1
|
Wen-Jing Z, Rui-Zhi T, Si-Yuan H, Xiao-Mei D, Qiong-Dan H, Xiao-Qian Z, Wen-Hua H, Hong-Wei S, Jian L, Qiong Z, Li W. Data independent acquisition reveals in-depth serum proteome changes in uremic pruritus. Front Physiol 2024; 15:1287072. [PMID: 38577622 PMCID: PMC10991838 DOI: 10.3389/fphys.2024.1287072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Uremic pruritus (UP) is a prevalent symptom in patients suffering from uremia, yet its underlying etiology and mechanisms remain incompletely elucidated. Given the significant incidence of UP, identifying specific alterations in proteins present in the blood of UP patients could offer insights into the potential biological pathways associated with UP and facilitate the exploration of biomarkers. Methods: In this study, we employed LC-MS/MS-based data-independent acquisition (DIA) mode to analyze serum samples obtained from 54 UP patients categorized as DKD-UP, HN-UP, and GN-UP (n = 18 for each subgroup), along with 18 uremic patients without pruritus (Negative) and 18 CKD patients without pruritus (CKD). Through DIA mode analysis, a total of 7075 peptides and 959 proteins were quantified. Within these, we identified four upregulated and 13 downregulated Differentially Expressed Proteins (DEPs) in DKD-UP versus Negative, five upregulated and 22 downregulated DEPs in HN-UP versus Negative, and three upregulated and 23 downregulated DEPs in GN-UP versus Negative. Furthermore, we conducted an intersection analysis of the DEPs across these three comparison groups to derive a set of common DEPs (COMP). Subsequently, a total of 67 common DEPs were identified in the three UP groups when compared to the CKD group, with 40 DEPs showing upregulation and 27 DEPs displaying downregulation. Results: Following Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analyses, we observed that the DEPs distinguishing UP from CKD were primarily associated with mitochondrial function (MT-CYB, PRDX2, TOMM22), inflammation (CD59, CSF1), renal injury (WFDC2), and neural function (CAP1, VGF). Discussion: Our findings contribute to a potential molecular comprehension of UP pathogenesis, shedding light on the identification of these DEPs as plausible biomarkers for UP.
Collapse
Affiliation(s)
- Zhao Wen-Jing
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Tan Rui-Zhi
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - He Si-Yuan
- School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Du Xiao-Mei
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hu Qiong-Dan
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhang Xiao-Qian
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Huang Wen-Hua
- School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Su Hong-Wei
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Liu Jian
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Zhang Qiong
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Wang Li
- Research Center of Intergated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Gusev E, Solomatina L, Zhuravleva Y, Sarapultsev A. The Pathogenesis of End-Stage Renal Disease from the Standpoint of the Theory of General Pathological Processes of Inflammation. Int J Mol Sci 2021; 22:ijms222111453. [PMID: 34768884 PMCID: PMC8584056 DOI: 10.3390/ijms222111453] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease can progress to end-stage chronic renal disease (ESRD), which requires the use of replacement therapy (dialysis or kidney transplant) in life-threatening conditions. In ESRD, irreversible changes in the kidneys are associated with systemic changes of proinflammatory nature and dysfunctions of internal organs, skeletal muscles, and integumentary tissues. The common components of ESRD pathogenesis, regardless of the initial nosology, are (1) local (in the kidneys) and systemic chronic low-grade inflammation (ChLGI) as a risk factor for diabetic kidney disease and its progression to ESRD, (2) inflammation of the classical type characteristic of primary and secondary autoimmune glomerulonephritis and infectious recurrent pyelonephritis, as well as immune reactions in kidney allograft rejection, and (3) chronic systemic inflammation (ChSI), pathogenetically characterized by latent microcirculatory disorders and manifestations of paracoagulation. The development of ChSI is closely associated with programmed hemodialysis in ESRD, as well as with the systemic autoimmune process. Consideration of ESRD pathogenesis from the standpoint of the theory of general pathological processes opens up the scope not only for particular but also for universal approaches to conducting pathogenetic therapies and diagnosing and predicting systemic complications in severe nephropathies.
Collapse
|