1
|
Jomaa FW, Laub EC, Tibbetts EA. Behavioral syndromes in paper wasps: Links between social and non-social personality in Polistes fuscatus. Curr Zool 2024; 70:659-667. [PMID: 39463692 PMCID: PMC11502155 DOI: 10.1093/cz/zoad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/23/2023] [Indexed: 10/29/2024] Open
Abstract
Although much work has focused on non-social personality traits such as activity, exploration, and neophobia, there is a growing appreciation that social personality traits play an important role in group dynamics, disease transmission, and fitness and that social personality traits may be linked to non-social personality traits. These relationships are important because behavioral syndromes, defined here as correlated behavioral phenotypes, can constrain evolutionary responses. However, the strength and direction of relationships between social and non-social personality traits remain unclear. In this project, we examine social and non-social personality traits, and the relationships between them, in the paper wasp Polistes fuscatus. With a novel assay, we identify 5 personality traits, 2 non-social (exploration and activity), and 3 social (aggression, affiliation, and antennation) personality traits. We also find that social and non-social personality traits are phenotypically linked. We find a positive correlation between aggression and activity and a negative correlation between affiliation and activity. We also find a positive correlation between exploration and activity. Our work is an important step in understanding how phenotypic linkage between social and non-social behaviors may influence behavioral evolution. As a burgeoning model system for the study of genetic and neurobiological mechanisms of social behavior, Polistes fuscatus has the potential to add to this work by exploring the causes and consequences of individual behavioral variation.
Collapse
Affiliation(s)
- Fatima W Jomaa
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - Emily C Laub
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| | - Elizabeth A Tibbetts
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Munson A, DePasquale C. Lessons in cognition: A review of maze designs and procedures used to measure spatial learning in fish. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39267308 DOI: 10.1111/jfb.15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/17/2024]
Abstract
The use of different mazes to assess spatial learning has become more common in fish behavior studies in recent decades. This increase in fish cognition research has opened the door to numerous possibilities for exciting and diverse questions, such as identifying ecological drivers of spatial cognition and understanding the role individual variation plays in navigational abilities. There are many different types of mazes, each with its own specific considerations, making it challenging to determine exactly which spatial test is the most relevant and appropriate for a particular experiment. Many spatial mazes, such as the T-maze and Y-maze, have been successfully adapted from rodent studies, particularly with respect to zebrafish, a widely accepted non-mammalian model in biomedical studies. Standardization across studies is increasing with these easily accessible maze designs, validating them for use in fish; however, variations in design (e.g., length of arms and scale) and procedure still exist, and the impact of these variations on results is largely unknown. The efforts to standardize mazes outside zebrafish work are also more limited. Other mazes have been developed specifically for use on fish, with design modifications varying widely, making it difficult to draw comparisons. In this review, we have highlighted the many design and procedural elements that should be considered for the acquisition of reliable behavioral data, with the goal of drawing readers' attention to aspects of experimentation that are often not given the careful consideration that they deserve. We then argue that additional focused research and reporting is needed to produce more reliable methods in spatial learning research across a broader range of subjects.
Collapse
Affiliation(s)
- Amelia Munson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Cairsty DePasquale
- Department of Biology, Pennsylvania State University-Altoona, Altoona, Pennsylvania, USA
| |
Collapse
|
3
|
Tchabovsky AV, Surkova EN, Savinetskaya LE. Multi-assay approach shows species-associated personality patterns in two socially distinct gerbil species. PLoS One 2024; 19:e0296214. [PMID: 38625985 PMCID: PMC11020386 DOI: 10.1371/journal.pone.0296214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/28/2024] [Indexed: 04/18/2024] Open
Abstract
We aimed to investigate whether two closely related but socially distinct species of gerbils differ in personality patterns. Using a suit of multivariate repeated assays (docility test, dark-light emergence test, startle test, novel object test, elevated platform test, and stranger test), we assessed contextual and temporal consistency of docility, boldness, exploration, anxiety, and sociability in the solitary midday gerbil, Meriones meridianus, and social Mongolian gerbil, M. unguiculatus. We revealed contextually consistent and highly repeatable sex-independent but species-specific personality traits. Species differed in temporal repeatability of different behaviours, and contextual consistency was more pronounced in solitary M. meridianus than in social M. unguiculatus. This finding contradicts the social niche specialization hypothesis, which suggests that personality traits should be more consistent in more social species. Instead, we hypothesize that social complexity should favour more flexible and less consistent behavioural traits. The habituation effect indicative of learning abilities was weak in both species yet stronger in social M. unguiculatus, supporting the relationship between the sociality level and cognitive skills. In both species, only a few different behavioural traits covaried, and the sets of correlated behaviours were species-specific such that the two species did not share any pair of correlated traits. Between-species differences in personality traits, habituation, and behavioural syndromes may be linked to differences in sociality. The lack of prominent behavioural syndromes is consistent with the idea that context-specific individual behavioural traits might be favoured to allow more flexible and adequate responses to changing environments than syndromes of correlated functionally different behaviours.
Collapse
Affiliation(s)
- Andrey V. Tchabovsky
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Surkova
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Ludmila E. Savinetskaya
- Laboratory for Population Ecology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Martin R, Leroy C, Maák I, d'Ettorre P. Group phenotypic composition drives task performances in ants. Biol Lett 2024; 20:20230463. [PMID: 38195057 PMCID: PMC10776233 DOI: 10.1098/rsbl.2023.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/07/2023] [Indexed: 01/11/2024] Open
Abstract
Differences in individual behaviour within a group can give rise to functional dissimilarities between groups, particularly in social animals. However, how individual behavioural phenotypes translate into the group phenotype remains unclear. Here, we investigate whether individual behavioural type affects group performance in a eusocial species, the ant Aphaenogaster senilis. We measured individual behavioural traits and created groups of workers with similar behavioural type, either high-exploratory or low-exploratory workers. We tested these groups in four different, ecologically relevant, tasks: reaction to an intruder, prey retrieval from a maze, nest relocation and tool use. We show that, compared to groups of low-exploratory workers, groups of high-exploratory workers were more aggressive towards intruders, more efficient in collecting prey, faster in nest relocation and more likely to perform tool use. Our results demonstrate a strong link between individual and collective behaviour in ants. This supports the 'behavioural type hypothesis' for group dynamics, which suggests that an individual's behaviour in a social environment reflects its own behavioural type. The average behavioural phenotype of a group can therefore be predicted from the behavioural types of individual group members.
Collapse
Affiliation(s)
- Rayanne Martin
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - Chloé Leroy
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
| | - István Maák
- Department of Ecology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00679 Warszawa, Poland
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, University Sorbonne Paris Nord, 99 Avenue J.-B. Clément, 93430 Villetaneuse, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Hawkins OH, Crawford CH, Hoover RC, Kane EA. Intraspecific variation in feeding and locomotor kinematics during prey capture in redbreast sunfish (Lepomis auritus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:706-722. [PMID: 37306263 DOI: 10.1002/jez.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
Biomechanics research often revolves around understanding traits impacting suction feeding performance in fishes, using freshwater ray-finned sunfishes (Family Centrarchidae) as models. However, simultaneous feeding and locomotion kinematics during prey capture are not recorded for many species and there is less information on how these kinematics vary within a species and within individuals. To (1) add to existing data on the prey capture kinematics of centrarchids, (2) assess variation in a species both within and across individuals, and (3) compare morphology and prey capture kinematics of well-sampled centrarchids, we filmed five redbreast sunfish (Lepomis auritus) at 500 fps-1 approaching and striking non-evasive prey. Redbreast approach prey at ~30 cm s-1 and use approximately 70% of their maximum gape size. Traits related to feeding are more repeatable than traits related to locomotion. However, the Accuracy Index (AI) was consistent across individuals (AI = 0.76 ± 0.07). Functionally, redbreast sunfish are more similar to bluegill sunfish but morphologically they fall in the intermediate morphospace alongside green sunfish when compared with other centrarchids. These data show that whole organism outcomes (AI) are similar despite variation present both within and across individuals and demonstrate the importance of considering both interspecific and intraspecific differences in the functional diversity of ecologically and evolutionarily important behaviors such as prey capture.
Collapse
Affiliation(s)
- Olivia H Hawkins
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Callie H Crawford
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Richard C Hoover
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Emily A Kane
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| |
Collapse
|
6
|
Vilette C, Bonnell T, Dostie M, Henzi S, Barrett L. Network formation during social integration in juvenile vervet monkeys. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Riley RJ, Gillie ER, Savage JL, Manica A, Boogert NJ. Familiarity, personality, and foraging performance in three-spined sticklebacks. Behav Processes 2022; 200:104699. [DOI: 10.1016/j.beproc.2022.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
|
8
|
Cook PA, Baker OM, Costello RA, Formica VA, Brodie ED. Group composition of individual personalities alters social network structure in experimental populations of forked fungus beetles. Biol Lett 2022; 18:20210509. [PMID: 35291883 PMCID: PMC8923822 DOI: 10.1098/rsbl.2021.0509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/24/2022] [Indexed: 01/02/2023] Open
Abstract
Social network structure is a critical group character that mediates the flow of information, pathogens and resources among individuals in a population, yet little is known about what shapes social structures. In this study, we experimentally tested whether social network structure depends on the personalities of individual group members. Replicate groups of forked fungus beetles (Bolitotherus cornutus) were engineered to include only members previously assessed as either more social or less social. We found that individuals expressed consistent personalities across social contexts, exhibiting repeatable numbers of interactions and numbers of partners. Groups composed of more social individuals formed networks with higher interaction rates, higher tie density, higher global clustering and shorter average shortest paths than those composed of less social individuals. We highlight group composition of personalities as a source of variance in group traits and a potential mechanism by which networks could evolve.
Collapse
Affiliation(s)
- Phoebe A. Cook
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Olivia M. Baker
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | - Robin A. Costello
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Edmund D. Brodie
- Department of Biology and Mountain Lake Biological Station, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
9
|
Gartland LA, Firth JA, Laskowski KL, Jeanson R, Ioannou CC. Sociability as a personality trait in animals: methods, causes and consequences. Biol Rev Camb Philos Soc 2021; 97:802-816. [PMID: 34894041 DOI: 10.1111/brv.12823] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Within animal populations there is variation among individuals in their tendency to be social, where more sociable individuals associate more with other individuals. Consistent inter-individual variation in 'sociability' is considered one of the major axes of personality variation in animals along with aggressiveness, activity, exploration and boldness. Not only is variation in sociability important in terms of animal personalities, but it holds particular significance for, and can be informed by, two other topics of major interest: social networks and collective behaviour. Further, knowledge of what generates inter-individual variation in social behaviour also holds applied implications, such as understanding disorders of social behaviour in humans. In turn, research using non-human animals in the genetics, neuroscience and physiology of these disorders can inform our understanding of sociability. For the first time, this review brings together insights across these areas of research, across animal taxa from primates to invertebrates, and across studies from both the laboratory and field. We show there are mixed results in whether and how sociability correlates with other major behavioural traits. Whether and in what direction these correlations are observed may differ with individual traits such as sex and body condition, as well as ecological conditions. A large body of evidence provides the proximate mechanisms for why individuals vary in their social tendency. Evidence exists for the importance of genes and their expression, chemical messengers, social interactions and the environment in determining an individual's social tendency, although the specifics vary with species and other variables such as age, and interactions amongst these proximate factors. Less well understood is how evolution can maintain consistent variation in social tendencies within populations. Shifts in the benefits and costs of social tendencies over time, as well as the social niche hypothesis, are currently the best supported theories for how variation in sociability can evolve and be maintained in populations. Increased exposure to infectious diseases is the best documented cost of a greater social tendency, and benefits include greater access to socially transmitted information. We also highlight that direct evidence for more sociable individuals being safer from predators is lacking. Variation in sociability is likely to have broad ecological consequences, but beyond its importance in the spread of infectious diseases, direct evidence is limited to a few examples related to dispersal and invasive species biology. Overall, our knowledge of inter-individual variation in sociability is highly skewed towards the proximate mechanisms. Our review also demonstrates, however, that considering research from social networks and collective behaviour greatly enriches our understanding of sociability, highlighting the need for greater integration of these approaches into future animal personality research to address the imbalance in our understanding of sociability as a personality trait.
Collapse
Affiliation(s)
- Lizzy A Gartland
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| | - Josh A Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Kate L Laskowski
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, U.S.A
| | - Raphael Jeanson
- Centre de Recherches sur la Cognition Animale (UMR5169), Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, 31062, Toulouse, France
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, U.K
| |
Collapse
|
10
|
Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Littlewood D, Goulet CT, Chapple DG. Behavioural phenotype modulates group size effects in a lizard. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Fishman MA. Cooperation, involuntary defection, and Polymorphic Evolutionary Games. Biosystems 2021; 206:104428. [PMID: 33894287 DOI: 10.1016/j.biosystems.2021.104428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 01/03/2023]
Abstract
The subject of involuntary defection in the context of cycles of interaction approach to direct reciprocal cooperation was introduced some time ago (J. Theor. Biol., 242: 873-879). Current work is motivated by the subsequent accumulation of empirical evidence and the advances in the methodology of evolutionary games. In recent decades it become clear that individuals in many animal species vary consistently in their behavioral responses to specific challenges-animal personality. Moreover, these differences have a hereditary component. Finally, investigations into the effects of neuropeptides on behavior suggest that the variations in animal personalities involve polymorphisms based on non-Mendelian heritability within the neuropeptide signaling systems. The last observation suggests that animal personalities can be productively analyzed via Polymorphic Evolutionary Games, which allow us to add genetic model(s) to standard (phenotypic) evolutionary games. Such an analysis of reciprocal cooperation is the subject of the current paper. The results indicate that there is a marked difference between models that assume Mendelian vs. non-Mendelian inheritance of the pertinent traits. Monomorphic and polymorphic-Mendelian models predict pure-strategy (single phenotype) ESS, whereas the non-Mendelian genetic model predicts a mixed strategy ESS exhibiting all three phenotypes.
Collapse
|
13
|
|
14
|
Dhellemmes F, Finger JS, Laskowski KL, Guttridge TL, Krause J. Comparing behavioural syndromes across time and ecological conditions in a free-ranging predator. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Pearish S, Bensky MK, Bell AM, Woese CR. Social environment determines the effect of boldness and activity on survival. Ethology 2019; 125:855-862. [PMID: 36590873 PMCID: PMC9798931 DOI: 10.1111/eth.12939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023]
Abstract
Populations of animals are composed of individuals that differ in ecologically relevant behaviors. Building evidence also suggests that individuals occupy different social niches. Here, in a mark-recapture experiment, we show evidence of an interacting effect of behavior and social niche on survival in the wild: bold individuals had higher survival if they were initially captured in groups while shy, inactive individuals had higher survival if they were initially captured when alone. These findings provide support for the hypothesis that behavioral type-environment correlations can be favored by natural selection.
Collapse
Affiliation(s)
- Simon Pearish
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL
| | - Miles K Bensky
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL
| | - Alison M Bell
- Program in Ecology, Evolution, and Conservation Biology, School of Integrative Biology, University of Illinois, 505 S. Goodwin Ave., Urbana, IL
| | - Carl R Woese
- Institute for Genomic Biology, University of Illinois, 1206 W Gregory Dr., Urbana, IL
| |
Collapse
|
16
|
Roth AM, Firth JA, Patrick SC, Cole EF, Sheldon BC. Partner’s age, not social environment, predicts extrapair paternity in wild great tits (Parus major). Behav Ecol 2019. [DOI: 10.1093/beheco/arz151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
An individual’s fitness is not only influenced by its own phenotype, but by the phenotypes of interacting conspecifics. This is likely to be particularly true when considering fitness gains and losses caused by extrapair matings, as they depend directly on the social environment. While previous work has explored effects of dyadic interactions, limited understanding exists regarding how group-level characteristics of the social environment affect extrapair paternity (EPP) and cuckoldry. We use a wild population of great tits (Parus major) to examine how, in addition to the phenotypes of focal parents, two neighborhood-level traits—age and personality composition—predict EPP and cuckoldry. We used the well-studied trait “exploration behavior” as a measure of the reactive-proactive personality axis. Because breeding pairs inhabit a continuous “social landscape,” we first established an ecologically relevant definition of a breeding “neighborhood” through genotyping parents and nestlings in a 51-ha patch of woodland and assessing the spatial predictors of EPP events. Using the observed decline in likelihood of EPP with increasing spatial separation between nests, we determined the relevant neighborhood boundaries, and thus the group phenotypic composition of an individual’s neighborhood, by calculating the point at which the likelihood of EPP became negligible. We found no evidence that “social environment” effects (i.e., neighborhood age or personality composition) influenced EPP or cuckoldry. We did, however, find that a female’s own age influenced the EPP of her social mate, with males paired to older females gaining more EPP, even when controlling for the social environment. These findings suggest that partner characteristics, rather than group phenotypic composition, influence mating activity patterns at the individual level.
Collapse
Affiliation(s)
- Allison M Roth
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Zoology Research and Administration Building, Oxford, UK
- St. Catherine’s College, Department of Zoology, University of Oxford, Oxford, UK
| | - Josh A Firth
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Zoology Research and Administration Building, Oxford, UK
- Merton College, Oxford, UK
| | - Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Ella F Cole
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Zoology Research and Administration Building, Oxford, UK
| | - Ben C Sheldon
- Edward Grey Institute of Field Ornithology, Department of Zoology, University of Oxford, Zoology Research and Administration Building, Oxford, UK
| |
Collapse
|
17
|
Emergence of consistent intra-individual locomotor patterns during zebrafish development. Sci Rep 2019; 9:13647. [PMID: 31541136 PMCID: PMC6754443 DOI: 10.1038/s41598-019-49614-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022] Open
Abstract
The analysis of larval zebrafish locomotor behavior has emerged as a powerful indicator of perturbations in the nervous system and is used in many fields of research, including neuroscience, toxicology and drug discovery. The behavior of larval zebrafish however, is highly variable, resulting in the use of large numbers of animals and the inability to detect small effects. In this study, we analyzed whether individual locomotor behavior is stable over development and whether behavioral parameters correlate with physiological and morphological features, with the aim of better understanding the variability and predictability of larval locomotor behavior. Our results reveal that locomotor activity of an individual larva remains consistent throughout a given day and is predictable throughout larval development, especially during dark phases, under which larvae demonstrate light-searching behaviors and increased activity. The larvae’s response to startle-stimuli was found to be unpredictable, with no correlation found between response strength and locomotor activity. Furthermore, locomotor activity was not associated with physiological or morphological features of a larva (resting heart rate, body length, size of the swim bladder). Overall, our findings highlight the areas of intra-individual consistency, which could be used to improve the sensitivity of assays using zebrafish locomotor activity as an endpoint.
Collapse
|
18
|
Jolles JW, Briggs HD, Araya-Ajoy YG, Boogert NJ. Personality, plasticity and predictability in sticklebacks: bold fish are less plastic and more predictable than shy fish. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
Jäger HY, Han CS, Dingemanse NJ. Social experiences shape behavioral individuality and within-individual stability. Behav Ecol 2019. [DOI: 10.1093/beheco/arz042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Individual repeatability characterizes many behaviors. Repeatable behavior may result from repeated social interactions among familiar group members, owing to adaptive social niche specialization. In the context of aggression, in species like field crickets, social niche specialization should also occur when individuals repeatedly interact with unfamiliar individuals. This would require the outcome of social interactions to have carry-over effects on fighting ability and aggressiveness in subsequent interactions, leading to long-term among-individual differentiation. To test this hypothesis, we randomly assigned freshly emerged adult males of the southern field cricket Gryllus bimaculatus to either a solitary or social treatment. In social treatment, males interacted with a same-sex partner but experienced a new partner every 3 days. After 3 weeks of treatment, we repeatedly subjected treated males to dyadic interactions to measure aggression. During this time, we also continuously measured the 3-daily rate of carbohydrate and protein consumption. Individual differentiation was considerably higher among males reared in the social versus solitary environment for aggressiveness but not for nutrient intake. Simultaneously, social experience led to lower within-individual stability (i.e., increased within-individual variance) in carbohydrate intake. Past social experiences, thus, shaped both behavioral individuality and stability. While previous research has emphasized behavioral individuality resulting from repeated interactions among familiar individuals, our study implies that behavioral individuality, in the context of aggression, may generally result from social interactions, whether with familiar or unfamiliar individuals. Our findings thus imply that social interactions may have a stronger effect on individual differentiation than previously appreciated.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
The three-spined stickleback as a model for behavioural neuroscience. PLoS One 2019; 14:e0213320. [PMID: 30913214 PMCID: PMC6435232 DOI: 10.1371/journal.pone.0213320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/19/2019] [Indexed: 12/18/2022] Open
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a small teleost fish that is ubiquitous across the Northern Hemisphere. Among the behaviours that have been characterised in this species is ritualized courtship, aggressiveness and parental behaviour. Whereas three-spined sticklebacks have been used for ecological, evolutionary, parasitological and toxicological research, its complex behavioural repertoire and experimental advantages have not been exploited for basic neuroscience research. The aim of the present study is to describe some innate behaviours of laboratory bred three-spined sticklebacks by using a battery of tests that have been developed and validated to model some aspects of human psychiatric disorders in zebrafish. We recorded mirror induced aggression, novel object boldness, shoaling, and anxiety-like behaviour using both the novel tank diving and the black-white preference tests. We show that behaviour of three-spined sticklebacks in these standard tests is remarkably similar to that of zebrafish and other species and can be altered by fluoxetine and buspirone. These findings highlight the potential of using three-spined sticklebacks for cross-species and translational studies.
Collapse
|
21
|
Sumpter DJT, Szorkovszky A, Kotrschal A, Kolm N, Herbert-Read JE. Using activity and sociability to characterize collective motion. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0015. [PMID: 29581400 PMCID: PMC5882985 DOI: 10.1098/rstb.2017.0015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/11/2017] [Indexed: 11/12/2022] Open
Abstract
A wide range of measurements can be made on the collective motion of groups, and the movement of individuals within them. These include, but are not limited to: group size, polarization, speed, turning speed, speed or directional correlations, and distances to near neighbours. From an ecological and evolutionary perspective, we would like to know which of these measurements capture biologically meaningful aspects of an animal's behaviour and contribute to its survival chances. Previous simulation studies have emphasized two main factors shaping individuals' behaviour in groups; attraction and alignment. Alignment responses appear to be important in transferring information between group members and providing synergistic benefits to group members. Likewise, attraction to conspecifics is thought to provide benefits through, for example, selfish herding. Here, we use a factor analysis on a wide range of simple measurements to identify two main axes of collective motion in guppies (Poecilia reticulata): (i) sociability, which corresponds to attraction (and to a lesser degree alignment) to neighbours, and (ii) activity, which combines alignment with directed movement. We show that for guppies, predation in a natural environment produces higher degrees of sociability and (in females) lower degrees of activity, while female guppies sorted for higher degrees of collective alignment have higher degrees of both sociability and activity. We suggest that the activity and sociability axes provide a useful framework for measuring the behaviour of animals in groups, allowing the comparison of individual and collective behaviours within and between species.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
| | | | | | - Niclas Kolm
- Zoology Department, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
22
|
Schell CJ, Young JK, Lonsdorf EV, Santymire RM, Mateo JM. Parental habituation to human disturbance over time reduces fear of humans in coyote offspring. Ecol Evol 2018; 8:12965-12980. [PMID: 30619597 PMCID: PMC6308887 DOI: 10.1002/ece3.4741] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 12/18/2022] Open
Abstract
A fundamental tenet of maternal effects assumes that maternal variance over time should have discordant consequences for offspring traits across litters. Yet, seldom are parents observed across multiple reproductive bouts, with few studies considering anthropogenic disturbances as an ecological driver of maternal effects. We observed captive coyote (Canis latrans) pairs over two successive litters to determine whether among‐litter differences in behavior (i.e., risk‐taking) and hormones (i.e., cortisol and testosterone) corresponded with parental plasticity in habituation. Thus, we explicitly test the hypothesis that accumulating experiences of anthropogenic disturbance reduces parental fear across reproductive bouts, which should have disparate phenotypic consequences for first‐ and second‐litter offspring. To quantify risk‐taking behavior, we used foraging assays from 5–15 weeks of age with a human observer present as a proxy for human disturbance. At 5, 10, and 15 weeks of age, we collected shaved hair to quantify pup hormone levels. We then used a quantitative genetic approach to estimate heritability, repeatability, and between‐trait correlations. We found that parents were riskier (i.e., foraged more frequently) with their second versus first litters, supporting our prediction that parents become increasingly habituated over time. Second‐litter pups were also less risk‐averse than their first‐litter siblings. Heritability for all traits did not differ from zero (0.001–0.018); however, we found moderate support for repeatability in all observed traits (r = 0.085–0.421). Lastly, we found evidence of positive phenotypic and cohort correlations among pup traits, implying that cohort identity (i.e., common environment) contributes to the development of phenotypic syndromes in coyote pups. Our results suggest that parental habituation may be an ecological cue for offspring to reduce their fear response, thus emphasizing the role of parental plasticity in shaping their pups’ behavioral and hormonal responses toward humans.
Collapse
Affiliation(s)
- Christopher J Schell
- Committee on Evolutionary Biology University of Chicago Chicago Illinois.,School of Interdisciplinary Arts and Sciences University of Washington Tacoma Tacoma Washington
| | - Julie K Young
- USDA-WS-NWRC Predator Research Facility, Department of Wildland Resources Utah State University Logan Utah
| | | | - Rachel M Santymire
- Committee on Evolutionary Biology University of Chicago Chicago Illinois.,Conservation and Science Department Lincoln Park Zoo Chicago Illinois
| | - Jill M Mateo
- Committee on Evolutionary Biology University of Chicago Chicago Illinois
| |
Collapse
|
23
|
|
24
|
Killen SS, Marras S, Nadler L, Domenici P. The role of physiological traits in assortment among and within fish shoals. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0233. [PMID: 28673911 PMCID: PMC5498295 DOI: 10.1098/rstb.2016.0233] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2017] [Indexed: 12/26/2022] Open
Abstract
Individuals of gregarious species often group with conspecifics to which they are phenotypically similar. This among-group assortment has been studied for body size, sex and relatedness. However, the role of physiological traits has been largely overlooked. Here, we discuss mechanisms by which physiological traits—particularly those related to metabolism and locomotor performance—may result in phenotypic assortment not only among but also within animal groups. At the among-group level, varying combinations of passive assortment, active assortment, phenotypic plasticity and selective mortality may generate phenotypic differences among groups. Even within groups, however, individual variation in energy requirements, aerobic and anaerobic capacity, neurological lateralization and tolerance to environmental stressors are likely to produce differences in the spatial location of individuals or associations between group-mates with specific physiological phenotypes. Owing to the greater availability of empirical research, we focus on groups of fishes (i.e. shoals and schools). Increased knowledge of physiological mechanisms influencing among- and within-group assortment will enhance our understanding of fundamental concepts regarding optimal group size, predator avoidance, group cohesion, information transfer, life-history strategies and the evolutionary effects of group membership. In a broader perspective, predicting animal responses to environmental change will be impossible without a comprehensive understanding of the physiological basis of the formation and functioning of animal social groups. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Stefano Marras
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - Lauren Nadler
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA 92037, USA
| | - Paolo Domenici
- IAMC-CNR, Istituto per l'Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| |
Collapse
|
25
|
Verdon M, Morrison RS, Hemsworth PH. Forming groups of aggressive sows based on a predictive test of aggression does not affect overall sow aggression or welfare. Behav Processes 2018; 150:17-24. [PMID: 29474852 DOI: 10.1016/j.beproc.2018.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/28/2018] [Accepted: 02/19/2018] [Indexed: 11/26/2022]
Abstract
This experiment examined the effects of group composition on sow aggressive behaviour and welfare. Over 6 time replicates, 360 sows (parity 1-6) were mixed into groups (10 sows per pen, 1.8 m2/sow) composed of animals that were predicted to be aggressive (n = 18 pens) or groups composed of animals that were randomly selected (n = 18 pens). Predicted aggressive sows were selected based on a model-pig test that has been shown to be related to the aggressive behaviour of parity 2 sows when subsequently mixed in groups. Measurements were taken on aggression delivered post-mixing, and aggression delivered around feeding, fresh skin injuries and plasma cortisol concentrations at days 2 and 24 post-mixing. Live weight gain, litter size (born alive, total born, stillborn piglets), and farrowing rate were also recorded. Manipulating the group composition based on predicted sow aggressiveness had no effect (P > 0.05) on sow aggression delivered at mixing or around feeding, fresh injuries, cortisol, weight gain from day 2 to day 24, farrowing rate, or litter size. The lack of treatment effects in the present experiment could be attributed to (1) a failure of the model-pig test to predict aggression in older sows in groups, or (2) the dependence of the expression of the aggressive phenotype on factors such as social experience and characteristics (e.g., physical size and aggressive phenotype) of pen mates. This research draws attention to the intrinsic difficulties associated with predicting behaviour across contexts, particularly when the behaviour is highly dependent on interactions with conspecifics, and highlights the social complexities involved in the presentation of a behavioural phenotype.
Collapse
Affiliation(s)
- Megan Verdon
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, 3010, Australia; Tasmanian Institute of Agriculture, Faculty of Science, Engineering and Technology, University of Tasmania, Tasmania, 7320, Australia.
| | - R S Morrison
- Rivalea Australia, Corowa, New South Wales, 2646, Australia
| | - P H Hemsworth
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
26
|
Pruitt JN, Wright CM, Lichtenstein JLL, Chism GT, McEwen BL, Kamath A, Pinter-Wollman N. Selection for Collective Aggressiveness Favors Social Susceptibility in Social Spiders. Curr Biol 2018; 28:100-105.e4. [PMID: 29276129 PMCID: PMC5871622 DOI: 10.1016/j.cub.2017.11.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/29/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Particularly socially influential individuals are present in many groups [1-8], but it is unclear whether their emergence is determined by their social influence versus the social susceptibility of others [9]. The social spider Stegodyphus dumicola shows regional variation in apparent leader-follower dynamics. We use this variation to evaluate the relative contributions of leader social influence versus follower social susceptibility in driving this social order. Using chimeric colonies that combine potential leaders and followers, we discover that leader-follower dynamics emerge from the site-specific social susceptibility of followers. We further show that the presence of leaders increases colony survival in environments where leader-follower dynamics occur. Thus, leadership is driven by the "social susceptibility" of the population majority, rather than the social influence of key group members.
Collapse
Affiliation(s)
- Jonathan N Pruitt
- Department of Ecology, Evolution and Marne Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Colin M Wright
- Department of Ecology, Evolution and Marne Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - James L L Lichtenstein
- Department of Ecology, Evolution and Marne Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gregory T Chism
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ 85721, USA
| | - Brendan L McEwen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 37906, USA
| | - Ambika Kamath
- Department of Ecology, Evolution and Marne Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
27
|
Finger JS, Guttridge TL, Wilson ADM, Gruber SH, Krause J. Are some sharks more social than others? Short- and long-term consistencies in the social behavior of juvenile lemon sharks. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2431-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Favati A, Udén E, Leimar O, Løvlie H. Personality remains: no effect of 3-week social status experience on personality in male fowl. Behav Ecol 2017. [DOI: 10.1093/beheco/arx160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Anna Favati
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Eva Udén
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Olof Leimar
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Hanne Løvlie
- IFM Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Strickland K, Frère CH. Predictable males and unpredictable females: repeatability of sociability in eastern water dragons. Behav Ecol 2017. [DOI: 10.1093/beheco/arx148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
|
31
|
Social personality: a more social shrew species exhibits stronger differences in personality types. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.02.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Tóth Z, Tuliozi B, Baldan D, Hoi H, Griggio M. The effect of social connections on the discovery of multiple hidden food patches in a bird species. Sci Rep 2017; 7:816. [PMID: 28400588 PMCID: PMC5429748 DOI: 10.1038/s41598-017-00929-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
Social foraging is thought to provide the possibility of information transmission between individuals, but this advantage has been proved only in a handful of species and contexts. We investigated how social connections in captive flocks of house sparrows (Passer domesticus) affected the discovery of (i.e. feeding for the first time from) two hidden food patches in the presence of informed flock-mates. At the first-discovered and most-exploited food patch social connections between birds affected the order of discovery and presumably contributed to a greater exploitation of this patch. However, social connections did not affect discovery at the second food patch despite its close spatial proximity. Males discovered the food sources sooner than females, while feeding activity was negatively related to patch discovery. Age had no effect on the order of discovery. Birds that first discovered and fed at the food patches were characterized by higher level of social indifference, i.e. followed others less frequently than other birds in an independent context. Our findings provide experimental evidence for the importance of variable social connections during social foraging in house sparrow flocks, and suggest that social attraction can contribute differently to the exploitation of different patches when multiple food sources are present.
Collapse
Affiliation(s)
- Zoltán Tóth
- Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Hungary
| | - Beniamino Tuliozi
- Dipartimento di Biologia, Università di Padova, 35121, Padova, Italy
| | - Davide Baldan
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Integrative Biology and Evolution, University of Veterinary Medicine of Vienna, 1160, Vienna, Austria
| | - Matteo Griggio
- Dipartimento di Biologia, Università di Padova, 35121, Padova, Italy.
| |
Collapse
|
33
|
Rittschof CC. Sequential social experiences interact to modulate aggression but not brain gene expression in the honey bee ( Apis mellifera). Front Zool 2017; 14:16. [PMID: 28270855 PMCID: PMC5335736 DOI: 10.1186/s12983-017-0199-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/20/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In highly structured societies, individuals behave flexibly and cooperatively in order to achieve a particular group-level outcome. However, even in social species, environmental inputs can have long lasting effects on individual behavior, and variable experiences can even result in consistent individual differences and constrained behavioral flexibility. Despite the fact that such constraints on behavior could have implications for behavioral optimization at the social group level, few studies have explored how social experiences accumulate over time, and the mechanistic basis of these effects. In the current study, I evaluate how sequential social experiences affect individual and group level aggressive phenotypes, and individual brain gene expression, in the highly social honey bee (Apis mellifera). To do this, I combine a whole colony chronic predator disturbance treatment with a lab-based manipulation of social group composition. RESULTS Compared to the undisturbed control, chronically disturbed individuals show lower aggression levels overall, but also enhanced behavioral flexibility in the second, lab-based social context. Disturbed bees display aggression levels that decline with increasing numbers of more aggressive, undisturbed group members. However, group level aggressive phenotypes are similar regardless of the behavioral tendencies of the individuals that make up the group, suggesting a combination of underlying behavioral tendency and negative social feedback influences the aggressive behaviors displayed, particularly in the case of disturbed individuals. An analysis of brain gene expression showed that aggression related biomarker genes reflect an individual's disturbance history, but not subsequent social group experience or behavioral outcomes. CONCLUSIONS In highly social animals with collective behavioral phenotypes, social context may mask underlying variation in individual behavioral tendencies. Moreover, gene expression patterns may reflect behavioral tendency, while behavioral outcomes are further regulated by social cues perceived in real-time.
Collapse
Affiliation(s)
- Clare C Rittschof
- Department of Entomology, University of Kentucky, S-225 Ag. Science Center North, Lexington, KY 40546 USA
| |
Collapse
|
34
|
Fisher DN, Ilany A, Silk MJ, Tregenza T. Analysing animal social network dynamics: the potential of stochastic actor-oriented models. J Anim Ecol 2017; 86:202-212. [PMID: 28004848 PMCID: PMC6849756 DOI: 10.1111/1365-2656.12630] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 12/04/2016] [Indexed: 01/03/2023]
Abstract
Animals are embedded in dynamically changing networks of relationships with conspecifics. These dynamic networks are fundamental aspects of their environment, creating selection on behaviours and other traits. However, most social network‐based approaches in ecology are constrained to considering networks as static, despite several calls for such analyses to become more dynamic. There are a number of statistical analyses developed in the social sciences that are increasingly being applied to animal networks, of which stochastic actor‐oriented models (SAOMs) are a principal example. SAOMs are a class of individual‐based models designed to model transitions in networks between discrete time points, as influenced by network structure and covariates. It is not clear, however, how useful such techniques are to ecologists, and whether they are suited to animal social networks. We review the recent applications of SAOMs to animal networks, outlining findings and assessing the strengths and weaknesses of SAOMs when applied to animal rather than human networks. We go on to highlight the types of ecological and evolutionary processes that SAOMs can be used to study. SAOMs can include effects and covariates for individuals, dyads and populations, which can be constant or variable. This allows for the examination of a wide range of questions of interest to ecologists. However, high‐resolution data are required, meaning SAOMs will not be useable in all study systems. It remains unclear how robust SAOMs are to missing data and uncertainty around social relationships. Ultimately, we encourage the careful application of SAOMs in appropriate systems, with dynamic network analyses likely to prove highly informative. Researchers can then extend the basic method to tackle a range of existing questions in ecology and explore novel lines of questioning.
Collapse
Affiliation(s)
- David N Fisher
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.,Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Amiyaal Ilany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Matthew J Silk
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
35
|
Guayasamin OL, Couzin ID, Miller NY. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav Processes 2016; 141:196-204. [PMID: 27737769 DOI: 10.1016/j.beproc.2016.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/07/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022]
Abstract
An individual's behavioural phenotype is a combination of its unique behavioural propensities and its responsiveness to environmental variation, also known as behavioural plasticity. In social species, we must not only explore how individuals respond to variations in the physical environment but also how they react to changes in their social environment. A growing body of work has demonstrated that the behavioural heterogeneity of a group can alter its responsiveness, decision making, and fitness. Whether an individual is more or less extreme than a partner - what we term its 'relative personality' - may also alter individual behavioural responses. We determined exploratory tendencies of individual zebrafish (Danio rerio) and then constructed pairs with varying differences in 'relative personality' to determine the effect of differences between partners on behavioural plasticity. We find that relative personality, but not the magnitude of the difference between partners, is the most important determinant of behavioural plasticity across social treatments. Despite this overall effect, pairs of fish exhibited no predictable leader-follower interactions, suggesting that details of the experimental paradigm may be important in shaping social dynamics.
Collapse
Affiliation(s)
- Olivia L Guayasamin
- Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| | - Iain D Couzin
- Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ 08544, USA; Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany; Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Noam Y Miller
- Department of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Wilfrid Laurier University, 75 University Ave. West, Waterloo, Ontario N2L 3C5, Canada.
| |
Collapse
|
36
|
Hasenjager MJ, Dugatkin LA. Familiarity affects network structure and information flow in guppy (Poecilia reticulata) shoals. Behav Ecol 2016. [DOI: 10.1093/beheco/arw152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Pantoja C, Hoagland A, Carroll EC, Karalis V, Conner A, Isacoff EY. Neuromodulatory Regulation of Behavioral Individuality in Zebrafish. Neuron 2016; 91:587-601. [PMID: 27397519 DOI: 10.1016/j.neuron.2016.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 05/05/2016] [Accepted: 06/08/2016] [Indexed: 11/30/2022]
Abstract
Inter-individual behavioral variation is thought to increase fitness and aid adaptation to environmental change, but the underlying mechanisms are poorly understood. We find that variation between individuals in neuromodulatory input contributes to individuality in short-term habituation of the zebrafish (Danio Rerio) acoustic startle response (ASR). ASR habituation varies greatly between individuals, but differences are stable over days and are heritable. Acoustic stimuli that activate ASR-command Mauthner cells also activate dorsal raphe nucleus (DRN) serotonergic neurons, which project to the vicinity of the Mauthner cells and their inputs. DRN neuron activity decreases during habituation in proportion to habituation and a genetic manipulation that reduces serotonin content in DRN neurons increases habituation, whereas serotonergic agonism or DRN activation with ChR2 reduces habituation. Finally, level of rundown of DRN activity co-segregates with extent of behavioral habituation across generations. Thus, variation between individuals in neuromodulatory input contributes to individuality in a core adaptive behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Carlos Pantoja
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Adam Hoagland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Elizabeth C Carroll
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Vasiliki Karalis
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Alden Conner
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Ehud Y Isacoff
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, USA; Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
38
|
Mullon C, Keller L, Lehmann L. Evolutionary Stability of Jointly Evolving Traits in Subdivided Populations. Am Nat 2016; 188:175-95. [PMID: 27420783 DOI: 10.1086/686900] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolutionary stability of quantitative traits depends on whether a population can resist invasion by any mutant. While uninvadability is well understood in well-mixed populations, it is much less so in subdivided populations when multiple traits evolve jointly. Here, we investigate whether a spatially subdivided population at a monomorphic equilibrium for multiple traits can withstand invasion by any mutant or is subject to diversifying selection. Our model also explores the correlations among traits arising from diversifying selection and how they depend on relatedness due to limited dispersal. We find that selection tends to favor a positive (negative) correlation between two traits when the selective effects of one trait on relatedness is positively (negatively) correlated to the indirect fitness effects of the other trait. We study the evolution of traits for which this matters: dispersal that decreases relatedness and helping that has positive indirect fitness effects. We find that when dispersal cost is low and the benefits of helping accelerate faster than its costs, selection leads to the coexistence of mobile defectors and sessile helpers. Otherwise, the population evolves to a monomorphic state with intermediate helping and dispersal. Overall, our results highlight the effects of population subdivision for evolutionary stability and correlations among traits.
Collapse
|
39
|
Laskowski KL, Montiglio PO, Pruitt JN. Individual and Group Performance Suffers from Social Niche Disruption. Am Nat 2016; 187:776-85. [PMID: 27172596 DOI: 10.1086/686220] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The social niche specialization hypothesis predicts that animal personalities emerge as a result of individuals occupying different social niches within a group. Here we track individual personality and performance and collective performance among groups of social spiders where we manipulated the familiarity of the group members. We show that individual personalities, as measured by consistent individual differences in boldness behavior, strengthen with increasing familiarity and that these personalities can be disrupted by a change in group membership. Changing group membership negatively impacted both individual and group performance. Individuals in less familiar groups lost weight, and these groups were less successful at performing vital collective tasks. These results provide a mechanism for the evolution of stable social groups by demonstrating that social niche reestablishment carries a steep cost for both individuals and groups. Social niche specialization may therefore provide a potential first step on the path toward more organized social systems.
Collapse
|
40
|
|
41
|
Jolles JW, Aaron Taylor B, Manica A. Recent social conditions affect boldness repeatability in individual sticklebacks. Anim Behav 2016; 112:139-145. [PMID: 26949265 PMCID: PMC4758823 DOI: 10.1016/j.anbehav.2015.12.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Animal personalities are ubiquitous across the animal kingdom and have been shown both to influence individual behaviour in the social context and to be affected by it. However, little attention has been paid to possible carryover effects of social conditions on personality expression, especially when individuals are alone. Here we investigated how the recent social context affected the boldness and repeatability of three-spined sticklebacks, Gasterosteus aculeatus, during individual assays. We housed fish either solitarily, solitarily part of the time or socially in groups of four, and subjected them twice to a risk-taking task. The social conditions had a large effect on boldness repeatability, with fish housed solitarily before the trials showing much higher behavioural repeatability than fish housed socially, for which repeatability was not significant. Social conditions also had a temporal effect on the boldness of the fish, with only fish housed solitarily taking more risks during the first than the second trial. These results show that recent social conditions can thus affect the short-term repeatability of behaviour and obfuscate the expression of personality even in later contexts when individuals are alone. This finding highlights the need to consider social housing conditions when designing personality studies and emphasizes the important link between animal personality and the social context by showing the potential role of social carryover effects.
Collapse
Affiliation(s)
| | | | - Andrea Manica
- Department of Zoology, University of Cambridge, Cambridge, U.K
| |
Collapse
|
42
|
De Winter G, Martins HR, Trovo RA, Chapman BB. Different behaviour-body length correlations in two populations of juvenile three-spined stickleback (Gasterosteus aculeatus). Behav Processes 2015; 122:75-9. [PMID: 26581320 DOI: 10.1016/j.beproc.2015.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/20/2015] [Accepted: 11/07/2015] [Indexed: 11/17/2022]
Abstract
Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable.
Collapse
Affiliation(s)
- Gunnar De Winter
- Ecology and Evolution Group, School of Life Sciences, University of Nottingham, Nottingham, UK.
| | - Henrique Ramalho Martins
- Ecology and Evolution Group, School of Life Sciences, University of Nottingham, Nottingham, UK; Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rafael Arnoni Trovo
- Ecology and Evolution Group, School of Life Sciences, University of Nottingham, Nottingham, UK; Instituto de Biociências, University of São Paulo, São Paulo, Brazil
| | - Ben B Chapman
- Ecology and Evolution Group, School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
43
|
Brown SM, Klaffenböck M, Nevison IM, Lawrence AB. Evidence for litter differences in play behaviour in pre-weaned pigs. Appl Anim Behav Sci 2015; 172:17-25. [PMID: 26937060 PMCID: PMC4768079 DOI: 10.1016/j.applanim.2015.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of this study was to analyse spontaneous play behaviour in litters of domestic pigs (Sus scrofa) for sources of variation at individual and litter levels and to relate variation in play to measures of pre and postnatal development. Seven litters of commercially bred piglets (n = 70) were born (farrowed) within a penning system (PigSAFE) that provided opportunities for the performance of spontaneous play behaviours. Individual behaviour was scored based on an established play ethogram for 2 days per week over the 3 week study period. We found strong evidence of litter differences in play behaviour (F(6,63) = 27.30, p < 0.001). Of the variance in total play, 50% was attributable to differences between litters with a lesser proportion (11%) to between piglets within litters. We found similar evidence of litter differences when we analysed the separate play categories (e.g. for locomotor play: F(6,63) = 27.50, p < 0.001). For social and locomotor play the variance was partitioned in a broadly similar way to total play; however for object play the variance was distributed with a more even balance across and within litters. In terms of explanatory factors we found little evidence that at the litter level differences in play were associated with differences in general activity. Of the prenatal factors measured, we found that birth weight was positively associated with total play and the play categories (e.g. with total play: F(1,64) = 12.8, p < 0.001). We also found that postnatal piglet growth up to weaning (as a percentage of birth weight) had a significant positive association with total play and the play categories (e.g. with object play: F(1,66) = 20.55, p < 0.001). As found in other studies, on average males engaged in more social play (e.g. non-injurious play fighting: F(1,63) = 39.8, p < 0.001). Males also initiated more play bouts on average than females (F(1,62) = 4.41, p = 0.040). We conclude that the study of differences between litters and individuals provides a robust approach to understanding factors potentially influencing play behaviour in the pig. This work also provides support for the use of play as a welfare indicator in pre-weaned piglets as the litter differences in play we observed were associated positively with physical development.
Collapse
Affiliation(s)
- Sarah Mills Brown
- Division of Neurobiology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom,Corresponding author.
| | - Michael Klaffenböck
- University of Natural Resources and Life Sciences, Gregor-Mendel-Straβe 33, 1180 Vienna, Austria
| | - Ian Macleod Nevison
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Alistair Burnett Lawrence
- Division of Neurobiology, The Roslin Institute, The University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom,Animal & Veterinary Sciences, SRUC, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| |
Collapse
|
44
|
Farine DR, Montiglio PO, Spiegel O. From Individuals to Groups and Back: The Evolutionary Implications of Group Phenotypic Composition. Trends Ecol Evol 2015; 30:609-621. [PMID: 26411618 PMCID: PMC4594155 DOI: 10.1016/j.tree.2015.07.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 11/23/2022]
Abstract
There is increasing interest in understanding the processes that maintain phenotypic variation in groups, populations, or communities. Recent studies have investigated how the phenotypic composition of groups or aggregations (e.g., its average phenotype or phenotypic variance) affects ecological and social processes, and how multi-level selection can drive phenotypic covariance among interacting individuals. However, we argue that these questions are rarely studied together. We present a unified framework to address this gap, and discuss how group phenotypic composition (GPC) can impact on processes ranging from individual fitness to population demography. By emphasising the breadth of topics affected, we hope to motivate more integrated empirical studies of the ecological and evolutionary implications of GPC.
Collapse
Affiliation(s)
- Damien R Farine
- Department of Anthropology, University of California Davis, Davis, CA, USA; Smithsonian Tropical Research Institute, Panamá, República de Panamá; Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK.
| | | | - Orr Spiegel
- Department of Environmental Science and Policy, University of California Davis, Davis, CA, USA.
| |
Collapse
|
45
|
De Winter G, Stratford JP, Chapman BB. Using bacteria to study consistent variation in individual behavior. Behav Ecol 2015. [DOI: 10.1093/beheco/arv154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
46
|
Koski SE, Burkart JM. Common marmosets show social plasticity and group-level similarity in personality. Sci Rep 2015; 5:8878. [PMID: 25743581 PMCID: PMC5155412 DOI: 10.1038/srep08878] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
The social environment influences animal personality on evolutionary and immediate time scales. However, studies of animal personality rarely assess the effects of the social environment, particularly in species that live in stable groups with individualized relationships. We assessed personality experimentally in 17 individuals of the common marmoset, living in four groups. We found their personality to be considerably modified by the social environment. Marmosets exhibited relatively high plasticity in their behaviour, and showed ‘group-personality’, i.e. group-level similarity in the personality traits. In exploratory behaviour this was maintained only in the social environment but not when individuals were tested alone, suggesting that exploration tendency is subjected to social facilitation. Boldness, in contrast, showed higher consistency across the social and solitary conditions, and the group-level similarity in trait scores was sustained also outside of the immediate social environment. The ‘group-personality’ was not due to genetic relatedness, supporting that it was produced by social effects. We hypothesize that ‘group-personality’ may be adaptive for highly cooperative animals through facilitating cooperation among individuals with similar behavioural tendency.
Collapse
Affiliation(s)
- Sonja E Koski
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Judith M Burkart
- Anthropological Institute and Museum, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
47
|
Laskowski KL, Pearish S, Bensky M, Bell AM. Predictors of Individual Variation in Movement in a Natural Population of Threespine Stickleback ( Gasterosteus aculeatus). ADV ECOL RES 2015; 52:65-90. [PMID: 29046595 PMCID: PMC5642938 DOI: 10.1016/bs.aecr.2015.01.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Species abundances and distributions are inherently tied to individuals' decisions about movement within their habitat. Therefore, integrating individual phenotypic variation within a larger ecological framework may provide better insight into how populations structure themselves. Recent evidence for consistent individual differences in behaviour prompts the hypothesis that variation in behavioural types might be related to variation in movement in natural environments. In a multiyear mark-recapture study, we found that individual sticklebacks exhibited consistent individual differences in behaviour both within a standardized testing arena designed to measure exploratory behaviour and within a river. Therefore, we asked whether individual differences in movement in a natural river were related to an individual's exploratory behavioural type. We also considered whether body condition and/or the individual's habitat or social environment use was related to movement. There was no evidence that an individual's exploratory behavioural type was related to movement within the river. Instead, an individual's habitat use and body condition interacted to influence natural movement patterns. Individuals in good condition were more likely to move further in the river, but only if they inhabited a vegetated complex part of the river; body condition had no influence on movement in those individuals inhabiting open areas of the river. Our results suggest that individual traits could help improve predictions about how populations may distribute themselves within patchy and complex environments.
Collapse
|
48
|
King AJ, Williams LJ, Mettke-Hofmann C. The effects of social conformity on Gouldian finch personality. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2014.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Bengston SE, Jandt JM. The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00081] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
50
|
Modlmeier AP, Laskowski KL, DeMarco AE, Coleman A, Zhao K, Brittingham HA, McDermott DR, Pruitt JN. Persistent social interactions beget more pronounced personalities in a desert-dwelling social spider. Biol Lett 2014; 10:20140419. [PMID: 25165452 PMCID: PMC4155910 DOI: 10.1098/rsbl.2014.0419] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/05/2014] [Indexed: 12/30/2022] Open
Abstract
The social niche specialization hypothesis predicts that repeated social interactions will generate social niches within groups, thereby promoting consistent individual differences in behaviour. Current support for this hypothesis is mixed, probably because the importance of social niches is dependent upon the ecology of the species. We test whether repeated interactions among group mates generate consistent individual differences in boldness in the social spider, Stegodyphus dumicola. In support of the social niche specialization hypothesis, we found that consistent individual differences in boldness increased with longer group tenure. Interestingly, these differences took longer to appear than in previous work suggesting this species needs more persistent social interactions to shape its behaviour. Recently disturbed colonies were shyer than older colonies, possibly reflecting differences in predation risk. Our study emphasizes the importance of the social environment in generating animal personalities, but also suggests that the pattern of personality development can depend on subtle differences in species' ecologies.
Collapse
Affiliation(s)
- Andreas P Modlmeier
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany
| | - Alex E DeMarco
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Anna Coleman
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Katherine Zhao
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Hayley A Brittingham
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Donna R McDermott
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jonathan N Pruitt
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|