1
|
Mosharo KK, Lobel PS. A comparison of underwater speakers for fish playback studiesa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2365-2382. [PMID: 37850833 DOI: 10.1121/10.0021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Acoustic playback is a key method used to determine the behavioral significance of animal sounds, including fishes. This study presents the first comparison of the acoustic quality of underwater speakers for the playback of fish sounds. Seven underwater acoustic playback systems were tested for their ability to accurately reproduce the low frequency, pulsed, courtship sounds of a small fish, Tramitichromis intermedius (Cichlidae). Results indicated that in an aquarium with low ambient noise and at low amplitude playback levels (<120 dB re 1 μPa), the Clark Synthesis speakers were the best choice for playback at moderate distances (>20 cm), and that the Electro-Voice UW30 was the best speaker for short distance (<20 cm) playback of low frequency fish sounds. However, in aquaria with higher levels of ambient noise and at higher amplitude playback levels, the Clark Synthesis speakers performed best. However, none of these speaker systems reproduced a high-fidelity quality fish sound. It is important when using underwater speakers for behavioral studies that there is a careful assessment of the played back sound and comparison to the original sound.
Collapse
Affiliation(s)
- Kathryn K Mosharo
- Department of Biology, Boston University, Boston, Massachusetts 02115, USA
| | - Phillip S Lobel
- Department of Biology, Boston University, Boston, Massachusetts 02115, USA
| |
Collapse
|
2
|
Pieretti N, Lo Martire M, Corinaldesi C, Musco L, Dell'Anno A, Danovaro R. Anthropogenic noise and biological sounds in a heavily industrialized coastal area (Gulf of Naples, Mediterranean Sea). MARINE ENVIRONMENTAL RESEARCH 2020; 159:105002. [PMID: 32662436 DOI: 10.1016/j.marenvres.2020.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Underwater noise is one of the most widespread threats to the world oceans. Its negative impact on fauna is nowadays well established, but baseline data to be used in management and monitoring programs are still largely lacking. In particular, the acoustic assessment of human-impacted marine coastal areas provides complementary information on the health status of marine ecosystems. The objective of our study was to provide a baseline of underwater noise levels and biological sounds at two sites within the Gulf of Naples (Italy), one of which is located in Bagnoli-Coroglio, a Site of National Interest (SIN) for its high contamination levels. Within the SIN, sounds were recorded both before and during sediment coring activities (vibrocorer sampling), in order to investigate the potential acoustic impact due to such operations. Acoustic recordings were analyzed following the European Marine Strategy Framework Directive indications as defined in the frame of the Descriptor 11. Results reported here show that the investigated area is characterized by a high anthropogenic noise pressure. Ambient noise levels were principally driven by shipping noise and biological sounds of invertebrates (e.g., snapping shrimps). Sounds referable to other biological activity were difficult to detect because heavily masked by shipping noise. Coring activity determined a substantial introduction of additional noise at a local spatial scale. This study expands underwater noise baseline data to be further implemented in future monitoring programs of coastal areas affected by anthropogenic impacts. In addition, it proposes new cues for using underwater acoustic monitoring tools to complement traditional methodologies for evaluating health status of ecosystems and for investigating recovery rates after restoration/reclamation programs.
Collapse
Affiliation(s)
- N Pieretti
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, Ancona, Italy.
| | - M Lo Martire
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, Ancona, Italy
| | - C Corinaldesi
- Dipartimento di Scienze e Ingegneria della Materia dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, Italy
| | - L Musco
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - A Dell'Anno
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, Ancona, Italy
| | - R Danovaro
- Dipartimento di Scienze della Vita e dell'Ambiente (DISVA), Università Politecnica delle Marche, Ancona, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
3
|
Wilson AB, Wegmann A, Ahnesjö I, Gonçalves JMS. The evolution of ecological specialization across the range of a broadly distributed marine species. Evolution 2020; 74:629-643. [PMID: 31976557 DOI: 10.1111/evo.13930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.
Collapse
Affiliation(s)
- Anthony B Wilson
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210.,The Graduate Center, City University of New York, New York, New York, 10016
| | - Alexandra Wegmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, SE-75236, Uppsala, Sweden
| | - Jorge M S Gonçalves
- Centro de Ciencias do Mar (CCMAR), Coastal Fisheries Research Group, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
4
|
Mickle MF, Pieniazek RH, Higgs DM. Field assessment of behavioural responses of southern stingrays ( Hypanus americanus) to acoustic stimuli. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191544. [PMID: 32218972 PMCID: PMC7029913 DOI: 10.1098/rsos.191544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
The ability of elasmobranchs to detect and use sound cues has been heavily debated in previous research and has only recently received revived attention. To properly understand the importance of sound to elasmobranchs, assessing their responses to acoustic stimuli in a field setting is vital. Here, we establish a behavioural audiogram of free-swimming male and female southern stingrays (Hypanus americanus) exposed to low-frequency tones. We demonstrate that female stingrays exposed to tones (50-500 Hz) exhibit significant changes in swimming behaviours (increased time spent swimming, decreased rest time, increased surface breaches and increased side swimming with pectoral flapping) at 140 dB re 1 µPa (-2.08 to -2.40 dB re 1 m s-2) while males exposed to the same tones did not exhibit a change in these behaviours until 160 dB re 1 µPa (-1.13 to -1.21 dB re 1 m s-2). Our results are the first demonstration of field responses to sound in the Batoidea and show a distinct sensitivity to low-frequency acoustic inputs.
Collapse
Affiliation(s)
- Megan F. Mickle
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, OntarioCanada, N9B 3P4
| | | | | |
Collapse
|
5
|
Campbell J, Shafiei Sabet S, Slabbekoorn H. Particle motion and sound pressure in fish tanks: A behavioural exploration of acoustic sensitivity in the zebrafish. Behav Processes 2019; 164:38-47. [DOI: 10.1016/j.beproc.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
6
|
DNA Methylation Patterns in the Round Goby Hypothalamus Support an On-The-Spot Decision Scenario for Territorial Behavior. Genes (Basel) 2019; 10:genes10030219. [PMID: 30875862 PMCID: PMC6471186 DOI: 10.3390/genes10030219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/26/2019] [Accepted: 03/01/2019] [Indexed: 01/28/2023] Open
Abstract
The question as to how early life experiences are stored on a molecular level and affect traits later in life is highly topical in ecology, medicine, and epigenetics. In this study, we use a fish model to investigate whether DNA methylation mediates early life experiences and predetermines a territorial male reproductive phenotype. In fish, adult reproductive phenotypes frequently depend on previous life experiences and are often associated with distinct morphological traits. DNA methylation is an epigenetic mechanism which is both sensitive to environmental conditions and stably inherited across cell divisions. We therefore investigate early life predisposition in the round goby Neogobius melanostomus by growth back-calculations and then study DNA methylation by MBD-Seq in the brain region controlling vertebrate reproductive behavior, the hypothalamus. We find a link between the territorial reproductive phenotype and high growth rates in the first year of life. However, hypothalamic DNA methylation patterns reflect the current behavioral status independently of early life experiences. Together, our data suggest a non-predetermination scenario in the round goby, in which indeterminate males progress to a non-territorial status in the spawning season, and in which some males then assume a specialized territorial phenotype if current conditions are favorable.
Collapse
|
7
|
Hawkins AD, Popper AN. Directional hearing and sound source localization by fishes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:3329. [PMID: 30599653 DOI: 10.1121/1.5082306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Directional hearing may enable fishes to seek out prey, avoid predators, find mates, and detect important spatial cues. Early sound localization experiments gave negative results, and it was thought unlikely that fishes utilized the same direction-finding mechanisms as terrestrial vertebrates. However, fishes swim towards underwater sound sources, and some can discriminate between sounds from different directions and distances. The otolith organs of the inner ear detect the particle motion components of sound, acting as vector detectors through the presence of sensory hair cells with differing orientation. However, many questions remain on inner ear functioning. There are problems in understanding the actual mechanisms involved in determining sound direction and distance. Moreover, very little is still known about the ability of fishes to locate sound sources in three-dimensional space. Do fishes swim directly towards a source, or instead "sample" sound levels while moving towards the source? To what extent do fishes utilize other senses and especially vision in locating the source? Further behavioral studies of free-swimming fishes are required to provide better understanding of how fishes might actually locate sound sources. In addition, more experiments are required on the auditory mechanism that fishes may utilize.
Collapse
Affiliation(s)
| | - Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
8
|
Amorim MCP, Vasconcelos RO, Bolgan M, Pedroso SS, Fonseca PJ. Acoustic communication in marine shallow waters: testing the acoustic adaptive hypothesis in sand gobies. ACTA ACUST UNITED AC 2018; 221:jeb.183681. [PMID: 30171096 DOI: 10.1242/jeb.183681] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 01/31/2023]
Abstract
Acoustic communication is an important part of social behaviour of fish species that live or breed in shallow noisy waters. Previous studies have shown that some fish species exploit a quiet window in the background noise for communication. However, it remains to be examined whether hearing abilities and sound production of fish are adapted to marine habitats presenting high hydrodynamism. Here, we investigated whether the communication system of the painted (Pomatoschistus pictus) and the marbled (Pomatoschistus marmoratus) gobies is adapted to enhance sound transmission and reception in Atlantic shallow water environments. We recorded and measured the sound pressure levels of social vocalisations of both species, as well as snapshots of ambient noise of habitats characterised by different hydrodynamics. Hearing thresholds (in terms of both sound pressure and particle acceleration) and responses to conspecific signals were determined using the auditory evoked potential recording technique. We found that the peak frequency range (100-300 Hz) of acoustic signals matched the best hearing sensitivity in both species and appeared well adapted for short-range communication in Atlantic habitats. Sandy/rocky exposed beaches presented a quiet window, observable even during the breaking of moderate waves, coincident with the main sound frequencies and best hearing sensitivities of both species. Our data demonstrate that the hearing abilities of these gobies are well suited to detect conspecific sounds within typical interacting distances (a few body lengths) in Atlantic shallow waters. These findings lend support to the acoustic adaptive hypothesis, under the sensory drive framework, proposing that signals and perception systems coevolve to be effective within local environment constraints.
Collapse
Affiliation(s)
- Maria Clara P Amorim
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao SAR, China
| | - Marta Bolgan
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Institut de Chimie - B6C, Université de Liège, 4000 Liège, Belgium
| | - Silvia S Pedroso
- MARE (Marine and Environmental Sciences Centre), ISPA - Instituto Universitário, 1149-041 Lisboa, Portugal.,Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J Fonseca
- Departamento de Biologia Animal and cE3c, Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
9
|
Bose APH, McCallum ES, Raymond K, Marentette JR, Balshine S. Growth and otolith morphology vary with alternative reproductive tactics and contaminant exposure in the round goby Neogobius melanostomus. JOURNAL OF FISH BIOLOGY 2018; 93:674-684. [PMID: 30043494 DOI: 10.1111/jfb.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Round goby Neogobius melanostomus sagittal (saccular) otolith morphology was compared between males of the two alternative reproductive tactics (termed guarder and sneaker males) and between males captured from sites of high or low contamination. Otolith size increased with fish size and also displayed an ontogenetic shift in shape, becoming relatively taller as otoliths grew in size. Despite a considerable overlap in age between males adopting the two reproductive tactics, size-at-age measurements revealed that guarder males are significantly larger than sneakers at any given age and that they invest more into somatic growth than sneaker males. Controlling for body size, sneaker males possessed heavier sagittal otoliths than guarder males. Subtle otolith shape differences were also found between the two male tactics and between sites of high and low contaminant exposure. Sneaker males had relatively shorter otoliths with more pronounced notching than guarder males. Fish captured at sites of high contamination had otoliths showing slower growth rates in relation to body size and their shapes had more pronounced caudal points and ventral protrusions when compared with fish captured at sites of low contamination. The results are discussed in relation to life-history tradeoffs between the male tactics in terms of reproductive and somatic investment as well as the putative metabolic costs of exposure to contaminants. Overall, this study reveals that male alternative reproductive tactics and environmental contaminants can have small, yet measurable, effects on otolith morphology and these factors should be accounted for in future research when possible.
Collapse
Affiliation(s)
- Aneesh P H Bose
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Canada
| | - Erin S McCallum
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Canada
| | - Kate Raymond
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Canada
| | - Julie R Marentette
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Canada
| | - Sigal Balshine
- Aquatic Behavioural Ecology Laboratory, Department of Psychology, Neuroscience, & Behaviour, McMaster University, Hamilton, Canada
| |
Collapse
|
10
|
Moynan CR, Neumann CE, Welsh CA. The Effect of Gender, Tone, and Sound Location on the Response Behavior of Neogobius melanostomus (Round Goby) and the Possibility of Future Trapping of this Invasive Species in Lake Superior. Zebrafish 2016; 13:287-92. [DOI: 10.1089/zeb.2015.1167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Sympatric black-headed and elegant trogons focus on different plumage characteristics for species recognition. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Behavioural responses to sound exposure in captivity by two fish species with different hearing ability. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Shafiei Sabet S, Van Dooren D, Slabbekoorn H. Son et lumière: Sound and light effects on spatial distribution and swimming behavior in captive zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:480-488. [PMID: 26963699 DOI: 10.1016/j.envpol.2016.02.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/16/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Aquatic and terrestrial habitats are heterogeneous by nature with respect to sound and light conditions. Fish may extract signals and exploit cues from both ambient modalities and they may also select their sound and light level of preference in free-ranging conditions. In recent decades, human activities in or near water have altered natural soundscapes and caused nocturnal light pollution to become more widespread. Artificial sound and light may cause anxiety, deterrence, disturbance or masking, but few studies have addressed in any detail how fishes respond to spatial variation in these two modalities. Here we investigated whether sound and light affected spatial distribution and swimming behavior of individual zebrafish that had a choice between two fish tanks: a treatment tank and a quiet and light escape tank. The treatments concerned a 2 × 2 design with noisy or quiet conditions and dim or bright light. Sound and light treatments did not induce spatial preferences for the treatment or escape tank, but caused various behavioral changes in both spatial distribution and swimming behavior within the treatment tank. Sound exposure led to more freezing and less time spent near the active speaker. Dim light conditions led to a lower number of crossings, more time spent in the upper layer and less time spent close to the tube for crossing. No interactions were found between sound and light conditions. This study highlights the potential relevance for studying multiple modalities when investigating fish behavior and further studies are needed to investigate whether similar patterns can be found for fish behavior in free-ranging conditions.
Collapse
Affiliation(s)
- Saeed Shafiei Sabet
- Behavioral Biology, Institute of Biology Leiden (IBL), Leiden University, The Netherlands.
| | - Dirk Van Dooren
- Behavioral Biology, Institute of Biology Leiden (IBL), Leiden University, The Netherlands
| | - Hans Slabbekoorn
- Behavioral Biology, Institute of Biology Leiden (IBL), Leiden University, The Netherlands
| |
Collapse
|
14
|
Zeyl JN, Love OP, Higgs DM. Condition-dependent auditory processing in the round goby (Neogobius melanostomus): links to sex, reproductive condition and female estrogen levels. ACTA ACUST UNITED AC 2012. [PMID: 23197092 DOI: 10.1242/jeb.076935] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural responses to sensory stimuli often differ between sexes, vary seasonally, and can be regulated by endocrine activity, but the ecological and physiological mechanisms driving such patterns are not well understood. The current study examined how auditory function in the round goby (Neogobius melanostomus), a vocal teleost, co-varied with sex, reproductive condition and female plasma 17β-estradiol level. Auditory evoked potentials were collected in response to tone pips (100-600 Hz) and a natural round goby pulse vocalization. Additionally, saccule hair cell densities were compared across reproductive groups. Auditory threshold was evaluated in terms of pressure and particle acceleration, and response amplitude and onset latency were measured at 10 dB above threshold. Relative to males, females displayed lower auditory thresholds in response to the natural vocalization and to tones at 300-600 Hz, and had a higher density of saccule hair cells. The 17β-estradiol level was positively associated with amplitude and latency for the pulse stimulus and with both threshold and amplitude for tones at 100-200 Hz in females. Relative to non-reproductive males, reproductive males exhibited longer response latencies at 100-200 Hz. The results demonstrate sexual dimorphism in auditory function in a teleost fish as well as intra-sexual variation, partially based on hormone levels. The current research further identifies links between auditory function and reproductive behaviors in fishes and provides a finer-scaled analysis of how this behavior is reflected at the level of the sensory systems facilitating signal reception.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Biological Sciences, University of Windsor, Windsor, ON, Canada, N9B 3P4
| | | | | |
Collapse
|
15
|
The relevance of temporal cues in a fish sound: a first experimental investigation using modified signals in cichlids. Anim Cogn 2012; 16:45-54. [PMID: 22911612 DOI: 10.1007/s10071-012-0549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 07/18/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Playback experiments have been a useful tool for studying the function of sounds and the relevance of different sound characteristics in signal recognition in many different species of vertebrates. However, successful playback experiments in sound-producing fish remain rare, and few studies have investigated the role of particular sound features in the encoding of information. In this study, we set-up an apparatus in order to test the relevance of acoustic signals in males of the cichlid Metriaclima zebra. We found that territorial males responded more to playbacks by increasing their territorial activity and approaching the loudspeaker during and after playbacks. If sounds are used to indicate the presence of a competitor, we modified two sound characteristics, that is, the pulse period and the number of pulses, in order to investigate whether the observed behavioural response was modulated by the temporal structure of sounds recorded during aggressive interactions. Modified sounds yielded little or no effect on the behavioural response they elicited in territorial males, suggesting a high tolerance for variations in pulse period and number of pulses. The biological function of sounds in M. zebra and the lack of responsiveness to our temporal modifications are discussed.
Collapse
|
16
|
Kasurak A, Zielinski B, Higgs D. Reproductive status influences multisensory integration responses in female round gobies, Neogobius melanostomus. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Slabbekoorn H, Verzijden M, May C. Cichlid courtship acoustics: signals and noise influence reproductive behavior. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 730:407-9. [PMID: 22278530 DOI: 10.1007/978-1-4419-7311-5_93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | |
Collapse
|
18
|
Zeddies DG, Fay RR, Gray MD, Alderks PW, Acob A, Sisneros JA. Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. J Exp Biol 2012; 215:152-60. [DOI: 10.1242/jeb.064998] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Sound-source localization behavior was studied in the plainfin midshipman fish (Porichthys notatus) by making use of the naturally occurring phonotaxis response of gravid females to playback of the male's advertisement call. The observations took place outdoors in a circular concrete tank. A dipole sound projector was placed at the center of the tank and an 80–90 Hz tone (the approximate fundamental frequency to the male's advertisement call) was broadcast to gravid females that were released from alternative sites approximately 100 cm from the source. The phonotaxic responses of females to the source were recorded, analyzed and compared with the sound field. One release site was approximately along the vibratory axis of the dipole source, and the other was approximately orthogonal to the vibratory axis. The sound field in the tank was fully characterized through measurements of the sound pressure field using hydrophones and acoustic particle motion using an accelerometer. These measurements confirmed that the sound field was a nearly ideal dipole. When released along the dipole vibratory axis, the responding female fish took essentially straight paths to the source. However, when released approximately 90 deg to the source's vibratory axis, the responding females took highly curved paths to the source that were approximately in line with the local particle motion axes. These results indicate that the acoustic cues used by fish during sound-source localization include the axes of particle motion of the local sound field.
Collapse
Affiliation(s)
| | | | - Michael D. Gray
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter W. Alderks
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Andrew Acob
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
19
|
Belanger AJ, Bobeica I, Higgs DM. The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. JOURNAL OF FISH BIOLOGY 2010; 77:1488-504. [PMID: 21078014 DOI: 10.1111/j.1095-8649.2010.02773.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The auditory abilities of the round goby Neogobius melanostomus were quantified using auditory evoked potential recordings, using tone bursts and conspecific call stimuli. Fish were tested over a range of sizes to assess effects of growth on hearing ability. Tests were also run with and without background noise to assess the potential effects of masking in a natural setting. Neogobius melanostomus detected tone bursts from 100 to 600 Hz with no clear best frequency in the pressure domain but were most sensitive to 100 Hz tone stimuli when examined in terms of particle acceleration. Responses to a portion of the N. melanostomus call occurred at a significantly lower threshold than responses to pure tone stimulation. There was no effect of size on N. melanostomus hearing ability, perhaps due to growth of the otolith keeping pace with growth of the auditory epithelium. Neogobius melanostomus were masked by both ambient noise and white noise, but not until sound pressure levels were relatively high, having a 5-10 dB threshold shift at noise levels of 150 dB re 1 µPa and higher but not at lower noise levels.
Collapse
Affiliation(s)
- A J Belanger
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4 Canada
| | | | | |
Collapse
|
20
|
Papoutsoglou SE, Karakatsouli N, Papoutsoglou ES, Vasilikos G. Common carp (Cyprinus carpio) response to two pieces of music ("Eine Kleine Nachtmusik" and "Romanza") combined with light intensity, using recirculating water system. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:539-554. [PMID: 19408132 DOI: 10.1007/s10695-009-9324-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
The objective of this study was to further investigate the effects of music on fish physiology, bearing in mind available information regarding the involvement of endogenous and exogenous factors in fish farming. Therefore, Cyprinus carpio (50.5 +/- 0.36 g) were reared in a recirculating water system under 80 and 200 lux and subjected to no music at all (control, ambient noise only), 4 h of Mozart's "Eine Kleine Nachtmusik", or 4 h of anonymous "Romanza-Jeux Interdits" for 106 days. Both music treatments resulted in increased growth performance at both light intensities, with Romanza treatment at 200 lux resulting in better growth performance than Mozart treatment. Furthermore, feed efficiency for the Romanza groups was significantly better than for the control. Although no significant music effect was apparent for brain neurotransmitters, lower anterior intestine alkaline protease levels were detected for both music treatments. Taking into consideration the numerous advantages of recirculating water systems, it should be emphasised that fish response to music expresses the results of various physiological and biochemical processes, especially when fish notably respond differently when subjected to two different pieces of music.
Collapse
Affiliation(s)
- Sofronios E Papoutsoglou
- Department of Applied Hydrobiology, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.
| | - Nafsika Karakatsouli
- Department of Applied Hydrobiology, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Eustratios S Papoutsoglou
- Department of Applied Hydrobiology, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Georgios Vasilikos
- Department of Applied Hydrobiology, Faculty of Animal Science and Aquaculture, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
21
|
Zeddies DG, Fay RR, Alderks PW, Shaub KS, Sisneros JA. Sound source localization by the plainfin midshipman fish, Porichthys notatus. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2010; 127:3104-3113. [PMID: 21117759 DOI: 10.1121/1.3365261] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this study was to use plainfin midshipman fish (Porichthys notatus) as a general model to explore how fishes localize an underwater sound source in the relatively simple geometry of a monopole sound field. The robust phonotaxic responses displayed by gravid females toward a monopole sound projector (J-9) broadcasting a low-frequency (90 Hz) tone similar to the fundamental frequency of the male's advertisement call were examined. The projector's sound field was mapped at 5 cm resolution azimuth using an eight-hydrophone array. Acoustic pressure was measured with the array and acoustic particle motion was calculated from pressure gradients between hydrophones. The response pathways of the fish were analyzed from video recordings and compared to the sound field. Gravid females at initial release were directed toward the sound source, and the majority (73%) swam to the playback projector with straight to slightly curved tracks in the direction of the source and in line with local particle motion vectors. In contrast, the initial direction of the control (sound-off) group did not differ from random. This paper reports on a comparison of fish localization behavior with directional cues available in the form of local particle motion vectors.
Collapse
Affiliation(s)
- David G Zeddies
- Marine Acoustics, Inc, 4100 Fairfax Drive, Suite 730, Arlington, Virginia 22203, USA
| | | | | | | | | |
Collapse
|
22
|
Verzijden MN, van Heusden J, Bouton N, Witte F, ten Cate C, Slabbekoorn H. Sounds of male Lake Victoria cichlids vary within and between species and affect female mate preferences. Behav Ecol 2010. [DOI: 10.1093/beheco/arq018] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
|