1
|
Salguero-Gómez R. More social species live longer, have longer generation times and longer reproductive windows. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220459. [PMID: 39463247 PMCID: PMC11513647 DOI: 10.1098/rstb.2022.0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/04/2024] [Accepted: 07/31/2024] [Indexed: 10/29/2024] Open
Abstract
The role of sociality in the demography of animals has become an intense focus of research in recent decades. However, efforts to understand the sociality-demography nexus have hitherto focused on single species or isolated taxonomic groups. Consequently, we lack generality regarding how sociality associates with demographic traits within the Animal Kingdom. Here, I propose a continuum of sociality, from solitary to tightly social, and test whether this continuum correlates with the key demographic properties of 152 species, from jellyfish to humans. After correction for body mass and phylogenetic relationships, I show that the sociality continuum is associated with key life history traits: more social species live longer, postpone maturity, have longer generation time and greater probability of achieving reproduction than solitary, gregarious, communal or colonial species. Contrary to the social buffering hypothesis, sociality does not result in more buffered populations. While more social species have a lower ability to benefit from disturbances, they display greater resistance than more solitary species. Finally, I also show that sociality does not shape reproductive or actuarial senescence rates. This cross-taxonomic examination of sociality across the demography of 13 taxonomic classes highlights key ways in which individual interactions shape most aspects of animal demography.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
|
2
|
Ferrari A, Sturini M, De Felice B, Bonasoro F, Trisoglio CF, Parolini M, Ambrosini R, Canova L, Profumo A, Maraschi F, Polidori C, Costanzo A. From molecules to organisms: A multi-level approach shows negative effects of trace elements from sewage sludge used as soil improver on honeybees. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135497. [PMID: 39154472 DOI: 10.1016/j.jhazmat.2024.135497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
The use of sewage sludge as a soil improver has been promoted in agroecosystems. However, sludges can contain toxic trace elements because of suboptimal wastewater treatment. Nonetheless, field studies investigating the negative effects of these practices on pollinators are lacking. We collected honeybees from an area where sewage sludge use is widespread, and one where it is precluded. Trace elements in soils and bees were quantified. Cadmium, chromium, lead, mercury, and nickel were investigated because they were the least correlated elements to each other and are known to be toxic. Their levels were related to oxidative stress and energy biomarkers, midgut epithelial health, body size and wing asymmetry of honeybees. We found increased carbohydrate content in sites with higher cadmium levels, increased histological damage to the midgut epithelium in the sewage sludge area, and the presence of dark spherites in the epithelium of bees collected from the sites with the highest lead levels. Finally, we found that honeybees with the highest lead content were smaller, and that wing fluctuating asymmetry increased in sites with increasing levels of mercury. To the best of our knowledge, this is the first comprehensive study of the concentration and effects on honeybees of trace elements potentially deriving from soil amendment practices.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Michela Sturini
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | | | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy
| | - Luca Canova
- Chemistry Department, University of Pavia, 27100 Pavia, Italy
| | | | | | - Carlo Polidori
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| | - Alessandra Costanzo
- Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
3
|
Price TN, Field J. Sisters doing it for themselves: extensive reproductive plasticity in workers of a primitively eusocial bee. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Plasticity is a key trait when an individual’s role in the social environment, and hence its optimum phenotype, fluctuates unpredictably. Plasticity is especially important in primitively eusocial insects where small colony sizes and little morphological caste differentiation mean that individuals may find themselves switching from non-reproductive to reproductive roles. To understand the scope of this plasticity, workers of the primitively eusocial sweat bee Lasioglossum malachurum were experimentally promoted to the reproductive role (worker-queens) and their performance compared with foundress-queens. We focussed on how their developmental trajectory as workers influenced three key traits: group productivity, monopolisation of reproduction, and social control of foraging nest-mates. No significant difference was found between the number of offspring produced by worker-queens and foundress-queens. Genotyping of larvae showed that worker-queens monopolised reproduction in their nests to the same extent as foundress queens. However, non-reproductives foraged less and produced a smaller total offspring biomass when the reproductive was a promoted worker: offspring of worker-queens were all males, which are the cheaper sex to produce. Greater investment in each offspring as the number of foragers increased suggests a limit to both worker-queen and foundress-queen offspring production when a greater quantity of pollen arrives at the nest. The data presented here suggest a remarkable level of plasticity and represent one of the first quantitative studies of worker reproductive plasticity in a non-model primitively eusocial species.
Significance statement
The ability of workers to take on a reproductive role and produce offspring is expected to relate strongly to the size of their colony. Workers in species with smaller colony sizes should have greater reproductive potential to insure against the death of the queen. We quantified the reproductive plasticity of workers in small colonies of sweat bees by removing the queen and allowing the workers to control the reproductive output of the nest. A single worker then took on the reproductive role and hence prevented her fellow workers from producing offspring of their own. These worker-queens produced as many offspring as control queens, demonstrating remarkable worker plasticity in a primitively eusocial species.
Collapse
|
4
|
Gaiarsa MP, Rehan S, Barbour MA, McFrederick QS. Individual dietary specialization in a generalist bee varies across populations but has no effect on the richness of associated microbial communities. Am Nat 2022; 200:730-737. [DOI: 10.1086/721023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Jeanne RL, Loope KJ, Bouwma AM, Nordheim EV, Smith ML. Five decades of misunderstanding in the social Hymenoptera: a review and meta-analysis of Michener's paradox. Biol Rev Camb Philos Soc 2022; 97:1559-1611. [PMID: 35338566 PMCID: PMC9546470 DOI: 10.1111/brv.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
In a much-cited 1964 paper entitled "Reproductive efficiency in relation to colony size in hymenopterous societies," Charles Michener investigated the correlation between a colony's size and its reproductive efficiency - the ability of its adult females to produce reproductives, measured as per-capita output. Based on his analysis of published data from destructively sampled colonies in 18 species, he reported that in most of these species efficiency decreased with increasing colony size. His conclusion that efficiency is higher in smaller groups has since gained widespread acceptance. But it created a seeming paradox: how can natural selection maintain social behaviour when a female apparently enjoys her highest per-capita output by working alone? Here we treat Michener's pattern as a hypothesis and perform the first large-scale test of its prediction across the eusocial Hymenoptera. Because data on actual output of reproductives were not available for most species, Michener used various proxies, such as nest size, numbers of brood, or amounts of stored food. We show that for each of Michener's data sets the reported decline in per-capita productivity can be explained by factors other than decreasing efficiency, calling into question his conclusion that declining efficiency is the cause of the pattern. The most prominent cause of bias is the failure of the proxy to capture all forms of output in which the colony invests during the course of its ontogeny. Other biasing factors include seasonal effects and a variety of methodological flaws in the data sets he used. We then summarize the results of 215 data sets drawn from post-1964 studies of 80 species in 33 genera that better control for these factors. Of these, 163 data sets are included in two meta-analyses that statistically synthesize the available data on the relationship between colony size and efficiency, accounting for variable sample sizes and non-independence among the data sets. The overall effect, and those for most taxonomic subgroups, indicates no loss of efficiency with increasing colony size. Two exceptional taxa, the halictid bees and independent-founding paper wasps, show negative trends consistent with the Michener hypothesis in some species. We conclude that in most species, particularly those with large colony sizes, the hypothesis of decreasing efficiency with increasing colony size is not supported. Finally, we explore potential mechanisms through which the level of efficiency can decrease, be maintained, or even increase, as colonies increase in size.
Collapse
Affiliation(s)
- Robert L Jeanne
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI, 53706, U.S.A
| | - Kevin J Loope
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University (Virginia Tech), Cheatham Hall, 310 W. Campus Drive, Blacksburg, VA, 24060, U.S.A
| | - Andrew M Bouwma
- Department of Integrative Biology, Oregon State University, Cordley Hall, 3029, 2701 SW Campus Way, Corvallis, OR, 97331, U.S.A
| | - Erik V Nordheim
- Department of Statistics, University of Wisconsin, 1300 University Avenue, Madison, WI, 53706, U.S.A
| | - Michael L Smith
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, U.S.A
| |
Collapse
|
6
|
Edgerly JS. Dispersal Risks and Decisions Shape How Non-kin Groups Form in a Tropical Silk-Sharing Webspinner (Insecta: Embioptera). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.727541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Relying on silk can promote sharing, especially when its presence means life and its absence, quick death. In the case of Embioptera, they construct silken tubes and coverings exposed on tree bark in humid and warm environments or in leaf litter and underground in dry habitats. These coverings protect occupants from rain and natural enemies. Of note, adult females are neotenous, wingless and must walk to disperse. Evidence is pulled together from two sources to explore mechanisms that promote the establishment of non-kin groups that typify the neotropical Antipaluria urichi (Clothodidae): (1) a review of relevant information from 40 years of research to identify potential drivers of the facultative colonial system and (2) experimental and observational data exploring how dispersal contributes to group formation. To determine risks of dispersal and decisions of where to settle, adult females were released into the field and their ability to survive in the face of likely predation was monitored. Additional captured dispersers were released onto bark containing silk galleries; their decision to join the silk or to settle was noted. An experiment tested which attributes of trees attract a disperser: vertical or horizontal boles in one test and small, medium, or large boles in another. While walking, experimentally released adult female dispersers experienced a risk of being killed of approximately 25%. Dispersers orient to large diameter trees and join silk of others if encountered. These results align with observations of natural colonies in that adults and late-stage nymphs join existing colonies of non-kin. Experiments further demonstrated that dispersing females orient to vertical and larger diameter tree-like objects, a behavior that matched the distribution of field colonies. The ultimate reason for the observed dispersion pattern is probably because large trees support more expansive epiphytic algae and lichens (the food for this species), although the impact of food resources on dispersion has not been tested. Finally, further research questions and other webspinner species (including parthenogenetic ones) that warrant a closer look are described. Given that this group of primitively social insects, with approximately 1,000 species known, has remained virtually unstudied, one hope is that this report can encourage more exploration.
Collapse
|
7
|
O’Brien SL, Tammone MN, Cuello PA, Lacey EA. Multi-year assessment of variability in spatial and social relationships in a subterranean rodent, the highland tuco-tuco (Ctenomys opimus). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03034-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
In some species, populations routinely contain a mixture of lone and group-living individuals. Such facultative sociality may reflect individual differences in behavior as well as adaptive responses to variation in local environmental conditions. To explore interactions between individual- and population-level variabilities in behavior in a species provisionally described as facultatively social, we examined spatial and social relationships within a population of highland tuco-tucos (Ctenomys opimus) at Laguna de los Pozuelos, Jujuy Province, Argentina. Using data collected over 5 consecutive years, we sought to (1) confirm the regular occurrence of both lone and group-living individuals and (2) characterize the temporal consistency of individual social relationships. Our analyses revealed that although the study population typically contained lone as well as group-living animals, individual spatial and social relationships varied markedly over time. Specifically, the extent to which individuals remained resident in the same location across years varied, as did the number of conspecifics with which an animal lived, with an overall tendency for individuals to live in larger groups over successive years. Collectively, these analyses indicate that population-level patterns of behavior in C. opimus are consistent with facultative sociality but that this variation does not arise due to persistent differences in individual behavior (i.e., living alone versus with conspecifics). Instead, based on changes in spatial and social relationships across years, we suggest that variation in the tendency to live in groups is shaped primarily by local ecological and demographic conditions.
Significance statement
Characterizing variation in conspecific relationships is critical to understanding the adaptive bases for social behavior. Using data collected over 5 successive years, we examined temporal variation in spatial and social relationships within a population of highland tuco-tucos (C. opimus) from northern Argentina. In addition to providing the first multi-year assessment of the behavior and demography of this species, our analyses generate important insights into relationships between individual behavior and population-level patterns of social organization. The behavioral variability evident in our study population suggests that C. opimus is an ideal system in which to explore the causes and consequences of individual differences in social behavior.
Collapse
|
8
|
Austin AJ, Gilbert JDJ. Solitary bee larvae prioritize carbohydrate over protein in parentally provided pollen. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander J. Austin
- Department of Biological and Marine Sciences University of Hull Hull UK
- Strategy & Environment Ku‐ring‐gai Council Gordon NSW Australia
| | | |
Collapse
|
9
|
Harpur BA, Rehan SM. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
How do social insects expand and adapt to new ranges and how does sociality per se contribute to their success (or failure)? These questions can become tractable with the use of population genomics. We explored the population genomics of the socially polymorphic small carpenter bee, Ceratina australensis, across its range in eastern and southern Australia to search for evidence of selection and identify loci associated with social nesting. We sampled and sequenced fully the genomes of 54 socially and solitarily nesting C. australensis within Queensland, Victoria and South Australia, yielding 2 061 234 single nucleotide polymorphisms across the genome. We found strong evidence of population-specific selection and evidence of genetic variants associated with social nesting behaviour. Both the sets of associated loci and differentially expressed ‘social’ genes had evidence of positive selection, suggesting that alleles at genes associated with social nesting might provide different fitness benefits.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
Kennedy P, Radford AN. Sibling quality and the haplodiploidy hypothesis. Biol Lett 2020; 16:20190764. [PMID: 32183634 PMCID: PMC7115179 DOI: 10.1098/rsbl.2019.0764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/12/2020] [Indexed: 11/12/2022] Open
Abstract
The 'haplodiploidy hypothesis' argues that haplodiploid inheritance in bees, wasps, and ants generates relatedness asymmetries that promote the evolution of altruism by females, who are less related to their offspring than to their sisters ('supersister' relatedness). However, a consensus holds that relatedness asymmetry can only drive the evolution of eusociality if workers can direct their help preferentially to sisters over brothers, either through sex-ratio biases or a pre-existing ability to discriminate sexes among the brood. We show via a kin selection model that a simple feature of insect biology can promote the origin of workers in haplodiploids without requiring either condition. In insects in which females must found and provision new nests, body quality may have a stronger influence on female fitness than on male fitness. If altruism boosts the quality of all larval siblings, sisters may, therefore, benefit more than brothers from receiving the same amount of help. Accordingly, the benefits of altruism would fall disproportionately on supersisters in haplodiploids. Haplodiploid females should be more prone to altruism than diplodiploid females or males of either ploidy when altruism elevates female fitness especially, and even when altruists are blind to sibling sex.
Collapse
Affiliation(s)
- P. Kennedy
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | |
Collapse
|
11
|
Field J, Toyoizumi H. The evolution of eusociality: no risk-return tradeoff but the ecology matters. Ecol Lett 2020; 23:518-526. [PMID: 31884729 PMCID: PMC7027560 DOI: 10.1111/ele.13452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/02/2019] [Indexed: 11/27/2022]
Abstract
The origin of eusociality in the Hymenoptera is a question of major interest. Theory has tended to focus on genetic relatedness, but ecology can be just as important a determinant of whether eusociality evolves. Using the model of Fu et al. (2015), we show how ecological assumptions critically affect the conclusions drawn. Fu et al. inferred that eusociality rarely evolves because it faces a fundamental 'risk-return tradeoff'. The intuitive logic was that worker production represents an opportunity cost because it delays realising a reproductive payoff. However, making empirically justified assumptions that (1) workers take over egg-laying following queen death and (2) productivity increases gradually with each additional worker, we find that the risk-return tradeoff disappears. We then survey Hymenoptera with more specialised morphological castes, and show how the interaction between two common features of eusociality - saturating birth rates and group size-dependent helping decisions - can determine whether eusociality outperforms other strategies.
Collapse
Affiliation(s)
- Jeremy Field
- Centre for Ecology and ConservationUniversity of ExeterPenryn CampusCornwallTR10 9EZUK
| | - Hiroshi Toyoizumi
- Graduate School of Accounting and Department of Applied MathematicsWaseda UniversityNishi‐waseda 1‐6‐1ShinjukuTokyo169‐8050Japan
| |
Collapse
|
12
|
Friedel A, Lattorff HMG, Quezada‐Euán JJG, Boff S. Shared reproduction and sex ratio adjustment to clutch size in a socially polymorphic orchid bee. Ethology 2019. [DOI: 10.1111/eth.12963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Anna Friedel
- General Zoology Institute of Biology Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
| | - H. Michael G. Lattorff
- Molecular Ecology Institute of Biology Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- International Centre of Insect Physiology and Ecology (icipe) Nairobi Kenia
| | - José Javier G. Quezada‐Euán
- Departamento de Apicultura Tropical Campus Ciencias Biológicas y Agropecuarias‐Universidad Autónoma de Yucatán Mérida México
| | - Samuel Boff
- General Zoology Institute of Biology Martin Luther University Halle‐Wittenberg Halle (Saale) Germany
- Department of Food, Environmental and Nutritional Sciences University of Milan Milan Italy
| |
Collapse
|
13
|
Nonacs P. Reproductive skew in cooperative breeding: Environmental variability, antagonistic selection, choice, and control. Ecol Evol 2019; 9:10163-10175. [PMID: 31624543 PMCID: PMC6787806 DOI: 10.1002/ece3.5502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 01/05/2023] Open
Abstract
A multitude of factors may determine reproductive skew among cooperative breeders. One explanation, derived from inclusive fitness theory, is that groups can partition reproduction such that subordinates do at least as well as noncooperative solitary individuals. The majority of recent data, however, fails to support this prediction; possibly because inclusive fitness models cannot easily incorporate multiple factors simultaneously to predict skew. Notable omissions are antagonistic selection (across generations, genes will be in both dominant and subordinate bodies), constraints on the number of sites suitable for successful reproduction, choice in which group an individual might join, and within-group control or suppression of competition. All of these factors and more are explored through agent-based evolutionary simulations. The results suggest the primary drivers for the initial evolution of cooperative breeding may be a combination of limited suitable sites, choice across those sites, and parental manipulation of offspring into helping roles. Antagonistic selection may be important when subordinates are more frequent than dominants. Kinship matters, but its main effect may be in offspring being available for manipulation while unrelated individuals are not. The greater flexibility of evolutionary simulations allows the incorporation of species-specific life histories and ecological constraints to better predict sociobiology.
Collapse
Affiliation(s)
- Peter Nonacs
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
14
|
Steffen MA, Rehan SM. Genetic signatures of dominance hierarchies reveal conserved cis-regulatory and brain gene expression underlying aggression in a facultatively social bee. GENES BRAIN AND BEHAVIOR 2019; 19:e12597. [PMID: 31264771 DOI: 10.1111/gbb.12597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 11/29/2022]
Abstract
Agonistic interactions among individuals can result in the formation of dominance hierarches that can reinforce individual behavior and social status. Such dominance hierarches precede the establishment of reproductive dominance, division of labor and caste formation in highly social insect taxa. As such, deciphering the molecular basis of aggression is fundamental in understanding the mechanisms of social evolution. Assessing the proximate mechanisms of aggression in incipiently social bees can provide insights into the foundations of genomic mechanisms of social behavior. Here, we measured the effects of aggression on brain gene expression in the incipiently social bee, Ceratina australensis. We examine the brain transcriptomic differences between individuals who have experienced recurrent winning, losing, or a change in rank during repeated encounters. Using comparative analyses across taxa, we identify deeply conserved candidate genes, pathways, and regulatory networks for the formation of social hierarchies.
Collapse
Affiliation(s)
- Michael A Steffen
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
15
|
Polyandrous bee provides extended offspring care biparentally as an alternative to monandry based eusociality. Proc Natl Acad Sci U S A 2019; 116:6238-6243. [PMID: 30858313 DOI: 10.1073/pnas.1810092116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parental care behavior evolves to increase the survival of offspring. When offspring care becomes complicated for ecological reasons, cooperation of multiple individuals can be beneficial. There are two types of cooperative care: biparental care and worker (helper)-based care (e.g., eusociality). Although biparental care is common in several groups of vertebrates, it is generally rare in arthropods. Conversely, eusociality is widespread in insects, especially the aculeate Hymenoptera. Here, we present a case of biparental care in bees, in Ceratina nigrolabiata (Apidae, Xylocopinae). Similar to eusocial behavior, biparental care leads to greater brood protection in this species. Male guarding increases provisioning of nests because females are liberated from the tradeoff between provisioning and nest protection. The main benefit of parental care for males should be increased paternity. Interestingly though, we found that paternity of offspring by guard males is extraordinarily low (10% of offspring). Generally, we found that nests were not guarded by the same male for the whole provisioning season, meaning that males arrive to nests as stepfathers. However, we show that long-term guarding performed by a single male does increase paternity. We suggest that the multiple-mating strategy of these bees increased the amount of time for interactions between the sexes, and this longer period of potential interaction supported the origin of biparental care. Eusociality based on monandry was thought to be the main type of extended brood protection in bees. We show that biparental care based on polyandry provides an interesting evolutionary alternative.
Collapse
|
16
|
Nonacs P. Hamilton's rule is essential but insufficient for understanding monogamy's role in social evolution. ROYAL SOCIETY OPEN SCIENCE 2019; 6:180913. [PMID: 30800348 PMCID: PMC6366207 DOI: 10.1098/rsos.180913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
|
17
|
Rehan SM, Glastad KM, Steffen MA, Fay CR, Hunt BG, Toth AL. Conserved Genes Underlie Phenotypic Plasticity in an Incipiently Social Bee. Genome Biol Evol 2018; 10:2749-2758. [PMID: 30247544 PMCID: PMC6190964 DOI: 10.1093/gbe/evy212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Abstract
Despite a strong history of theoretical work on the mechanisms of social evolution, relatively little is known of the molecular genetic changes that accompany transitions from solitary to eusocial forms. Here, we provide the first genome of an incipiently social bee that shows both solitary and social colony organization in sympatry, the Australian carpenter bee Ceratina australensis. Through comparative analysis, we provide support for the role of conserved genes and cis-regulation of gene expression in the phenotypic plasticity observed in nest-sharing, a rudimentary form of sociality. Additionally, we find that these conserved genes are associated with caste differences in advanced eusocial species, suggesting these types of mechanisms could pave the molecular pathway from solitary to eusocial living. Genes associated with social nesting in this species show signatures of being deeply conserved, in contrast to previous studies in other bees showing novel and faster-evolving genes are associated with derived sociality. Our data provide support for the idea that the earliest social transitions are driven by changes in gene regulation of deeply conserved genes.
Collapse
Affiliation(s)
- Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania
| | | | - Cameron R Fay
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | | | - Amy L Toth
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| |
Collapse
|
18
|
Groom SVC, Rehan SM. Climate-mediated behavioural variability in facultatively social bees. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Scott V C Groom
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
19
|
Oppenheimer RL, Shell WA, Rehan SM. Phylogeography and population genetics of the Australian small carpenter bee, Ceratina australensis. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Wyatt A Shell
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
20
|
Haney BR, Fewell JH. Ecological drivers and reproductive consequences of non-kin cooperation by ant queens. Oecologia 2018; 187:643-655. [PMID: 29691647 DOI: 10.1007/s00442-018-4148-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022]
Abstract
The fitness consequences of joining a group are highly dependent on ecological context, especially for non-kin. To assess the relationships between cooperation and environment, we examined variation in colony reproductive success for a harvester ant species that nests either solitarily or with multiple, unrelated queens, a social strategy known as primary polygyny. We measured the reproductive investment of colonies of solitary versus social nesting types at two sites, one with primarily single-queen colonies, and the other with a majority of polygynous nests. Our results were consistent with the hypothesis that cooperative nesting by unrelated ant queens is likely a selection response to difficult environments, rather than a strategy to maximize reproduction under favorable conditions. Fewer colonies at the primarily polygynous site reproduced than at the site with primarily single queen nests, and those that did had lower reproductive investment, as measured by number and total mass of reproductives. Assessment of ecological conditions also support the harsh environment hypothesis. Colony density in the multi-queen population was higher, and nearest neighbor distances were lower for non-reproducing than reproducing colonies. To more directly test the hypothesis that colony reproduction was ecologically constrained, we experimentally supplemented food resources for a subset of colonies at the primary polygyny site. Supplemented colonies increased reproductive investment levels to equal that of colonies at the single-queen population, further indicating that environmental pressures are severe where primary polygyny is dominant, and may drive the evolution of non-kin cooperation in this context.
Collapse
|
21
|
Dew RM, Shell WA, Rehan SM. Changes in maternal investment with climate moderate social behaviour in a facultatively social bee. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2488-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Abstract
The evolution of altruism-costly self-sacrifice in the service of others-has puzzled biologists since The Origin of Species. For half a century, attempts to understand altruism have developed around the concept that altruists may help relatives to have extra offspring in order to spread shared genes. This theory-known as inclusive fitness-is founded on a simple inequality termed Hamilton's rule. However, explanations of altruism have typically not considered the stochasticity of natural environments, which will not necessarily favour genotypes that produce the greatest average reproductive success. Moreover, empirical data across many taxa reveal associations between altruism and environmental stochasticity, a pattern not predicted by standard interpretations of Hamilton's rule. Here we derive Hamilton's rule with explicit stochasticity, leading to new predictions about the evolution of altruism. We show that altruists can increase the long-term success of their genotype by reducing the temporal variability in the number of offspring produced by their relatives. Consequently, costly altruism can evolve even if it has a net negative effect on the average reproductive success of related recipients. The selective pressure on volatility-suppressing altruism is proportional to the coefficient of variation in population fitness, and is therefore diminished by its own success. Our results formalize the hitherto elusive link between bet-hedging and altruism, and reveal missing fitness effects in the evolution of animal societies.
Collapse
|
23
|
Shell WA, Rehan SM. The price of insurance: costs and benefits of worker production in a facultatively social bee. Behav Ecol 2017. [DOI: 10.1093/beheco/arx146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wyatt A Shell
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Sandra M Rehan
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
24
|
Kapheim KM. Nutritional, endocrine, and social influences on reproductive physiology at the origins of social behavior. CURRENT OPINION IN INSECT SCIENCE 2017; 22:62-70. [PMID: 28805640 DOI: 10.1016/j.cois.2017.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Understanding the evolutionary origins of social behavior in insects requires understanding the physiological basis for reproductive plasticity. Solitary bees and wasps or those living in small, flexible societies will be key to understanding how conserved pathways have evolved to give rise to reproductive castes. Nutrient-sensing and endocrine pathways are decoupled from reproduction in some life stages of social insects. Heterochrony, particularly as it is related to diapause physiology, may be an important mechanism by which this decoupling occurs. Additional research is needed to understand how these pathways became sensitive to cues from the social environment. Future research targeting species with a diversity of social behaviors and diapause strategies will be key to understanding the physiological basis of social evolution.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|
25
|
Withee JR, Rehan SM. Social Aggression, Experience, and Brain Gene Expression in a Subsocial Bee. Integr Comp Biol 2017; 57:640-648. [DOI: 10.1093/icb/icx005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jacob R. Withee
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| |
Collapse
|
26
|
Gadagkar R. Evolution of social behaviour in the primitively eusocial wasp Ropalidia marginata: do we need to look beyond kin selection? Philos Trans R Soc Lond B Biol Sci 2016; 371:20150094. [PMID: 26729933 DOI: 10.1098/rstb.2015.0094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In such multiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.
Collapse
Affiliation(s)
- Raghavendra Gadagkar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Withee JR, Rehan SM. Cumulative effects of body size and social experience on aggressive behaviour in a subsocial bee. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dominance hierarchies represent some of nature’s most rudimentary social structures, and aggression is key to their establishment in many animal species. Previous studies have focused on the relative influences of prior experience and physiological traits of individuals in determining social rank through aggression. Here we examine the behavioural potential for dominance hierarchy formation in the subsocial small carpenter bee, Ceratina calcarata. Both physiological traits and social experience were found to play partial roles in predicting future interactive behaviour in this species. Our results suggest that individual size is associated with dominance in initial encounters, while prior experience plays a larger role in predicting dominance in subsequent encounters. Social systems in the early stages of social evolution may well have followed these same predictive factors and these factors are key targets for future studies of social evolution and the behavioural origins of dominance hierarchies.
Collapse
Affiliation(s)
- Jacob R. Withee
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| | - Sandra M. Rehan
- Department of Biological Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824, USA
| |
Collapse
|
28
|
Kapheim KM, Nonacs P, Smith AR, Wayne RK, Wcislo WT. Kinship, parental manipulation and evolutionary origins of eusociality. Proc Biol Sci 2015; 282:20142886. [PMID: 25694620 DOI: 10.1098/rspb.2014.2886] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the hallmarks of eusociality is that workers forego their own reproduction to assist their mother in raising siblings. This seemingly altruistic behaviour may benefit workers if gains in indirect fitness from rearing siblings outweigh the loss of direct fitness. If worker presence is advantageous to mothers, however, eusociality may evolve without net benefits to workers. Indirect fitness benefits are often cited as evidence for the importance of inclusive fitness in eusociality, but have rarely been measured in natural populations. We compared inclusive fitness of alternative social strategies in the tropical sweat bee, Megalopta genalis, for which eusociality is optional. Our results show that workers have significantly lower inclusive fitness than females that found their own nests. In mathematical simulations based on M. genalis field data, eusociality cannot evolve with reduced intra-nest relatedness. The simulated distribution of alternative social strategies matched observed distributions of M. genalis social strategies when helping behaviour was simulated as the result of maternal manipulation, but not as worker altruism. Thus, eusociality in M. genalis is best explained through kin selection, but the underlying mechanism is likely maternal manipulation.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA
| | - Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - Adam R Smith
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843, Balboa, Republic of Panama
| |
Collapse
|
29
|
Elgar MA. Integrating insights across diverse taxa: challenges for understanding social evolution. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
30
|
Shell WA, Rehan SM. Recent and rapid diversification of the small carpenter bees in eastern North America. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12692] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wyatt A. Shell
- Department of Biological Sciences; University of New Hampshire; 46 College Road Durham NH 03824 USA
| | - Sandra M. Rehan
- Department of Biological Sciences; University of New Hampshire; 46 College Road Durham NH 03824 USA
| |
Collapse
|
31
|
Richards M, Course C. Ergonomic skew and reproductive queuing based on social and seasonal variation in foraging activity of eastern carpenter bees (Xylocopa virginica). CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reproductive division of labour in social carpenter bees differs from that in classically eusocial insects because reproductive output and ergonomic inputs are positively correlated—dominant females monopolize both foraging and reproduction. We quantified ergonomic skew in the facultatively social bee Xylocopa virginica (L., 1771) (eastern carpenter bee) based on detailed observations of foraging activity by individually marked females in 2009. Unusually for a univoltine bee, this species exhibits a spring foraging phase during which females feed pollen to other adults, probably as part of behavioural interactions to establish dominance hierarchies. During brood-provisioning, foraging in social nests was dominated by one female at a time, with replacement by a succession of foragers as dominants disappeared and were succeeded by a subordinate. The principal foragers (individuals that did the largest share of foraging in each colony) did 85%–100% of all pollen trips, so contributions to pollen-provisioning by female nest mates were highly uneven. Individual foraging rate was unaffected by group size and total colony foraging effort was a function of the number of foragers per group. Transient females that moved to new nests were as successful in achieving dominant forager status as females resident in their natal nests. This evidence indicates that colony social organisation is based on reproductive queues, whereby the first-ranked bee is the dominant forager and subordinates queue for opportunities to replace her.
Collapse
Affiliation(s)
- M.H. Richards
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| | - C. Course
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
32
|
Rehan SM, Bulova SJ, O''Donnell S. Cumulative Effects of Foraging Behavior and Social Dominance on Brain Development in a Facultatively Social Bee (Ceratina australensis). BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:117-24. [DOI: 10.1159/000381414] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/30/2014] [Indexed: 11/19/2022]
Abstract
In social insects, both task performance (foraging) and dominance are associated with increased brain investment, particularly in the mushroom bodies. Whether and how these factors interact is unknown. Here we present data on a system where task performance and social behavior can be analyzed simultaneously: the small carpenter bee Ceratina australensis. We show that foraging and dominance have separate and combined cumulative effects on mushroom body calyx investment. Female C. australensis nest solitarily and socially in the same populations at the same time. Social colonies comprise two sisters: the social primary, which monopolizes foraging and reproduction, and the social secondary, which is neither a forager nor reproductive but rather remains at the nest as a guard. We compare the brains of solitary females that forage and reproduce but do not engage in social interactions with those of social individuals while controlling for age, reproductive status, and foraging experience. Mushroom body calyx volume was positively correlated with wing wear, a proxy for foraging experience. We also found that, although total brain volume did not vary among reproductive strategies (solitary vs. social nesters), socially dominant primaries had larger mushroom body calyx volumes (corrected for both brain and body size variation) than solitary females; socially subordinate secondaries (that are neither dominant nor foragers) had the least-developed mushroom body calyces. These data demonstrate that sociality itself does not explain mushroom body volume; however, achieving and maintaining dominance status in a group was associated with mushroom body calyx enlargement. Dominance and foraging effects were cumulative; dominant social primary foragers had larger mushroom body volumes than solitary foragers, and solitary foragers had larger mushroom body volumes than nonforaging social secondary guards. This is the first evidence for cumulative effects on brain development by dominance and task performance.
Collapse
|
33
|
Nonacs P, Richards MH. How (not) to review papers on inclusive fitness. Trends Ecol Evol 2015; 30:235-7. [PMID: 25804868 DOI: 10.1016/j.tree.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Affiliation(s)
- Peter Nonacs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Miriam H Richards
- Department of Biological Sciences, Brock University, St Catharines, ON L2S 3A1, Canada
| |
Collapse
|