1
|
Loning H, Griffith SC, Naguib M. The ecology of zebra finch song and its implications for vocal communication in multi-level societies. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230191. [PMID: 38768203 PMCID: PMC11391294 DOI: 10.1098/rstb.2023.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Acoustic signalling is crucial in affecting movements and in social interactions. In species with dynamic social structures, such as multi-level societies, acoustic signals can provide a key mechanism allowing individuals to identify and find or avoid each other and to exchange information. Yet, if the spacing between individuals regularly exceeds the maximum signalling range, the relation between movements and signals becomes more complex. As the best-studied songbird in captivity, the zebra finch (Taeniopygia castanotis) is a species with individually distinct songs that are audible over just a few metres and a widely ranging dynamic multi-level social organization in the wild, raising questions on the actual role of its song in social cohesion and coordination. Here, we provide an overview of birdsong in social organizations (networks) and use the ecology of the zebra finch and male song to discuss how singing can facilitate social cohesion and coordination in species where the signal range is very short. We raise the question of the extent to which zebra finches are a representative species to understand the function of song in communication, and we broaden current views on the function of birdsong and its individual signature. This article is part of the theme issue 'The power of sound: unravelling how acoustic communication shapes group dynamics'.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
- School of Biological, Earth & Environmental Sciences, University of New South Wales , Sydney, New South Wales 2052, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research , 6708 WD, The Netherlands
| |
Collapse
|
2
|
Lefeuvre M, Lu C, Botero CA, Rutkowska J. Variable ambient temperature promotes song learning and production in zebra finches. Behav Ecol 2023; 34:408-417. [PMID: 37192924 PMCID: PMC10183203 DOI: 10.1093/beheco/arad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/23/2023] [Accepted: 02/27/2023] [Indexed: 03/20/2023] Open
Abstract
Current climate change is leading to increasingly unpredictable environmental conditions and is imposing new challenges to wildlife. For example, ambient conditions fluctuating during critical developmental periods could potentially impair the development of cognitive systems and may therefore have a long-term influence on an individual's life. We studied the impact of temperature variability on zebra finch cognition, focusing on song learning and song quality (N = 76 males). We used a 2 × 2 factorial experiment with two temperature conditions (stable and variable). Half of the juveniles were cross-fostered at hatching to create a mismatch between pre- and posthatching conditions, the latter matching this species' critical period for song learning. We found that temperature variability did not affect repertoire size, syllable consistency, or the proportion of syllables copied from a tutor. However, birds that experienced variable temperatures in their posthatching environment were more likely to sing during recordings. In addition, birds that experienced variable prenatal conditions had higher learning accuracy than birds in stable prenatal environments. These findings are the first documented evidence that variable ambient temperatures can influence song learning in zebra finches. Moreover, they indicate that temperature variability can act as a form of environmental enrichment with net positive effects on cognition.
Collapse
Affiliation(s)
- Maëlle Lefeuvre
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - ChuChu Lu
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Cracow, Poland
| | - Carlos A Botero
- University of Texas at Austin, Department of Integrative Biology, Austin, TX, USA
| | - Joanna Rutkowska
- Jagiellonian University, Faculty of Biology, Institute of Environmental Sciences, Cracow, Poland
| |
Collapse
|
3
|
Dougherty LR. The effect of individual state on the strength of mate choice in females and males. Behav Ecol 2023; 34:197-209. [PMID: 36998999 PMCID: PMC10047626 DOI: 10.1093/beheco/arac100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/27/2022] [Accepted: 10/03/2022] [Indexed: 02/25/2023] Open
Abstract
Animals are thought to gain significant fitness benefits from choosing high-quality or compatible mates. However, there is large within-species variation in how choosy individuals are during mating. This may be because the costs and benefits of being choosy vary according to an individual's state. To test this, I systematically searched for published data relating the strength of animal mate choice in both sexes to individual age, attractiveness, body size, physical condition, mating status, and parasite load. I performed a meta-analysis of 108 studies and 78 animal species to quantify how the strength of mate choice varies according to individual state. In line with the predictions of sexual selection theory, I find that females are significantly choosier when they are large and have a low parasite load, thus supporting the premise that the expression of female mate choice is dependent on the costs and benefits of being choosy. However, female choice was not influenced by female age, attractiveness, physical condition, or mating status. Attractive males were significantly choosier than unattractive males, but male mate choice was not influenced by male age, body size, physical condition, mating status, or parasite load. However, this dataset was limited by a small sample size, and the overall correlation between individual state and the strength of mate choice was similar for both sexes. Nevertheless, in both males and females individual state explained only a small amount of variation in the strength of mate choice.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Crown Street, Liverpool L69 7RB, UK
| |
Collapse
|
4
|
Loning H, Verkade L, Griffith SC, Naguib M. The social role of song in wild zebra finches. Curr Biol 2023; 33:372-380.e3. [PMID: 36543166 DOI: 10.1016/j.cub.2022.11.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/23/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Male songbirds sing to establish territories and to attract mates.1,2 However, increasing reports of singing in non-reproductive contexts3 and by females4,5 show that song use is more diverse than previously considered. Therefore, alternative functions of song, such as social cohesion3 and synchronization of breeding, by and large, were overlooked even in such well-studied species such as the zebra finch (Taeniopygia guttata). In these social songbirds, only the males sing, and pairs breed synchronously in loose colonies,6,7 following aseasonal rain events in their arid habitat.8,9 As males are not territorial, and pairs form long-term monogamous bonds early in life, conventional theory predicts that zebra finches should not sing much at all; however, they do and their song is the focus of hundreds of lab-based studies.10,11,12,13,14,15,16,17,18,19,20,21,22 We hypothesize that zebra finch song functions to maintain social cohesion and to synchronize breeding. Here, we test this idea using data from 5 years of field studies, including observational transects, focal and year-round audio recordings, and a large-scale playback experiment. We show that zebra finches frequently sing while in groups, that breeding status influences song output at the nest and at aggregations, that they sing year round, and that they predominantly sing when with their partner, suggesting that the song remains important after pair formation. Our playback reveals that song actively features in social aggregations as it attracts conspecifics. Together, these results demonstrate that birdsong has important functions beyond territoriality and mate choice, illustrating its importance in coordination and cohesion of social units within larger societies.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands.
| | - Laura Verkade
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, 205A Culloden Road Marsfield, Sydney, NSW 2109, Australia; School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, the Netherlands
| |
Collapse
|
5
|
Wei J, Liu Q, Riebel K. Generalisation of early learned tutor song preferences in female zebra finches (Taeniopygia guttata). Behav Processes 2022; 201:104731. [DOI: 10.1016/j.beproc.2022.104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
|
6
|
|
7
|
Loning H, Griffith SC, Naguib M. Zebra finch song is a very short-range signal in the wild: evidence from an integrated approach. Behav Ecol 2022; 33:37-46. [PMID: 35197805 PMCID: PMC8857932 DOI: 10.1093/beheco/arab107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Birdsong is typically seen as a long-range signal functioning in mate attraction and territory defense. Among birds, the zebra finch is the prime model organism in bioacoustics, yet almost exclusively studied in the lab. In the wild, however, zebra finch song differs strikingly from songbirds commonly studied in the wild as zebra finch males sing most after mating and in the absence of territoriality. Using data from the wild, we here provide an ecological context for a wealth of laboratory studies. By integrating calibrated sound recordings, sound transmission experiments and social ecology of zebra finches in the wild with insights from hearing physiology we show that wild zebra finch song is a very short-range signal with an audible range of about nine meters and that even the louder distance calls do not carry much farther (up to about fourteen meters). These integrated findings provide an ecological context for the interpretation of laboratory studies of this species and indicate that the vocal communication distance of the main laboratory species for avian acoustics contrasts strikingly with songbirds that use their song as a long-range advertisement signal.
Collapse
Affiliation(s)
- Hugo Loning
- Behavioural Ecology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Marc Naguib
- Behavioural Ecology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
8
|
Coomes C, Derryberry E. High temperatures reduce song production and alter signal salience in songbirds. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Wada H, Coutts V. Detrimental or beneficial? Untangling the literature on developmental stress studies in birds. J Exp Biol 2021; 224:272388. [PMID: 34608943 DOI: 10.1242/jeb.227363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing animals display a tremendous ability to change the course of their developmental path in response to the environment they experience, a concept referred to as developmental plasticity. This change in behavior, physiology or cellular processes is primarily thought to allow animals to better accommodate themselves to the surrounding environment. However, existing data on developmental stress and whether it brings about beneficial or detrimental outcomes show conflicting results. There are several well-referred hypotheses related to developmental stress in the current literature, such as the environmental matching, silver spoon and thrifty phenotype hypotheses. These hypotheses speculate that the early-life environment defines the capacity of the physiological functions and behavioral tendencies and that this change is permanent and impacts the fitness of the individual. These hypotheses also postulate there is a trade-off among organ systems and physiological functions when resources are insufficient. Published data on avian taxa show that some effects of developmental nutritional and thermal stressors are long lasting, such as the effects on body mass and birdsong. Although hypotheses on developmental stress are based on fitness components, data on reproduction and survival are scarce, making it difficult to determine which hypothesis these data support. Furthermore, most physiological and performance measures are collected only once; thus, the physiological mechanisms remain undertested. Here, we offer potential avenues of research to identify reasons behind the contrasting results in developmental stress research and possible ways to determine whether developmental programming due to stressors is beneficial or detrimental, including quantifying reproduction and survival in multiple environments, measuring temporal changes in physiological variables and testing for stress resistance later in life.
Collapse
Affiliation(s)
- Haruka Wada
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Victoria Coutts
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
10
|
Varkevisser JM, Simon R, Mendoza E, How M, van Hijlkema I, Jin R, Liang Q, Scharff C, Halfwerk WH, Riebel K. Adding colour-realistic video images to audio playbacks increases stimulus engagement but does not enhance vocal learning in zebra finches. Anim Cogn 2021; 25:249-274. [PMID: 34405288 PMCID: PMC8940817 DOI: 10.1007/s10071-021-01547-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
Bird song and human speech are learned early in life and for both cases engagement with live social tutors generally leads to better learning outcomes than passive audio-only exposure. Real-world tutor–tutee relations are normally not uni- but multimodal and observations suggest that visual cues related to sound production might enhance vocal learning. We tested this hypothesis by pairing appropriate, colour-realistic, high frame-rate videos of a singing adult male zebra finch tutor with song playbacks and presenting these stimuli to juvenile zebra finches (Taeniopygia guttata). Juveniles exposed to song playbacks combined with video presentation of a singing bird approached the stimulus more often and spent more time close to it than juveniles exposed to audio playback only or audio playback combined with pixelated and time-reversed videos. However, higher engagement with the realistic audio–visual stimuli was not predictive of better song learning. Thus, although multimodality increased stimulus engagement and biologically relevant video content was more salient than colour and movement equivalent videos, the higher engagement with the realistic audio–visual stimuli did not lead to enhanced vocal learning. Whether the lack of three-dimensionality of a video tutor and/or the lack of meaningful social interaction make them less suitable for facilitating song learning than audio–visual exposure to a live tutor remains to be tested.
Collapse
Affiliation(s)
| | - Ralph Simon
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.,Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands.,Nuremberg Zoo, Nuremberg, Germany
| | - Ezequiel Mendoza
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Martin How
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Idse van Hijlkema
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Rozanda Jin
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Qiaoyi Liang
- Evolution of Sensory Systems, Max Planck Institute for Ornithology, Seewiesen, Germany
| | | | - Wouter H Halfwerk
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Katharina Riebel
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
11
|
Dougherty LR. Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based. Nat Ecol Evol 2021; 5:688-699. [PMID: 33723423 DOI: 10.1038/s41559-021-01409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Animals often need to signal to attract mates and behavioural signalling may impose substantial energetic and fitness costs to signallers. Consequently, individuals often strategically adjust signalling effort to maximize the fitness payoffs of signalling. An important determinant of these payoffs is individual state, which can influence the resources available to signallers, their likelihood of mating and their motivation to mate. However, empirical studies often find contradictory patterns of state-based signalling behaviour. For example, individuals in poor condition may signal less than those in good condition to conserve resources (ability-based signalling) or signal more to maximize short-term reproductive success (needs-based signalling). To clarify this relationship, I systematically searched for published studies examining animal sexual signalling behaviour in relation to six aspects of individual state: age, mated status, attractiveness, body size, condition and parasite load. Across 228 studies and 147 species, individuals (who were predominantly male) invested more into behavioural signalling when in good condition. Overall, this suggests that animal sexual signalling behaviour is generally honest and ability-based. However, the magnitude of state-dependent plasticity was small and there was a large amount of between-study heterogeneity that remains unexplained.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.
| |
Collapse
|
12
|
Yu K, Wood WE, Theunissen FE. High-capacity auditory memory for vocal communication in a social songbird. SCIENCE ADVANCES 2020; 6:6/46/eabe0440. [PMID: 33188032 PMCID: PMC7673746 DOI: 10.1126/sciadv.abe0440] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/02/2020] [Indexed: 05/08/2023]
Abstract
Effective vocal communication often requires the listener to recognize the identity of a vocalizer, and this recognition is dependent on the listener's ability to form auditory memories. We tested the memory capacity of a social songbird, the zebra finch, for vocalizer identities using conditioning experiments and found that male and female zebra finches can remember a large number of vocalizers (mean, 42) based solely on the individual signatures found in their songs and distance calls. These memories were formed within a few trials, were generalized to previously unheard renditions, and were maintained for up to a month. A fast and high-capacity auditory memory for vocalizer identity has not been demonstrated previously in any nonhuman animals and is an important component of vocal communication in social species.
Collapse
Affiliation(s)
- K Yu
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, USA
| | - W E Wood
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, USA
| | - F E Theunissen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, USA
- Department of Integrative Biology, University of California, Berkeley, Berkeley, USA
| |
Collapse
|
13
|
The Neuroethology of Vocal Communication in Songbirds: Production and Perception of a Call Repertoire. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Naguib M, Diehl J, van Oers K, Snijders L. Repeatability of signalling traits in the avian dawn chorus. Front Zool 2019; 16:27. [PMID: 31333753 PMCID: PMC6617708 DOI: 10.1186/s12983-019-0328-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/25/2019] [Indexed: 11/25/2022] Open
Abstract
Background Birdsong, a key model in animal communication studies, has been the focus of intensive research. Song traits are commonly considered to reflect differences in individual or territory quality. Yet, few studies have quantified the variability of song traits between versus within individuals (i.e. repeatability), and thus whether certain song traits indeed provide reliable individual-specific information. Here, we studied the dawn chorus of male great tits (Parus major) to determine if key song traits are repeatable over multiple days and during different breeding stages. Additionally, we examined whether repeatability was associated with exploration behaviour, a relevant personality trait. Finally, we tested if variation in song traits could be explained by breeding stage, lowest night temperature, and exploration behaviour. Results We show that the start time of an individual’s dawn song was indeed repeatable within and across breeding stages, and was more repeatable before, than during, their mate’s egg laying stage. Males started singing later when the preceding night was colder. Daily repertoire size was repeatable, though to a lesser extent than song start time, and no differences were observed between breeding stages. We did not find evidence for an association between exploration behaviour and variation in dawn song traits. Repertoire composition, and specifically the start song type, varied across days, but tended to differ less than expected by chance. Conclusions Our findings that individuals consistently differ in key song traits provides a better understanding of the information receivers can obtain when sampling songs of different males. Surprisingly, start time, despite being influenced by a highly variable environmental factor, appeared to be a more reliable signal of individual differences than repertoire size. Against expectation, singers were more repeatable before than during their mate’s egg laying stage, possibly because before egg laying, females are less constrained to move around unguarded and thus may then already sample (and compare) different singers. Combining repeated dawn song recordings with spatial tracking could reveal if the sampling strategies of receivers are indeed important drivers of repeatability of song traits. Such a complementary approach will further advance our insights into the dynamics and evolution of animal signalling systems.
Collapse
Affiliation(s)
- Marc Naguib
- 1Behavioural Ecology Group, Wageningen University & Research, Wageningen, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Joris Diehl
- 1Behavioural Ecology Group, Wageningen University & Research, Wageningen, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Kees van Oers
- 1Behavioural Ecology Group, Wageningen University & Research, Wageningen, De Elst 1, 6708WD, Wageningen, The Netherlands.,2Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Lysanne Snijders
- 1Behavioural Ecology Group, Wageningen University & Research, Wageningen, De Elst 1, 6708WD, Wageningen, The Netherlands.,3Department of Evolutionary Ecology, Leibniz-Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
15
|
Romero-Diaz C, Gonzalez-Jimena V, Fitze PS. Corticosterone mediated mate choice affects female mating reluctance and reproductive success. Horm Behav 2019; 113:1-12. [PMID: 31034792 DOI: 10.1016/j.yhbeh.2019.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
The study of stress-related hormones as mediators of sexual selection has traditionally focused on the effect of glucocorticoids on male quality and competing ability. However, environmental stressors are expected to affect both males and females, and the strength of sexual selection might be affected by changes in female mating decisions, a hypothesis that has rarely been tested. Here, we investigated whether female common lizard (Zootoca vivipara) mating behaviour and mating preferences are affected by different levels of administered corticosterone and conditioned by the familiarity of their partners, which is known to influence Z. vivipara social behaviour. To this end, two females, one corticosterone-treated and one control female, were simultaneously presented with an unfamiliar male and the following day with either a familiar or an unfamiliar male. Females treated with corticosterone (Cort) were more aggressive towards males and mated less. Furthermore, copulation probability in Cort females, but not in control females, increased with body size. On the second day, Cort females only mated with familiar partners. In contrast, male behaviour towards females was not affected by treatment and only bigger males successfully copulated with Cort females. This shows that corticosterone directly affected female mating behaviour and mating preferences, while male mating behaviour was unaffected by the female's level of corticosterone. Environmental and social stressors may affect reproductive strategies of females, the strength of sexual selection, and sexual conflict through their effects on female glucocorticoid levels, potentially in a wide range of species.
Collapse
Affiliation(s)
- Cristina Romero-Diaz
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Nª Sª de la Victoria s/n, 22700 Jaca, Spain; School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, United States of America.
| | - Virginia Gonzalez-Jimena
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Nª Sª de la Victoria s/n, 22700 Jaca, Spain
| | - Patrick S Fitze
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain; Instituto Pirenaico de Ecología (IPE-CSIC), Avda. Nª Sª de la Victoria s/n, 22700 Jaca, Spain.
| |
Collapse
|
16
|
Boogert NJ, Lachlan RF, Spencer KA, Templeton CN, Farine DR. Stress hormones, social associations and song learning in zebra finches. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170290. [PMID: 30104435 PMCID: PMC6107560 DOI: 10.1098/rstb.2017.0290] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 11/12/2022] Open
Abstract
The use of information provided by others is a common short-cut adopted to inform decision-making. However, instead of indiscriminately copying others, animals are often selective in what, when and whom they copy. How do they decide which 'social learning strategy' to use? Previous research indicates that stress hormone exposure in early life may be important: while juvenile zebra finches copied their parents' behaviour when solving novel foraging tasks, those exposed to elevated levels of corticosterone (CORT) during development copied only unrelated adults. Here, we tested whether this switch in social learning strategy generalizes to vocal learning. In zebra finches, juvenile males often copy their father's song; would CORT-treated juveniles in free-flying aviaries switch to copying songs of other males? We found that CORT-treated juveniles copied their father's song less accurately as compared to control juveniles. We hypothesized that this could be due to having weaker social foraging associations with their fathers, and found that sons that spent less time foraging with their fathers produced less similar songs. Our findings are in line with a novel hypothesis linking early-life stress and social learning: early-life CORT exposure may affect social learning indirectly as a result of the way it shapes social affiliations.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Neeltje J Boogert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Robert F Lachlan
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews KY16 9JP, UK
| | | | - Damien R Farine
- Department of Collective Behaviour, Max Planck Institute for Ornithology, Radolfzell 78315, Germany
- Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz 78464, Germany
| |
Collapse
|
17
|
Spencer KA. Developmental stress and social phenotypes: integrating neuroendocrine, behavioural and evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0242. [PMID: 28673918 DOI: 10.1098/rstb.2016.0242] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/19/2023] Open
Abstract
The social world is filled with different types of interactions, and social experience interacts with stress on several different levels. Activation of the neuroendocrine axis that regulates the response to stress can have consequences for innumerable behavioural responses, including social decision-making and aspects of sociality, such as gregariousness and aggression. This is especially true for stress experienced during early life, when physiological systems are developing and highly sensitive to perturbation. Stress at this time can have persistent effects on social behaviours into adulthood. One important question remaining is to what extent these effects are adaptive. This paper initially reviews the current literature investigating the complex relationships between the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems and several aspects of social behaviour in vertebrates. In addition, the review explores the evidence surrounding the potential for 'social programming' via differential development and activation of the HPA axis, providing an insight into the potential for positive effects on fitness following early life stress. Finally, the paper provides a framework from which novel investigations could work to fully understand the adaptive significance of early life effects on social behaviours.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews KY16 9JP, UK
| |
Collapse
|
18
|
Fischer S, Bohn L, Oberhummer E, Nyman C, Taborsky B. Divergence of developmental trajectories is triggered interactively by early social and ecological experience in a cooperative breeder. Proc Natl Acad Sci U S A 2017; 114:E9300-E9307. [PMID: 29078289 PMCID: PMC5676887 DOI: 10.1073/pnas.1705934114] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cooperative breeders feature the highest level of social complexity among vertebrates. Environmental constraints foster the evolution of this form of social organization, selecting for both well-developed social and ecological competences. Cooperative breeders pursue one of two alternative social trajectories: delaying reproduction to care for the offspring of dominant breeders or dispersing early to breed independently. It is yet unclear which ecological and social triggers determine the choice between these alternatives and whether diverging developmental trajectories exist in cooperative vertebrates predisposing them to dispersal or philopatry. Here we experimentally reared juveniles of cooperatively breeding cichlid fish by varying the social environment and simulated predation threat in a two-by-two factorial long-term experiment. First, we show that individuals develop specialized behavioral competences, originating already in the early postnatal phase. Second, these specializations predisposed individuals to pursue different developmental trajectories and either to disperse early or to extend philopatry in adulthood. Thus, our results contrast with the proposition that social specializations in early ontogeny should be restricted to eusocial species. Importantly, social and ecological triggers were both required for the generation of divergent life histories. Our results thus confirm recent predictions from theoretical models that organisms should combine relevant information from different environmental cues to develop integrated phenotypes.
Collapse
Affiliation(s)
- Stefan Fischer
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland;
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Neston CH64 7TE, United Kingdom
| | - Lena Bohn
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
| | - Evelyne Oberhummer
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
| | - Cecilia Nyman
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Department of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, 3032 Hinterkappelen, Switzerland
| |
Collapse
|
19
|
Honarmand M, Krause ET, Naguib M. Implications of nutritional stress as nestling or fledgling on subsequent attractiveness and fecundity in zebra finches ( Taeniopygia guttata). PeerJ 2017; 5:e3628. [PMID: 28852585 PMCID: PMC5572542 DOI: 10.7717/peerj.3628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/10/2017] [Indexed: 11/20/2022] Open
Abstract
The conditions an organism experiences during early development can have profound and long lasting effects on its subsequent behavior, attractiveness, and life history decisions. Most previous studies have exposed individuals to different conditions throughout development until nutritional independence. Yet under natural conditions, individuals may experience limitations for much shorter periods due to transient environmental fluctuations. Here, we used zebra finches (Taeniopygia guttata) in captivity to determine if conditions experienced during distinctly different early developmental phases contribute differently to male and female attractiveness and subsequent reproduction. We conducted a breeding experiment in which offspring were exposed to food regimes with (a) low quality food provided only during the nestling period, (b) low quality food provided only during the fledgling period, or (c) high quality food throughout early development. We show that despite short-term effects on biometry and physiology, there were no effects on either male or female attractiveness, as tested in two-way mate choice free-flight aviary experiments. In a subsequent breeding experiment, the offspring from the initial experiment were allowed to breed themselves. The next generation offspring from mothers raised under lower quality nutrition as either nestling or fledging were lighter at hatching compared to offspring from mothers raised under higher quality nutrition whereas paternal early nutrition had no such effects. The lack of early developmental limitations on attractiveness suggests that attractiveness traits were not affected or that birds compensated for any such effects. Furthermore, maternal trans-generational effects of dietary restrictions emphasize the importance of role of limited periods of early developmental stress in the expression of environmentally determined fitness components.
Collapse
Affiliation(s)
- Mariam Honarmand
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - E Tobias Krause
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany.,Institute of Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institut, Celle, Germany
| | - Marc Naguib
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany.,Behavioural Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Bölting S, von Engelhardt N. Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches ( Taeniopygia guttata). Front Zool 2017; 14:5. [PMID: 28149319 PMCID: PMC5267386 DOI: 10.1186/s12983-017-0190-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches (Taeniopygia guttata) under three environmental conditions differing in social complexity during adolescence - juvenile pairs, juvenile groups, and mixed-age groups - and studied males’ behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated.
Collapse
Affiliation(s)
- Stefanie Bölting
- Department of Animal Behaviour, Bielefeld University, 33615 Bielefeld, Germany
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, Bielefeld University, 33615 Bielefeld, Germany.,Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA UK
| |
Collapse
|
21
|
|
22
|
Snijders L, Naguib M. Communication in Animal Social Networks. ADVANCES IN THE STUDY OF BEHAVIOR 2017. [DOI: 10.1016/bs.asb.2017.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Griffith SC, Crino OL, Andrew SC, Nomano FY, Adkins-Regan E, Alonso-Alvarez C, Bailey IE, Bittner SS, Bolton PE, Boner W, Boogert N, Boucaud ICA, Briga M, Buchanan KL, Caspers BA, Cichoń M, Clayton DF, Derégnaucourt S, Forstmeier W, Guillette LM, Hartley IR, Healy SD, Hill DL, Holveck MJ, Hurley LL, Ihle M, Tobias Krause E, Mainwaring MC, Marasco V, Mariette MM, Martin-Wintle MS, McCowan LSC, McMahon M, Monaghan P, Nager RG, Naguib M, Nord A, Potvin DA, Prior NH, Riebel K, Romero-Haro AA, Royle NJ, Rutkowska J, Schuett W, Swaddle JP, Tobler M, Trompf L, Varian-Ramos CW, Vignal C, Villain AS, Williams TD. Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities. Ethology 2016. [DOI: 10.1111/eth.12576] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Simon C. Griffith
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Ondi L. Crino
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Samuel C. Andrew
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Fumiaki Y. Nomano
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Elizabeth Adkins-Regan
- Department of Psychology and Department of Neurobiology and Behavior; Cornell University; Ithaca NY USA
| | - Carlos Alonso-Alvarez
- Instituto de Investigación en Recursos Cinegéticos (IREC) - CSIC-UCLM-JCCM; Ciudad Real Spain
- Departamento de Ecología Evolutiva; Museo Nacional de Ciencias Naturales - CSIC; Madrid Spain
| | - Ida E. Bailey
- School of Biology; University of St Andrews; St Andrews, Fife UK
| | | | - Peri E. Bolton
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Neeltje Boogert
- School of Psychology; University of St Andrews; St Andrews, Fife UK
| | - Ingrid C. A. Boucaud
- CNRS UMR 9197 NeuroPSI/ENES; Université de Lyon/Saint-Etienne; Saint-Etienne France
| | - Michael Briga
- Behavioural Biology; University of Groningen; Groningen The Netherlands
| | | | | | - Mariusz Cichoń
- Institute of Environmental Sciences; Jagiellonian University; Cracow Poland
| | - David F. Clayton
- Department of Biological and Experimental Psychology; Queen Mary University of London; London UK
| | | | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| | | | - Ian R. Hartley
- Lancaster Environment Centre; Lancaster University; Lancaster UK
| | - Susan D. Healy
- School of Biology; University of St Andrews; St Andrews, Fife UK
| | - Davina L. Hill
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Marie-Jeanne Holveck
- Institute of Biology; University of Leiden; Leiden The Netherlands
- Biodiversity Research Centre; Earth and Life Institute; Université Catholique de Louvain (UCL); Louvain-la-Neuve Belgium
| | - Laura L. Hurley
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Malika Ihle
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; Seewiesen Germany
| | - E. Tobias Krause
- Department of Animal Behaviour; Bielefeld University; Bielefeld Germany
- Institute of Animal Welfare and Animal Husbandry; Friedrich-Loeffler-Institut; Celle Germany
| | - Mark C. Mainwaring
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
- Lancaster Environment Centre; Lancaster University; Lancaster UK
| | - Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Mylene M. Mariette
- CNRS UMR 9197 NeuroPSI/ENES; Université de Lyon/Saint-Etienne; Saint-Etienne France
- School of Life and Environmental Sciences; Deakin University; Geelong VIC Australia
| | - Meghan S. Martin-Wintle
- Conservation and Research Department; PDXWildlife; Portland OR USA
- Applied Animal Ecology; Institute for Conservation Research; San Diego Zoo Global; Escondido CA USA
| | - Luke S. C. McCowan
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Maeve McMahon
- Department of Biological and Experimental Psychology; Queen Mary University of London; London UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Ruedi G. Nager
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| | - Marc Naguib
- Behavioural Ecology Group; Department of Animal Sciences; Wageningen The Netherlands
| | - Andreas Nord
- Department of Biology; Lund University; Lund Sweden
- Department of Arctic and Marine Biology; University of Tromsø; Tromsø Norway
| | - Dominique A. Potvin
- Advanced Facility for Avian Research; University of Western Ontario; London ON Canada
| | - Nora H. Prior
- Zoology Department; University of British Columbia; Vancouver BC Canada
| | - Katharina Riebel
- Lancaster Environment Centre; Lancaster University; Lancaster UK
| | - Ana A. Romero-Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC) - CSIC-UCLM-JCCM; Ciudad Real Spain
| | - Nick J. Royle
- Centre for Ecology and Conservation; University of Exeter; Penryn UK
| | - Joanna Rutkowska
- Institute of Environmental Sciences; Jagiellonian University; Cracow Poland
| | - Wiebke Schuett
- Zoological Institute; University of Hamburg; Hamburg Germany
| | - John P. Swaddle
- Biology Department; Institute for Integrative Bird Behaviour Studies; The College of William and Mary; Williamsburg VA USA
| | | | - Larissa Trompf
- Department of Biological Sciences; Macquarie University; Sydney NSW Australia
| | - Claire W. Varian-Ramos
- Biology Department; Institute for Integrative Bird Behaviour Studies; The College of William and Mary; Williamsburg VA USA
| | - Clémentine Vignal
- CNRS UMR 9197 NeuroPSI/ENES; Université de Lyon/Saint-Etienne; Saint-Etienne France
| | - Avelyne S. Villain
- CNRS UMR 9197 NeuroPSI/ENES; Université de Lyon/Saint-Etienne; Saint-Etienne France
| | - Tony D. Williams
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
| |
Collapse
|
24
|
Riebel K. Understanding Sex Differences in Form and Function of Bird Song: The Importance of Studying Song Learning Processes. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00062] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Kriengwatana B, Spierings MJ, ten Cate C. Auditory discrimination learning in zebra finches: effects of sex, early life conditions and stimulus characteristics. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
Trillmich F, Spiller I, Naguib M, Krause ET. Patient Parents: Do Offspring Decide on the Timing of Fledging in Zebra Finches? Ethology 2016. [DOI: 10.1111/eth.12490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Fritz Trillmich
- Department of Animal Behaviour; University of Bielefeld; Bielefeld Germany
| | - Inka Spiller
- Department of Animal Behaviour; University of Bielefeld; Bielefeld Germany
| | - Marc Naguib
- Behavioural Ecology Group; Wageningen University; Wageningen The Netherlands
| | - Eike Tobias Krause
- Department of Animal Behaviour; University of Bielefeld; Bielefeld Germany
- Institute of Animal Welfare and Animal Husbandry; Friedrich-Loeffler-Institut; Celle Germany
| |
Collapse
|
27
|
Naguib M, van Rooij EP, Snijders L, van Oers K. To sing or not to sing: seasonal changes in singing vary with personality in wild great tits. Behav Ecol 2016. [DOI: 10.1093/beheco/arv235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|