. At the puerperium, a significantly lower content of Lactobacillus and higher levels of Gardnerella, Prevotella, Atopobium, and Streptococcus were observed. Women receiving an intrapartum antibiotic prophylaxis for Group B Streptococcus (GBS) were characterized by a vaginal abundance of Prevotella compared to untreated women. Analysis of bacterial relative abundances highlighted an increased abundance of Fusobacterium in women suffering a first trimester abortion, at all taxonomic levels. Lactobacillus abundance was strongly correlated with higher levels of lactate, sarcosine, and many amino acids (i.e., isoleucine, leucine, phenylalanine, valine, threonine, tryptophan). Conversely, BV-associated genera, such as Gardnerella, Atopobium, and Sneathia, were related to amines (e.g., putrescine, methylamine), formate, acetate, alcohols, and short-chain fatty-acids (i.e., butyrate, propionate).
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Sara Morselli
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Tania Camboni
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | | | | | | | - Vittorio Sambri
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, Cesena, Italy
| | - Claudio Foschi
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies – National Research Council, Milan, Italy
| | - Antonella Marangoni
- Microbiology, Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Intestinal Exposure to Ceftiofur and Cefquinome after Intramuscular Treatment and the Impact of Ceftiofur on the Pig Fecal Microbiome and Resistome. Antibiotics (Basel) 2022; 11:antibiotics11030342. [PMID: 35326805 PMCID: PMC8944603 DOI: 10.3390/antibiotics11030342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/21/2022] Open
Abstract
Optimization of antimicrobial treatment during a bacterial infection in livestock requires in-depth knowledge of the impact of antimicrobial therapy on the pathogen and commensal microbiota. Once administered antimicrobials and/or their metabolites are excreted either by the kidneys through urine and/or by the intestinal tract through feces, causing antimicrobial pressure and possibly the emergence of resistance in the gastro-intestinal tract. So far, the excretion of ceftiofur and cefquinome in the intestinal tract of pigs has not been described. The objective of this study was to investigate the excretion of ceftiofur and cefquinome in the different segments of the gut and feces after intramuscular administration. Therefore, 16 pigs were treated either with ceftiofur (n = 8) or cefquinome (n = 8), and feces were collected during the entire treatment period. The presence of ceftiofur and desfuroylceftiofuracetamide or cefquinome were quantified via liquid chromatography−tandem mass spectrometry. At the end of the treatment, pigs were euthanized, and samples from the duodenum, jejunum, ileum and cecum were analyzed. In feces, no active antimicrobial residues could be measured, except for one ceftiofur-treated pig. In the gut segments, the concentration of both antimicrobials increased from duodenum toward the ileum, with a maximum in the ileum (187.8 ± 101.7 ng·g−1 ceftiofur-related residues, 57.8 ± 37.5 ng·g−1 cefquinome) and sharply decreased in the cecum (below the limit of quantification for ceftiofur-related residues, 6.4 ± 4.2 ng·g−1 cefquinome). Additionally, long-read Nanopore sequencing and targeted quantitative polymerase chain reaction (qPCR) were performed in an attempt to clarify the discrepancy in fecal excretion of ceftiofur-related residues between pigs. In general, there was an increase in Prevotella, Bacteroides and Faecalibacterium and a decrease in Escherichia and Clostridium after ceftiofur administration (q-value < 0.05). The sequencing and qPCR could not provide an explanation for the unexpected excretion of ceftiofur-related residues in one pig out of eight. Overall, this study provides valuable information on the gut excretion of parenteral administered ceftiofur and cefquinome.
Collapse
|
8
|
Prevotella melaninogenica, a Sentinel Species of Antibiotic Resistance in Cystic Fibrosis Respiratory Niche? Microorganisms 2021; 9:microorganisms9061275. [PMID: 34208093 PMCID: PMC8230849 DOI: 10.3390/microorganisms9061275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
The importance and abundance of strict anaerobic bacteria in the respiratory microbiota of people with cystic fibrosis (PWCF) is now established through studies based on high-throughput sequencing or extended-culture methods. In CF respiratory niche, one of the most prevalent anaerobic genera is Prevotella, and particularly the species Prevotella melaninogenica. The objective of this study was to evaluate the antibiotic susceptibility of this anaerobic species. Fifty isolates of P. melaninogenica cultured from sputum of 50 PWCF have been included. Antibiotic susceptibility testing was performed using the agar diffusion method. All isolates were susceptible to the following antibiotics: amoxicillin/clavulanic acid, piperacillin/tazobactam, imipenem and metronidazole. A total of 96% of the isolates (48/50) were resistant to amoxicillin (indicating beta-lactamase production), 34% to clindamycin (17/50) and 24% to moxifloxacin (12/50). Moreover, 10% (5/50) were multidrug-resistant. A significant and positive correlation was found between clindamycin resistance and chronic azithromycin administration. This preliminary study on a predominant species of the lung “anaerobiome” shows high percentages of resistance, potentially exacerbated by the initiation of long-term antibiotic therapy in PWCF. The anaerobic resistome characterization, focusing on species rather than genera, is needed in the future to better prevent the emergence of resistance within lung microbiota.
Collapse
|