1
|
Fumagalli A, Castells-Nobau A, Trivedi D, Garre-Olmo J, Puig J, Ramos R, Ramió-Torrentà L, Pérez-Brocal V, Moya A, Swann J, Martin-Garcia E, Maldonado R, Fernández-Real JM, Mayneris-Perxachs J. Archaea methanogens are associated with cognitive performance through the shaping of gut microbiota, butyrate and histidine metabolism. Gut Microbes 2025; 17:2455506. [PMID: 39910065 PMCID: PMC11810085 DOI: 10.1080/19490976.2025.2455506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 02/07/2025] Open
Abstract
The relationship between bacteria, cognitive function and obesity is well established, yet the role of archaeal species remains underexplored. We used shotgun metagenomics and neuropsychological tests to identify microbial species associated with cognition in a discovery cohort (IRONMET, n = 125). Interestingly, methanogen archaeas exhibited the strongest positive associations with cognition, particularly Methanobrevibacter smithii (M. smithii). Stratifying individuals by median-centered log ratios (CLR) of M. smithii (low and high M. smithii groups: LMs and HMs) revealed that HMs exhibited better cognition and distinct gut bacterial profiles (PERMANOVA p = 0.001), characterized by increased levels of Verrucomicrobia, Synergistetes and Lentisphaerae species and reduced levels of Bacteroidetes and Proteobacteria. Several of these species were linked to the cognitive test scores. These findings were replicated in a large-scale validation cohort (Aging Imageomics, n = 942). Functional analyses revealed an enrichment of energy, butyrate, and bile acid metabolism in HMs in both cohorts. Global plasma metabolomics by CIL LC-MS in IRONMET identified an enrichment of methylhistidine, phenylacetate, alpha-linolenic and linoleic acid, and secondary bile acid metabolism associated with increased levels of 3-methylhistidine, phenylacetylgluamine, adrenic acid, and isolithocholic acid in the HMs group. Phenylacetate and linoleic acid metabolism also emerged in the Aging Imageomics cohort performing untargeted HPLC-ESI-MS/MS metabolic profiling, while a targeted bile acid profiling identified again isolithocholic acid as one of the most significant bile acid increased in the HMs. 3-Methylhistidine levels were also associated with intense physical activity in a second validation cohort (IRONMET-CGM, n = 116). Finally, FMT from HMs donors improved cognitive flexibility, reduced weight, and altered SCFAs, histidine-, linoleic acid- and phenylalanine-related metabolites in the dorsal striatum of recipient mice. M. smithii seems to interact with the bacterial ecosystem affecting butyrate, histidine, phenylalanine, and linoleic acid metabolism with a positive impact on cognition, constituting a promising therapeutic target to enhance cognitive performance, especially in subjects with obesity.
Collapse
Affiliation(s)
- Andrea Fumagalli
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Anna Castells-Nobau
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Dakshat Trivedi
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Josep Garre-Olmo
- serra-hunter program Department of Nursing, University of Girona, Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Institute of Diagnostic Imaging (IDI)-Research Unit (IDIR), Parc Sanitari Pere Virgili, Barcelona, Spain
- Medical Imaging, Girona Biomedical Research Institute (IdibGi), Girona, Spain
- Department of Radiology (IDI), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Rafel Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII Girona Biomedical Research Institute (IDIBGI), Dr. Josep Trueta University Hospital, Girona, Catalonia, Spain
- Research in Vascular Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Lluís Ramió-Torrentà
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta University Hospital, Girona, Spain
- Neurodegeneration and Neuroinflammation Research Group, IDIBGI-CERCA, Girona, Spain
| | - Vicente Pérez-Brocal
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Andrés Moya
- Area of Genomics and Health, Foundation for the Promotion of Sanitary and Biomedical Research of Valencia Region (FISABIO-Public Health), Valencia, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia and Spanish National Research Council (CSIC), Valencia, Spain
| | - Jonathan Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Elena Martin-Garcia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain
- Integrative Systems Medicine and Biology Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Salt, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III; Madrid, Spain
| |
Collapse
|
2
|
Bruno PS, Arshad A, Gogu MR, Waterman N, Flack R, Dunn K, Darie CC, Neagu AN. Post-Translational Modifications of Proteins Orchestrate All Hallmarks of Cancer. Life (Basel) 2025; 15:126. [PMID: 39860065 PMCID: PMC11766951 DOI: 10.3390/life15010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins. In this review, we summarized and analyzed a wide spectrum of PTMs of proteins involved in all regulatory mechanisms that drive tumorigenesis, genetic instability, epigenetic reprogramming, all events of the metastatic cascade, cytoskeleton and extracellular matrix (ECM) remodeling, angiogenesis, immune response, tumor-associated microbiome, and metabolism rewiring as the most important hallmarks of cancer. All cancer hallmarks develop due to PTMs of proteins, which modulate gene transcription, intracellular and extracellular signaling, protein size, activity, stability and localization, trafficking, secretion, intracellular protein degradation or half-life, and protein-protein interactions (PPIs). PTMs associated with cancer can be exploited to better understand the underlying molecular mechanisms of this heterogeneous and chameleonic disease, find new biomarkers of cancer progression and prognosis, personalize oncotherapies, and discover new targets for drug development.
Collapse
Affiliation(s)
- Pathea Shawnae Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania;
| | - Natalie Waterman
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Rylie Flack
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Kimberly Dunn
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (P.S.B.); (A.A.); (N.W.); (R.F.); (K.D.)
| | - Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| |
Collapse
|
3
|
Salas-López M, Vélez-Ixta JM, Rojas-Guerrero DL, Piña-Escobedo A, Hernández-Hernández JM, Rangel-Calvillo MN, Pérez-Cruz C, Corona-Cervantes K, Juárez-Castelán CJ, García-Mena J. Human Milk Archaea Associated with Neonatal Gut Colonization and Its Co-Occurrence with Bacteria. Microorganisms 2025; 13:85. [PMID: 39858853 PMCID: PMC11767358 DOI: 10.3390/microorganisms13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Archaea have been identified as early colonizers of the human intestine, appearing from the first days of life. It is hypothesized that the origin of many of these archaea is through vertical transmission during breastfeeding. In this study, we aimed to characterize the archaeal composition in samples of mother-neonate pairs to observe the potential vertical transmission. We performed a cross-sectional study characterizing the archaeal diversity of 40 human colostrum-neonatal stool samples by next-generation sequencing of V5-V6 16S rDNA libraries. Intra- and inter-sample analyses were carried out to describe the Archaeal diversity in each sample type. Human colostrum and neonatal stools presented similar core microbiota, mainly composed of the methanogens Methanoculleus and Methanosarcina. Beta diversity and metabolic prediction results suggest homogeneity between sample types. Further, the co-occurrence network analysis showed associations between Archaea and Bacteria, which might be relevant for these organisms' presence in the human milk and neonatal stool ecosystems. According to relative abundance proportions, beta diversity, and co-occurrence analyses, the similarities found imply that there is vertical transmission of archaea through breastfeeding. Nonetheless, differential abundances between the sample types suggest other relevant sources for colonizing archaea to the neonatal gut.
Collapse
Affiliation(s)
- Maricarmen Salas-López
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Juan Manuel Vélez-Ixta
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Diana Laura Rojas-Guerrero
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 31-007 Kraków, Poland
| | - Alberto Piña-Escobedo
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - José Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | | | - Claudia Pérez-Cruz
- Departamento de Farmacología, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico;
| | - Karina Corona-Cervantes
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
- Institute for Obesity Research, Monterrey Institute of Technology and Higher Education, Monterrey 64849, Mexico
| | - Carmen Josefina Juárez-Castelán
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, Mexico City 07360, Mexico; (M.S.-L.); (J.M.V.-I.); or (D.L.R.-G.); (A.P.-E.); (J.M.H.-H.)
| |
Collapse
|
4
|
Kemp JA, Schultz J, Modolon F, Ribeiro-Alves M, Rosado AS, Mafra D. Is there a correlation between TMAO plasma levels and archaea in the gut of patients undergoing hemodialysis? Int Urol Nephrol 2024:10.1007/s11255-024-04273-5. [PMID: 39562414 DOI: 10.1007/s11255-024-04273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE Patients with chronic kidney disease (CKD) present high plasma levels of trimethylamine N-oxide (TMAO), a uremic toxin produced by gut microbiota associated with atherogenesis. Experimental studies have shown that certain methanogenic archaea members use trimethylamine (TMA), the TMAO precursor in the human gut, to produce methane, suggesting a potential strategy to reduce TMAO levels in patients with CKD. Hence, this study aimed to evaluate the association of Archaea in the gut microbiota and TMAO plasma levels in patients with CKD undergoing hemodialysis. METHODS Twenty-five patients were enrolled in the study (15 women, 53 (18) years, BMI, 25.8 (6.75) kg/m2). TMAO plasma levels were evaluated using the HPLC-EM/EM method. Fecal DNA was extracted using a commercial kit. Subsequently, we sequenced the V4 region of the 16S rRNA gene to characterize the microbial composition. NCT04600258 was retrospectively registered in September 2022. RESULTS According to the reference values in the European Uremic Toxins Work Group (EUTox) database, the patients exhibited high TMAO plasma levels, as expected. The most abundant Archaea members were assigned to the Euryarchaeota phylum, the Methanobacteriaceae family, and the genus Methanobrevibacter. A significant negative correlation between TMAO and Methanobrevibacter was observed. CONCLUSIONS To our knowledge, this study represents the first investigation into the correlation between TMAO levels and the prevalence of Archaea in patients with CKD. Our findings support the archaebiotic hypothesis, suggesting that specific members of the archaea community could play a crucial role in reducing TMA production in the human gut, potentially decreasing TMAO synthesis in CKD patients.
Collapse
Affiliation(s)
- Julie Ann Kemp
- Post-Graduate Program in Nutrition Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil.
| | - Júnia Schultz
- Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fluvio Modolon
- Oceanographic Institute, University of Sao Paulo, São Paulo, SP, Brazil
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology Evandro Chagas (INI/Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Alexandre S Rosado
- Biological and Environmental Science and Engineering (BESE), Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denise Mafra
- Post-Graduate Program in Nutrition Sciences, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Alexei AG, Bullen NP, Garrett SR, Sychantha D, Whitney JC. The antibacterial activity of a prophage-encoded fitness factor is neutralized by two cognate immunity proteins. J Biol Chem 2024; 300:108007. [PMID: 39551144 PMCID: PMC11699363 DOI: 10.1016/j.jbc.2024.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
The human gastrointestinal tract is a competitive environment inhabited by dense polymicrobial communities. Bacteroides, a genus of Gram-negative anaerobes, are prominent members of this ecological niche. Bacteroides spp. uses a repertoire of mechanisms to compete for resources within this environment such as the delivery of proteinaceous toxins into neighbouring competitor bacteria and the ability to consume unique metabolites available in the gut. In recent work, Bacteroides stercoris gut colonization was linked to the activity of a prophage-encoded ADP-ribosyltransferase, which was found to stimulate the release of the metabolite inosine from host epithelial cells. This fitness factor, termed Bxa, shares a similar genomic arrangement to bacterial toxins encoded within interbacterial antagonism loci. Here, we report that Bxa also possesses antibacterial ADP-ribosyltransferase activity, raising the question of how Bxa-producing bacteria resist intoxication prior to Bxa's release from cells. To this end, we identify two cognate immunity proteins, Bsi and BAH, that neutralize Bxa's antibacterial activity using distinct mechanisms. BAH acts as an enzymatic immunity protein that reverses Bxa ADP-ribosylation whereas Bsi physically interacts with Bxa and blocks its ADP-ribosylation activity. We also find that the N-terminal domain of Bxa is dispensable for toxicity and homologous domains in other bacteria are fused to a diverse array of predicted toxins found throughout the Bacteroidaceae, suggesting that Bxa belongs to a broader prophage encoded polymorphic toxin system. Overall, this work shows that Bxa is a promiscuous ADP-ribosyltransferase and that B. stercoris possesses mechanisms to protect itself from the toxic activity of this prophage encoded fitness factor.
Collapse
Affiliation(s)
- Andrea G Alexei
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Stephen R Garrett
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - David Sychantha
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
6
|
Schettini F, Gattazzo F, Nucera S, Rubio Garcia E, López-Aladid R, Morelli L, Fontana A, Vigneri P, Casals-Pascual C, Iebba V, Generali D. Navigating the complex relationship between human gut microbiota and breast cancer: Physiopathological, prognostic and therapeutic implications. Cancer Treat Rev 2024; 130:102816. [PMID: 39182440 DOI: 10.1016/j.ctrv.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The human body represents the habitat of trillions of symbiotic microorganisms, collectively known as human microbiota, approximately half of which residing in the gut. The development of next-generation sequencing techniques has boosted the profiling of human microbiota in recent years. A growing body of evidence seems to support a strict relationship between the disruption of the mutualistic relationship between the microbiota and the host (i.e., dysbiosis) and the development of several diseases, including breast malignancies. Breast cancer still represents the most frequent cause of cancer-related death in women. Its complex relationship with gut microbiota is the object of a growing body of evidence. In fact, the interaction with the host immune system and a direct impact of gut microbiota on estrogen, lipid and polyphenols metabolism, seem to potentially affect breast tumor development, progression and response to treatments. In this review, in an attempt to help oncologists navigating this rapidly-evolving research field, we provide an essential overview on the taxonomy, main analytical techniques and terminology most commonly adopted. We discuss what is currently known regarding the interaction between gut microbiota and breast cancer and potential efforts to harness this complex interplay for therapeutic purposes, and revise main ongoing studies. We also briefly provide an overview on breast cancer intratumoral microbiota and its potential role beyond gut microbiota.
Collapse
Affiliation(s)
- Francesco Schettini
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Medical Oncology, Hospital Clinic of Barcelona, Barcelona, Spain.
| | - Federica Gattazzo
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy; Gustave Roussy Cancer Campus, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sabrina Nucera
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain; Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elisa Rubio Garcia
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Ruben López-Aladid
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology Unit, Istituto Clinico Humanitas, Misterbianco, Catania, Italy
| | - Climent Casals-Pascual
- Department of Clinical Microbiology, Biomedical Diagnostic Center (CDB), Hospital Clinic of Barcelona, Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto Salud Carlos III, Madrid, Spain
| | - Valerio Iebba
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; Multidisciplinary Unit of Breast Pathology and Translational Research, Cremona Hospital, Cremona, Italy.
| |
Collapse
|
7
|
Wang H, Liu Z, Zhan K, Ma Q, Xu L, Li Y, Liu Y. Vitamin K2 alleviates dextran sulfate sodium-induced colitis via inflammatory responses, gut barrier integrity, and the gut microbiota in mice. Int J Biol Macromol 2024; 280:136091. [PMID: 39353519 DOI: 10.1016/j.ijbiomac.2024.136091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Vitamin K2 (VK2) has been shown to have potential benefits in improving intestinal integrity, but its potential and mechanisms for alleviating intestinal inflammation are still unclear. The present results showed that VK2 supplementation significantly alleviated the symptoms of colitis and maintained the intestinal barrier integrity. In addition, VK2 significantly down-regulated the mRNA expression levels of pro-inflammatory cytokines including IL-1β, IL-6, and TNF-α, while up-regulated the mRNA expression level of anti-inflammatory cytokines such as IL-10. Moreover, VK2 significantly alleviated DSS-induced intestinal epithelial barrier dysfunction by maintaining the tight junction function. Furthermore, VK2 also regulated DSS-induced gut microbiota dysbiosis by reshaping the structure of gut microbiota, such as increasing the relative abundance of Firmicutes, Euryarchaeota, Prevotellaceae, and Prevotella and reducing the relative abundance of Proteobacteria, Rikenellaceae, Enterobacteriaceae, Acetatifactor, and Alistioes. In conclusion, these results indicated that VK2 effectively alleviates DSS-induced colitis in mice by modulating the gut microbiota.
Collapse
Affiliation(s)
- Huakai Wang
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhen Liu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Kai Zhan
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Qiugang Ma
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Lei Xu
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yinghao Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Yun Liu
- Guangde City animal husbandry and veterinary aquatic services center, Xuancheng 242299, China
| |
Collapse
|
8
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
9
|
Sayin FS, Erdal H, Ulger NT, Aksu MB, Guncu MM. A Comprehensive Investigation on Catalytic Behavior of Anaerobic Jar Gassing Systems and Design of an Enhanced Cultivation System. Bioengineering (Basel) 2024; 11:1068. [PMID: 39593728 PMCID: PMC11591240 DOI: 10.3390/bioengineering11111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The rapid and reliable diagnosis of anaerobic bacteria constitutes one of the key procedures in clinical microbiology. Automatic jar gassing systems are commonly used laboratory instruments for this purpose. The most critical factors affecting the cultivation performance of these systems are the level of residual oxygen remaining in the anaerobic jar and the reaction rate determined by the Pd/Al2O3 catalyst. The main objective of the presented study is to design and manufacture an enhanced jar gassing system equipped with an extremum seeking-based estimation algorithm that combines real-time data and a reaction model of the Pd/Al2O3 catalyst. The microkinetic behavior of the palladium catalyst was modeled through a learning-from-experiment methodology. The majority of microkinetic model parameters were derived from material characterization analysis. A comparative validation test of the designed cultivation system was conducted using conventional gas pouches via six different bacterial strains. The results demonstrated high cell viability, with colony counts ranging from 1.26 × 105 to 2.17 × 105 CFU mL-1. The favorable catalyst facets for water formation on Pd surfaces and the crystal structure of Pd/Al2O3 pellets were identified by X-Ray diffraction analysis (XRD). The doping ratio of the noble metal (Pd) and the support material (Al2O3) was validated via energy-dispersive spectroscopy (EDS) measurements as 0.68% and 99.32%, respectively. The porous structure of the catalyst was also analyzed by scanning electron microscopy (SEM). During the reference clinical trial, the estimation algorithm was terminated after 878 iterations, having reached its predetermined termination value. The measured and modelled reaction rates were found to converge with a root-mean-squared error (RMSE) of less than 10-4, and the Arrhenius parameters of ongoing catalytic reaction were obtained. Additionally, our research offers a comprehensive analysis of anaerobic jar gassing systems from an engineering perspective, providing novel insights that are absent from the existing literature.
Collapse
Affiliation(s)
- Fatih S. Sayin
- Electrical–Electronics Engineering, Faculty of Technology, Marmara University, 34854 Istanbul, Turkey;
| | - Hasan Erdal
- Electrical–Electronics Engineering, Faculty of Technology, Marmara University, 34854 Istanbul, Turkey;
| | - Nurver T. Ulger
- Medical Microbiology, School of Medicine, Marmara University, 34854 Istanbul, Turkey; (N.T.U.); (M.B.A.)
| | - Mehmet B. Aksu
- Medical Microbiology, School of Medicine, Marmara University, 34854 Istanbul, Turkey; (N.T.U.); (M.B.A.)
| | - Mehmet M. Guncu
- Institute of Health Sciences, Marmara University, 34865 Istanbul, Turkey;
| |
Collapse
|
10
|
Bobbo T, Biscarini F, Yaddehige SK, Alberghini L, Rigoni D, Bianchi N, Taccioli C. Machine learning classification of archaea and bacteria identifies novel predictive genomic features. BMC Genomics 2024; 25:955. [PMID: 39402493 PMCID: PMC11472548 DOI: 10.1186/s12864-024-10832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Several genome-based methods have been developed for their accurate classification, yet many aspects of the specific genomic features that determine these differences are not fully understood. In this study, we used publicly available whole-genome sequences from bacteria ( N = 2546 ) and archaea ( N = 109 ). From these, a set of genomic features (nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes (ncRNA, rRNA, tRNA), Chargaff's, topological entropy and Shannon's entropy scores) was extracted and used as input data to develop machine learning models for the classification of archaea and bacteria. RESULTS The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable importance, tRNA topological and Shannon's entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA and rRNA Chargaff's scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topological and Shannon's) was the most important genomic feature for classification, pointing at the complex interactions between the genetic code, tRNAs and the translational machinery. CONCLUSIONS tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classification of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Tania Bobbo
- Institute for Biomedical Technologies, National Research Council (CNR), Via Fratelli Cervi 93, Segrate (MI), 20054, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Edoardo Bassini 15, Milano, 20133, Italy.
| | - Sachithra K Yaddehige
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Leonardo Alberghini
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Davide Rigoni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, Padova, 35131, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy.
| |
Collapse
|
11
|
Cuervo L, McAlpine PL, Olano C, Fernández J, Lombó F. Low-Molecular-Weight Compounds Produced by the Intestinal Microbiota and Cardiovascular Disease. Int J Mol Sci 2024; 25:10397. [PMID: 39408727 PMCID: PMC11477366 DOI: 10.3390/ijms251910397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is the main cause of mortality in industrialized countries, with over 500 million people affected worldwide. In this work, the roles of low-molecular-weight metabolites originating from the gut microbiome, such as short-chain fatty acids, hydrogen sulfide, trimethylamine, phenylacetic acid, secondary bile acids, indoles, different gases, neurotransmitters, vitamins, and complex lipids, are discussed in relation to their CVD-promoting or preventing activities. Molecules of mixed microbial and human hepatic origin, such as trimethylamine N-oxide and phenylacetylglutamine, are also presented. Finally, dietary agents with cardioprotective effects, such as probiotics, prebiotics, mono- and poly-unsaturated fatty acids, carotenoids, and polyphenols, are also discussed. A special emphasis is given to their gut microbiota-modulating properties.
Collapse
Affiliation(s)
- Lorena Cuervo
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Patrick L. McAlpine
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos Olano
- Research Group BIOMIC (Biosynthesis of Antitumor Molecules), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain; (L.C.); (C.O.)
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
| | - Javier Fernández
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Felipe Lombó
- IUOPA (Instituto Universitario de Oncología del Principado de Asturias), 33006 Oviedo, Spain
- ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), 33006 Oviedo, Spain
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Kim Y, Lim J, Oh J. Taming neuroinflammation in Alzheimer's disease: The protective role of phytochemicals through the gut-brain axis. Biomed Pharmacother 2024; 178:117277. [PMID: 39126772 DOI: 10.1016/j.biopha.2024.117277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological condition characterized by cognitive decline, primarily affecting memory and logical thinking, attributed to amyloid-β plaques and tau protein tangles in the brain, leading to neuronal loss and brain atrophy. Neuroinflammation, a hallmark of AD, involves the activation of microglia and astrocytes in response to pathological changes, potentially exacerbating neuronal damage. The gut-brain axis is a bidirectional communication pathway between the gastrointestinal and central nervous systems, crucial for maintaining brain health. Phytochemicals, natural compounds found in plants with antioxidant and anti-inflammatory properties, such as flavonoids, curcumin, resveratrol, and quercetin, have emerged as potential modulators of this axis, suggesting implications for AD prevention. Intake of phytochemicals influences the gut microbial composition and its metabolites, thereby impacting neuroinflammation and oxidative stress in the brain. Consumption of phytochemical-rich foods may promote a healthy gut microbiota, fostering the production of anti-inflammatory and neuroprotective substances. Early dietary incorporation of phytochemicals offers a non-invasive strategy for modulating the gut-brain axis and potentially reducing AD risk or delaying its onset. The exploration of interventions targeting the gut-brain axis through phytochemical intake represents a promising avenue for the development of preventive or therapeutic strategies against AD initiation and progression.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea.
| |
Collapse
|
14
|
Zhang YY, Liu YW, Chen BX, Wan Q. Association between gut microbiota and adrenal disease: a two-sample Mendelian randomized study. Front Cell Infect Microbiol 2024; 14:1421128. [PMID: 39055981 PMCID: PMC11269257 DOI: 10.3389/fcimb.2024.1421128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Background Some observational studies and clinical experiments suggest a close association between gut microbiota and metabolic diseases. However, the causal effects of gut microbiota on adrenal diseases, including Adrenocortical insufficiency, Cushing syndrome, and Hyperaldosteronism, remain unclear. Methods This study conducted a two-sample Mendelian randomization analysis using summary statistics data of gut microbiota from a large-scale genome-wide association study conducted by the MiBioGen Consortium. Summary statistics data for the three adrenal diseases were obtained from the FinnGen study. The study employed Inverse variance weighting, MR-Egger, and MR-PRESSO methods to assess the causal relationship between gut microbiota and these three adrenal diseases. Additionally, a reverse Mendelian randomization analysis was performed for bacteria found to have a causal relationship with these three adrenal diseases in the forward Mendelian randomization analysis. Cochran's Q statistic was used to test for heterogeneity of instrumental variables. Results The IVW test results demonstrate that class Deltaproteobacteria, Family Desulfovibrionaceae, and Order Desulfovibrionales exhibit protective effects against adrenocortical insufficiency. Conversely, Family Porphyromonadaceae, Genus Lachnoclostridium, and Order MollicutesRF9 are associated with an increased risk of adrenocortical insufficiency. Additionally, Family Acidaminococcaceae confers a certain level of protection against Cushing syndrome. In contrast, Class Methanobacteria, Family Lactobacillaceae, Family Methanobacteriaceae, Genus. Lactobacillus and Order Methanobacteriales are protective against Hyperaldosteronism. Conversely, Genus Parasutterella, Genus Peptococcus, and Genus Veillonella are identified as risk factors for Hyperaldosteronism. Conclusions This two-sample Mendelian randomization analysis revealed a causal relationship between microbial taxa such as Deltaproteobacteria and Desulfovibrionaceae and Adrenocortical insufficiency, Cushing syndrome, and Hyperaldosteronism. These findings offer new avenues for comprehending the development of adrenal diseases mediated by gut microbiota.
Collapse
Affiliation(s)
- Yue-Yang Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Yao-Wen Liu
- Department of Radiation Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bing-Xue Chen
- Department of Ultrasound Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qin Wan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, China
- Sichuan Clinical Research Center for Diabetes and Metabolism, Luzhou, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
15
|
Kotlyarov S. Importance of the gut microbiota in the gut-liver axis in normal and liver disease. World J Hepatol 2024; 16:878-882. [PMID: 38948437 PMCID: PMC11212653 DOI: 10.4254/wjh.v16.i6.878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
The gut microbiota is of growing interest to clinicians and researchers. This is because there is a growing understanding that the gut microbiota performs many different functions, including involvement in metabolic and immune processes that are systemic in nature. The liver, with its important role in detoxifying and metabolizing products from the gut, is at the forefront of interactions with the gut microbiota. Many details of these interactions are not yet known to clinicians and researchers, but there is growing evidence that normal gut microbiota function is important for liver health. At the same time, factors affecting the gut microbiota, including nutrition or medications, may also have an effect through the gut-liver axis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, Ryazan 390026, Russia.
| |
Collapse
|
16
|
Diez-Martin E, Hernandez-Suarez L, Muñoz-Villafranca C, Martin-Souto L, Astigarraga E, Ramirez-Garcia A, Barreda-Gómez G. Inflammatory Bowel Disease: A Comprehensive Analysis of Molecular Bases, Predictive Biomarkers, Diagnostic Methods, and Therapeutic Options. Int J Mol Sci 2024; 25:7062. [PMID: 39000169 PMCID: PMC11241012 DOI: 10.3390/ijms25137062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
In inflammatory bowel diseases (IBDs), such as Crohn's disease (CD) and ulcerative colitis (UC), the immune system relentlessly attacks intestinal cells, causing recurrent tissue damage over the lifetime of patients. The etiology of IBD is complex and multifactorial, involving environmental, microbiota, genetic, and immunological factors that alter the molecular basis of the organism. Among these, the microbiota and immune cells play pivotal roles; the microbiota generates antigens recognized by immune cells and antibodies, while autoantibodies target and attack the intestinal membrane, exacerbating inflammation and tissue damage. Given the altered molecular framework, the analysis of multiple molecular biomarkers in patients proves exceedingly valuable for diagnosing and prognosing IBD, including markers like C reactive protein and fecal calprotectin. Upon detection and classification of patients, specific treatments are administered, ranging from conventional drugs to new biological therapies, such as antibodies to neutralize inflammatory molecules like tumor necrosis factor (TNF) and integrin. This review delves into the molecular basis and targets, biomarkers, treatment options, monitoring techniques, and, ultimately, current challenges in IBD management.
Collapse
Affiliation(s)
- Eguzkiñe Diez-Martin
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Leidi Hernandez-Suarez
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Carmen Muñoz-Villafranca
- Department of Gastroenterology, University Hospital of Basurto, Avda Montevideo 18, 48013 Bilbao, Spain
| | - Leire Martin-Souto
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48170 Zamudio, Spain
| | - Andoni Ramirez-Garcia
- Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | |
Collapse
|
17
|
Kuru-Yaşar R, Üstün-Aytekin Ö. The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Curr Nutr Rep 2024; 13:126-151. [PMID: 38483752 PMCID: PMC11133122 DOI: 10.1007/s13668-024-00525-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Colorectal cancer is the second deadliest cancer in the world, and its prevalence has been increasing alarmingly in recent years. After researchers discovered the existence of dysbiosis in colorectal cancer, they considered the use of probiotics in the treatment of colorectal cancer. However, for various reasons, including the low safety profile of probiotics in susceptible and immunocompromised patient5s, and the risk of developing antibiotic resistance, researchers have shifted their focus to non-living cells, their components, and metabolites. This review aims to comprehensively evaluate the literature on the effects of diet, microbiota, and postbiotics on colorectal cancer and the future of postbiotics. RECENT FINDINGS The link between diet, gut microbiota, and colorectal cancer has been established primarily as a relationship rather than a cause-effect relationship. The gut microbiota can convert gastrointestinal tract and dietary factors into either onco-metabolites or tumor suppressor metabolites. There is serious dysbiosis in the microbiota in colorectal cancer. Postbiotics appear to be promising agents in the prevention and treatment of colorectal cancer. It has been shown that various postbiotics can selectively induce apoptosis in CRC, inhibit cell proliferation, growth, invasion, and migration, modulate the immune system, suppress carcinogenic signaling pathways, maintain intestinal epithelial integrity, and have a synergistic effect with chemotherapy drugs. However, it is also reported that some postbiotics are ineffective and may be risky in terms of safety profile in some patients. Many issues need to be researched about postbiotics. Large-scale, randomized, double-blind clinical studies are needed.
Collapse
Affiliation(s)
- Rüya Kuru-Yaşar
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye
| | - Özlem Üstün-Aytekin
- Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, 34668, Istanbul, Türkiye.
| |
Collapse
|
18
|
Liu X, Mo J, Yang X, Peng L, Zeng Y, Zheng Y, Song G. Causal relationship between gut microbiota and chronic renal failure: a two-sample Mendelian randomization study. Front Microbiol 2024; 15:1356478. [PMID: 38633704 PMCID: PMC11021586 DOI: 10.3389/fmicb.2024.1356478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Background Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.
Collapse
Affiliation(s)
- Xingzheng Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinying Mo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuerui Yang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ling Peng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Youjia Zeng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yihou Zheng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Gaofeng Song
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
19
|
Peddinti V, Avaghade MM, Suthar SU, Rout B, Gomte SS, Agnihotri TG, Jain A. Gut instincts: Unveiling the connection between gut microbiota and Alzheimer's disease. Clin Nutr ESPEN 2024; 60:266-280. [PMID: 38479921 DOI: 10.1016/j.clnesp.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by neuroinflammation and gradual cognitive decline. Recent research has revealed that the gut microbiota (GM) plays an important role in the pathogenesis of AD through the microbiota-gut-brain axis. However, the mechanism by which GM and microbial metabolites alter brain function is not clearly understood. GM dysbiosis increases the permeability of the intestine, alters the blood-brain barrier permeability, and elevates proinflammatory mediators causing neurodegeneration. This review article introduced us to the composition and functions of GM along with its repercussions of dysbiosis in relation to AD. We also discussed the importance of the gut-brain axis and its role in communication. Later we focused on the mechanism behind gut dysbiosis and the progression of AD including neuroinflammation, oxidative stress, and changes in neurotransmitter levels. Furthermore, we highlighted recent developments in AD management, such as microbiota-based therapy, dietary interventions like prebiotics, probiotics, and fecal microbiota transplantation. Finally, we concluded with challenges and future directions in AD research based on GM.
Collapse
Affiliation(s)
- Vasu Peddinti
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Manoj Mohan Avaghade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Sunil Umedmal Suthar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Biswajit Rout
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
20
|
Kuehnast T, Kumpitsch C, Mohammadzadeh R, Weichhart T, Moissl-Eichinger C, Heine H. Exploring the human archaeome: its relevance for health and disease, and its complex interplay with the human immune system. FEBS J 2024. [PMID: 38555566 DOI: 10.1111/febs.17123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
This Review aims to coalesce existing knowledge on the human archaeome, a less-studied yet critical non-bacterial component of the human microbiome, with a focus on its interaction with the immune system. Despite a largely bacteria-centric focus in microbiome research, archaea present unique challenges and opportunities for understanding human health. We examine the archaeal distribution across different human body sites, such as the lower gastrointestinal tract (LGT), upper aerodigestive tract (UAT), urogenital tract (UGT), and skin. Variability in archaeal composition exists between sites; methanogens dominate the LGT, while Nitrososphaeria are prevalent on the skin and UAT. Archaea have yet to be classified as pathogens but show associations with conditions such as refractory sinusitis and vaginosis. In the LGT, methanogenic archaea play critical metabolic roles by converting bacterial end-products into methane, correlating with various health conditions, including obesity and certain cancers. Finally, this work looks at the complex interactions between archaea and the human immune system at the molecular level. Recent research has illuminated the roles of specific archaeal molecules, such as RNA and glycerolipids, in stimulating immune responses via innate immune receptors like Toll-like receptor 8 (TLR8) and 'C-type lectin domain family 4 member E' (CLEC4E; also known as MINCLE). Additionally, metabolic by-products of archaea, specifically methane, have demonstrated immunomodulatory effects through anti-inflammatory and anti-oxidative pathways. Despite these advancements, the mechanistic underpinnings of how archaea influence immune activity remain a fertile area for further investigation.
Collapse
Affiliation(s)
- Torben Kuehnast
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Christina Kumpitsch
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Rokhsareh Mohammadzadeh
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
| | - Thomas Weichhart
- Institute of Medical Genetics, Medical University of Vienna, Austria
| | - Christine Moissl-Eichinger
- D&R Institute for Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Austria
- BioTechMed Graz, Austria
| | - Holger Heine
- Research Center Borstel - Leibniz Lung Center, Division of Innate Immunity, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
21
|
Chakraborty N. Metabolites: a converging node of host and microbe to explain meta-organism. Front Microbiol 2024; 15:1337368. [PMID: 38505556 PMCID: PMC10949987 DOI: 10.3389/fmicb.2024.1337368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/21/2024] Open
Abstract
Meta-organisms encompassing the host and resident microbiota play a significant role in combatting diseases and responding to stress. Hence, there is growing traction to build a knowledge base about this ecosystem, particularly to characterize the bidirectional relationship between the host and microbiota. In this context, metabolomics has emerged as the major converging node of this entire ecosystem. Systematic comprehension of this resourceful omics component can elucidate the organism-specific response trajectory and the communication grid across the ecosystem embodying meta-organisms. Translating this knowledge into designing nutraceuticals and next-generation therapy are ongoing. Its major hindrance is a significant knowledge gap about the underlying mechanisms maintaining a delicate balance within this ecosystem. To bridge this knowledge gap, a holistic picture of the available information has been presented with a primary focus on the microbiota-metabolite relationship dynamics. The central theme of this article is the gut-brain axis and the participating microbial metabolites that impact cerebral functions.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, WRAIR, Silver Spring, MD, United States
| |
Collapse
|
22
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
23
|
Shiels P, Tran N, McCavitt J, Neytchev O, Stenvinkel P. Chronic Kidney Disease and the Exposome of Ageing. Subcell Biochem 2023; 103:79-94. [PMID: 37120465 DOI: 10.1007/978-3-031-26576-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gap between improvements in lifespan and age-related health is widening. Globally, the demographic of ageing is increasing and there has emerged a 'diseasome of ageing', typified by a range of non-communicable diseases which share a common underlying component of a dysregulated ageing process. Within this, chronic kidney disease is an emerging global epidemic.The extensive inter-individual variation displayed in how people age and how their diseasome manifests and progresses, has required a renewed focus on their life course exposures and the interplay between the environment and the (epi)genome. Termed the exposome, life course abiotic and biotic factors have a significant impact on renal health.We explore how the exposome of renal ageing can predispose and affect CKD progression. We discuss how the kidney can be used as a model to understand the impact of the exposome in health and chronic kidney disease and how this might be manipulated to improve health span.Notably, we discuss the manipulation of the foodome to mitigate acceleration of ageing processes by phosphate and to explore use of emerging senotherapies. A range of senotherapies, for removing senescent cells, diminishing inflammatory burden and either directly targeting Nrf2, or manipulating it indirectly via modification of the microbiome are discussed.
Collapse
Affiliation(s)
- Paul Shiels
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK.
| | - Ngoc Tran
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Jen McCavitt
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Ognian Neytchev
- SoMBS, Davidson Building, University of Glasgow, Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|