1
|
Vishwakarma A, Verma D. 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. Appl Biochem Biotechnol 2024; 196:6759-6781. [PMID: 38407781 DOI: 10.1007/s12010-024-04857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025.
| |
Collapse
|
2
|
Miluna-Meldere S, Rostoka D, Broks R, Viksne K, Ciematnieks R, Skadins I, Kroica J. The Effects of Nicotine Pouches and E-Cigarettes on Oral Microbes: A Pilot Study. Microorganisms 2024; 12:1514. [PMID: 39203357 PMCID: PMC11356086 DOI: 10.3390/microorganisms12081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
It remains uncertain whether nicotine pouches and electronic cigarettes alter the oral environment and result in a high presence of periodontopathogenic bacteria in saliva, compared to that among cigarette users or non-tobacco users. In this study, saliva samples were collected from respondents using nicotine pouches, electronic cigarettes, and conventional cigarettes, alongside a control group of non-tobacco users. Polymerase chain reaction was used to identify clinical isolates of the following periodontal bacteria: Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, Fusobacterium periodonticum, Porphyromonas endodontalis, and Rothia mucilaginosa. The presence of some periodontal pathogens was detected in the saliva samples from users of nicotine pouches, electronic cigarettes, and conventional cigarettes but not in samples taken from the control group. Therefore, the initial results of this pilot study suggest that the presence of periodontopathogenic bacteria in the saliva of nicotine pouch and electronic cigarette users could alter the oral microbiome, leading to periodontal diseases. However, further quantitative investigation is needed.
Collapse
Affiliation(s)
| | - Dagnija Rostoka
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Kristine Viksne
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Rolands Ciematnieks
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| |
Collapse
|
3
|
Vishwakarma A, Verma D. Smokeless Tobacco Harbors Bacteria Involved in Biofilm Formation as Well as Salt and Heavy Metal Tolerance Activity. Appl Biochem Biotechnol 2024; 196:3034-3055. [PMID: 37610514 DOI: 10.1007/s12010-023-04689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
In our previous culture-independent study on smokeless tobacco products, we have observed a strong positive correlation between several bacteria and genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation. Therefore, the present investigation was carried out to analyze the inhabitant bacterial population of the Indian ST products for assessing the health-associated risk attributes using culture-dependent approach. Traditional cultivation approaches recovered several bacterial isolates from commercial ST products on different culture media. A high colony formation unit (CFU) count was observed that ranged from 173 × 104 to 630.4 × 105 per gram of ST products. Of the 74 randomly selected and distinct bacterial isolates, 17 isolates showed a significantly enhanced growth (p-value < 0.05) in the presence of the aqueous tobacco extract. On biochemical characterization, these bacteria were identified as the member of Bacillus, Enterobacter, Micrococcus, Providencia, Serratia, Pantoea, Proteus, and Pseudomonas. Most of these bacteria also exhibited biofilm-forming activity, where eight bacterial isolates were identified for strong biofilm-forming action. 16S rRNA-based molecular characterization of these bacteria identified them as Bacillus subtilis, Bacillus paralicheniformis, Enterobacter sp., Serratia marcescens, Pantoea anthophila, and Enterobacter cloacae. Moreover, these bacteria also exhibited the potential to withstand high salt and heavy metal concentrations. The findings demonstrate that Indian ST products are heavily populated with wide bacterial species exhibiting potential in biofilm formation, heavy metal resistance, and salt tolerance.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
4
|
Sajid M, Sharma P, Srivastava S, Hariprasad R, Singh H, Bharadwaj M. Alteration of oral bacteriome of smokeless tobacco users and their association with oral cancer. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12534-z. [PMID: 37154908 DOI: 10.1007/s00253-023-12534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Smokeless tobacco (SLT) is certainly one of the major risk factors associated with oral cancer. Disruption of oral microbiota-host homeostasis contributes to the progression of oral cancer. Here, we profiled SLT users' oral bacterial composition and inferred their functions by sequencing 16S rDNA V3-V4 region and PICRUSt2, respectively. Oral bacteriome of SLT users (with or without oral premalignant lesions), SLT with alcohol co-users, and non-SLT consumers were compared. Oral bacteriome is shaped primarily by SLT use and the incidence of oral premalignant lesions (OPL). A significantly increased bacterial α-diversity was monitored in SLT users with OPL compared to in SLT users without OPL and non-users, whereas β-diversity was significantly explained by OPL status. Overrepresented genera were Prevotella, Fusobacterium, Veillonella, Haemophilus, Capnocytophaga, and Leptotrichia in SLT users having OPL. LEfSe analysis identified 16 genera as a biomarker that were differentially abundant in SLT users having OPL. The functional prediction of genes significantly increased for several metabolic pathways, more importantly, were nitrogen metabolism, nucleotide metabolism, energy metabolism, and biosynthesis/biodegradation of secondary metabolites in SLT users having OPL. Furthermore, HPV-16 and EBV, but not HPV-18, were considerably connected with the SLT users having OPL. Overall, this study provides evidence that SLT utilization and OPL development are associated with oral bacteriome dysbiosis indicating the enrichment of bacterial species known for their contribution to oral carcinogenesis. Therefore, delineating the cancer-inducing bacterial population in SLT users will facilitate the future development of microbiome-targeted therapies. KEY POINTS: • SLT consumption significantly elevates oral bacterial diversity. • Prevalent significant genera are Prevotella, Veillonella, and Haemophilus in SLT users with OPL. • SLT promotes the occurrence of the cancer-inducing bacterial population.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Pragya Sharma
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Roopa Hariprasad
- Division of Clinical Oncology, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), Ansari Nagar, New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Uttar Pradesh, Noida, India.
| |
Collapse
|
5
|
Sami A, Elimairi I, Ryan CA, Stanton C, Patangia D, Ross RP. Altered oral microbiome in Sudanese Toombak smokeless tobacco users carries a newly emerging risk of squamous cell carcinoma development and progression. Sci Rep 2023; 13:6645. [PMID: 37095112 PMCID: PMC10125980 DOI: 10.1038/s41598-023-32892-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
There are an estimated 6-10 million smokeless tobacco (Toombak) users in Sudan, the majority being males. Toombak is known to be a carcinogenic product that is likely to modify the oral microbiome spatiality into a high-risk potential for the development and progression of oral cancer, but previous studies are lacking in this field. Here, we endeavour for the first time the exploration of the oral microbiome in key mucosal areas of the oral cavity and assess the microbiome variations in premalignant and oral squamous cell carcinoma (OSCC) samples from both users and non-users of Toombak. 16S rRNA sequencing was performed on DNA obtained from pooled saliva, oral mucosa and supragingival plaque from 78 Sudanese users and non-users of Toombak, aged between 20 and 70 years. In 32 of the pooled saliva samples, the mycobiome (fungal) environment was analysed through ITS sequencing. Then, 46 formalin-fixed paraffin-embedded samples of premalignant and OSCC samples were collected, and their associated microbiomes sequenced. The oral Sudanese microbiome was found to be enriched in Streptococcaceae, but Staphylococcaceae were significantly more abundant amongst Toombak users. Genera enriched in the oral cavity of Toombak users included Corynebacterium_1 and Cardiobacterium while in non-users, Prevotella, Lactobacillus and Bifidobacterium were prominent. Aspergillus was the most abundant fungus in the mouths of Toombak users with a marked loss of Candida. The genus Corynebacterium_1 was abundant in the buccal, floor of the mouth and saliva microbiomes as well as in oral cancer samples from Toombak users indicating a possible role for this genus in the early stages of oral cancer development. An oral cancer microbiome that favours poor survival and metastasis in those who use Toombak also emerged that includes the genera Stenotrophomonas and Schlegelella. Those utilising Toombak carry an altered oral microbiome that may be an additional risk factor for this products carcinogenicity to the oral structures. These significant microbiome modulations are a newly emerging key driving factor in oral cancer development and progression in Toombak users while it is also shown that Toombak users carry an oral cancer microbiome that may increase the potential for a poorer prognosis.
Collapse
Affiliation(s)
- Amel Sami
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - Imad Elimairi
- Department of Oral and Maxillofacial Surgery and Oral Medicine, Faculty of Dentistry, National Ribat University, Nile street, 1111, Khartoum, Sudan
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, T12 DFK4, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Dhrati Patangia
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, T12 YN60, Ireland
| |
Collapse
|
6
|
Vishwakarma A, Srivastava A, Mishra S, Verma D. Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World J Microbiol Biotechnol 2022; 39:20. [PMID: 36409379 DOI: 10.1007/s11274-022-03461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Smokeless tobacco (ST) consumption keeps human oral health at high risk which is one of the major reasons for oral tumorigenesis. The chemical constituents of the ST products have been well discussed; however, the inhabitant microbial diversity of the ST products is less explored especially from south Asian regions. Therefore, the present investigation discusses the bacteriome-based analysis of indigenous tobacco products. The study relies on 16S amplicon-based bacteriome analysis of Indian smokeless tobacco (ST) products using a metagenomic approach. A total of 59,15,143 high-quality reads were assigned to 34 phyla, 82 classes, 176 orders, 256 families, 356 genera, and 154 species using the SILVA database. Of the phyla (> 1%), Firmicutes dominate among the Indian smokeless tobacco followed by Proteobacteria, Bacteroidetes, and Actinobacteria (> 1%). Whereas, at the genera level (> 1%), Lysinibacillus, Dickeya, Terribacillus, and Bacillus dominate. The comparative analysis between the loose tobacco (LT) and commercial tobacco (CT) groups showed no significant difference at the phyla level, however, only three genera (Bacillus, Aerococcus, and Halomonas) were identified as significantly different between the groups. It indicates that CT and LT tobacco share similar bacterial diversity and poses equal health risks to human oral health. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt 2.0) based analysis uncovered several genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation that find roles in oral pathogenesis including oral cancer. The strong correlation analysis of these genes with several pathogenic bacteria suggests that tobacco products pose a high bacterial-derived risk to human health. The study paves the way to understand the bacterial diversity of Indian smokeless tobacco products and their putative functions with respect to human oral health. The study grabs attention to the bacterial diversity of the smokeless tobacco products from a country where tobacco consumers are rampantly prevalent however oral health is of least concern.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
7
|
Smokeless tobacco consumption induces dysbiosis of oral mycobiome: a pilot study. Appl Microbiol Biotechnol 2022; 106:5643-5657. [PMID: 35913514 DOI: 10.1007/s00253-022-12096-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Smokeless tobacco (SLT) alters the oral microbiome of smokeless tobacco users. Dysbiosis of oral bacteriome has been determined; however, the mycobiome of SLT users has not been characterized. The oral mycobiome was assayed by amplification and sequencing of the fungal internal transcribed spacer (ITS1) region from oral swab samples of non-SLT users, SLT users (with or without oral lesions), and SLT with alcohol users. We observed that the richness and diversity of oral mycobiome were significantly decreased in SLT with oral lesions users than in non-users. The β-diversity analysis showed significant dissimilarity of oral mycobiome between non-users and SLT with oral lesions users. Linear discriminant analysis effect size and random forest analysis of oral mycobiome affirm that the genus Pichia was typical for SLT with oral lesions users. Prevalence of the fungal genus Pichia correlates positively with Starmerella, Mortierella, Fusarium, Calonectria, and Madurella, but is negatively correlated with Pyrenochaeta, Botryosporium, and Alternaria. Further, the determination of oral mycobiome functionality showed a high abundance of pathotroph-saprotroph-symbiotroph and animal pathogen-endophyte-epiphyte-undefined saprotroph at trophic and guild levels, respectively, indicating possibly major changes in normal growth repression of types of fungi. The oral mycobiome in SLT users was identified and comprehensively analyzed for the first time. SLT intake is associated with oral mycobiome dysbiosis and such alterations of the oral mycobiome may contribute to oral carcinogenesis in SLT users. This study will provide a basis for further large-scale investigations on the potential role of the mycobiome in SLT-induced oral cancer. KEY POINTS: • SLT induces dysbiosis of the oral microbiome that can contribute to oral cancer. • Oral mycobiome diversity is noticeably reduced in SLT users having oral lesions. • Occurrence of Pichia can be used as a biomarker for SLT users having oral lesions.
Collapse
|
8
|
Sajid M, Srivastava S, Kumar A, Kumar A, Singh H, Bharadwaj M. Bacteriome of Moist Smokeless Tobacco Products Consumed in India With Emphasis on the Predictive Functional Potential. Front Microbiol 2022; 12:784841. [PMID: 35003015 PMCID: PMC8740325 DOI: 10.3389/fmicb.2021.784841] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Smokeless tobacco products (STPs) carry assorted microbial population that contributes to carcinogens synthesis like tobacco-specific nitrosamines (TSNAs). Extensive exploration of microbiota-harboring STPs is required to understand their full carcinogenic potential. Here, we applied 16S rRNA gene sequencing to investigate bacteriome present in moist STPs immensely consumed in India (Khaini, Moist-snuff, Qiwam, and Snus). Further, the functional metagenome was speculated by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) to assign the abundance of genes related to nitrogen metabolism, bacterial toxins, antibiotic drug resistance and other pro-inflammatory molecules. Highly diverse bacterial communities were observed in all moist STPs. Taxonomic analysis revealed a total of 549 genera belonging to four major phyla Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. Overall, the core bacterial genera Acinetobacter, Bacillus, Prevotella, Acetobacter, Lactobacillus, Paracoccus, Flavobacterium, and Bacteroides were significantly abundant in moist STPs. Elevated moisture-holding products like Moist-snuff and Qiwam harbor rich bacterial species diversity and showed similar bacteriome composition. Furthermore, Qiwam products showed the highest level of genes associated with nitrogen metabolism, antibiotic resistance, toxins, and pro-inflammation (predicted by PICRUSt) which can contribute to the synthesis of TSNAs and induction of oral cancer. The present broad investigation of moist STPs-associated bacteriome prevalence and their detailed metabolic potential will provide novel insight into the oral carcinogenesis induced by STPs.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Amit Kumar
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Anuj Kumar
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|