1
|
Gaynor KM, Abrahms B, Manlove KR, Oestreich WK, Smith JA. Anthropogenic impacts at the interface of animal spatial and social behaviour. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220527. [PMID: 39230457 PMCID: PMC11449167 DOI: 10.1098/rstb.2022.0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/05/2024] Open
Abstract
Human disturbance is contributing to widespread, global changes in the distributions and densities of wild animals. These anthropogenic impacts on wildlife arise from multiple bottom-up and top-down pathways, including habitat loss, resource provisioning, climate change, pollution, infrastructure development, hunting and our direct presence. Animal behaviour is an important mechanism linking these disturbances to population outcomes, although these behavioural pathways are often complex and can remain obscured when different aspects of behaviour are studied in isolation from one another. The spatial-social interface provides a lens for understanding how an animal's spatial and social environments interact to determine its spatial and social phenotype (i.e. measurable characteristics of an individual), and how these phenotypes interact and feed back to reshape environments. Here, we review studies of animal behaviour at the spatial-social interface to understand and predict how human disturbance affects animal movement, distribution and intraspecific interactions, with consequences for the conservation of populations and ecosystems. By understanding the spatial-social mechanisms linking human disturbance to conservation outcomes, we can better design management interventions to mitigate undesired consequences of disturbance.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Briana Abrahms
- Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Kezia R Manlove
- Department of Wildland Resources, Utah State University, Logan, UT 84322, USA
| | | | - Justine A Smith
- Department of Wildlife Fish, and Conservation Biology, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
2
|
Spiegel O, Michelangeli M, Sinn DL, Payne E, Klein JRV, Kirkpatrick J, Harbusch M, Sih A. Resource manipulation reveals interactive phenotype-dependent foraging in free-ranging lizards. J Anim Ecol 2024; 93:1108-1122. [PMID: 38877691 DOI: 10.1111/1365-2656.14128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/07/2024] [Indexed: 06/16/2024]
Abstract
Recent evidence suggests that individuals differ in foraging tactics and this variation is often linked to an individual's behavioural type (BT). Yet, while foraging typically comprises a series of search and handling steps, empirical investigations have rarely considered BT-dependent effects across multiple stages of the foraging process, particularly in natural settings. In our long-term sleepy lizard (Tiliqua rugosa) study system, individuals exhibit behavioural consistency in boldness (measured as an individual's willingness to approach a novel food item in the presence of a threat) and aggressiveness (measured as an individual's response to an 'attack' by a conspecific dummy). These BTs are only weakly correlated and have previously been shown to have interactive effects on lizard space use and movement, suggesting that they could also affect lizard foraging performance, particularly in their search behaviour for food. To investigate how lizards' BTs affect their foraging process in the wild, we supplemented food in 123 patches across a 120-ha study site with three food abundance treatments (high, low and no-food controls). Patches were replenished twice a week over the species' entire spring activity season and feeding behaviours were quantified with camera traps at these patches. We tracked lizards using GPS to determine their home range (HR) size and repeatedly assayed their aggressiveness and boldness in designated assays. We hypothesised that bolder lizards would be more efficient foragers while aggressive ones would be less attentive to the quality of foraging patches. We found an interactive BT effect on overall foraging performance. Individuals that were both bold and aggressive ate the highest number of food items from the foraging array. Further dissection of the foraging process showed that aggressive lizards in general ate the fewest food items in part because they visited foraging patches less regularly, and because they discriminated less between high and low-quality patches when revisiting them. Bolder lizards, in contrast, ate more tomatoes because they visited foraging patches more regularly, and ate a higher proportion of the available tomatoes at patches during visits. Our study demonstrates that BTs can interact to affect different search and handling components of the foraging process, leading to within-population variation in foraging success. Given that individual differences in foraging and movement will influence social and ecological interactions, our results highlight the potential role of BT's in shaping individual fitness strategies and population dynamics.
Collapse
Affiliation(s)
- Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcus Michelangeli
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| | - Janine-Rose V Klein
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Jamie Kirkpatrick
- Department of Anthropology, University of California, Santa Barbara, California, USA
| | - Marco Harbusch
- Georg-August-Büsgen-Institut, Universität Göttingen, Göttingen, Germany
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, California, USA
| |
Collapse
|
3
|
Wild S, Alarcón-Nieto G, Aplin LM. The ontogeny of social networks in wild great tits ( Parus major). Behav Ecol 2024; 35:arae011. [PMID: 38495730 PMCID: PMC10941318 DOI: 10.1093/beheco/arae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Sociality impacts many biological processes and can be tightly linked to an individual's fitness. To maximize the advantages of group living, many social animals prefer to associate with individuals that provide the most benefits, such as kin, familiar individuals, or those of similar phenotypes. Such social strategies are not necessarily stable over time but can vary with changing selection pressures. In particular, young individuals transitioning to independence should continuously adjust their social behavior in light of developmental changes. However, social strategies exhibited during adolescence in animals are understudied, and the factors underlying social network formation during ontogeny remain elusive. Here, we tracked associations of wild great tits (Parus major) during the transition to independence and across their first year of life. Both spatial and social factors predicted dyadic associations. During the transition to independence in spring, fledglings initially preferred to associate with siblings and peers over non-parent adults. We found no evidence for preferred associations among juveniles of similar age or fledge weight during that time but weak evidence for some potential inheritance of the parental social network. By autumn, after juveniles had reached full independence, they exhibited social strategies similar to those of adults by establishing stable social ties based on familiarity that persisted through winter into the next spring. Overall, this research demonstrates dynamic changes in social networks during ontogeny in a species with a fast life history and limited parental care, which likely reflect changes in selective pressures. It further highlights the importance of long-term social bonds based on familiarity in this species.
Collapse
Affiliation(s)
- Sonja Wild
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
- Department of Environmental Science & Policy, University of California Davis, One Shields Ave, Davis, CA-95616, USA
| | - Gustavo Alarcón-Nieto
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Migration, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- International Max Planck Research School for Quantitative Behaviour, Ecology and Evolution, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany
| | - Lucy M Aplin
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivan’s Creek Road, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
Borthwick Z, Quiring K, Griffith SC, Leu ST. Heat stress conditions affect the social network structure of free-ranging sheep. Ecol Evol 2024; 14:e10996. [PMID: 38352202 PMCID: PMC10862161 DOI: 10.1002/ece3.10996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Extreme weather conditions, like heatwave events, are becoming more frequent with climate change. Animals often modify their behaviour to cope with environmental changes and extremes. During heat stress conditions, individuals change their spatial behaviour and increase the use of shaded areas to assist with thermoregulation. Here, we suggest that for social species, these behavioural changes and ambient conditions have the potential to influence an individual's position in its social network, and the social network structure as a whole. We investigated whether heat stress conditions (quantified through the temperature humidity index) and the resulting use of shaded areas, influence the social network structure and an individual's connectivity in it. We studied this in free-ranging sheep in the arid zone of Australia, GPS-tracking all 48 individuals in a flock. When heat stress conditions worsened, individuals spent more time in the shade and the network was more connected (higher density) and less structured (lower modularity). Furthermore, we then identified the behavioural change that drove the altered network structure and showed that an individual's shade use behaviour affected its social connectivity. Interestingly, individuals with intermediate shade use were most strongly connected (degree, strength, betweenness), indicating their importance for the connectivity of the social network during heat stress conditions. Heat stress conditions, which are predicted to increase in severity and frequency due to climate change, influence resource use within the ecological environment. Importantly, our study shows that these heat stress conditions also affect the animal's social environment through the changed social network structure. Ultimately, this could have further flow on effects for social foraging and individual health since social structure drives information and disease transmission.
Collapse
Affiliation(s)
- Zachary Borthwick
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
| | - Katrin Quiring
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Department of Behavioural EcologyUniversity of GöttingenGöttingenGermany
| | - Simon C. Griffith
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Stephan T. Leu
- School of Animal and Veterinary SciencesThe University of AdelaideRoseworthySouth AustraliaAustralia
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Albery GF, Bansal S, Silk MJ. Comparative approaches in social network ecology. Ecol Lett 2024; 27:e14345. [PMID: 38069575 DOI: 10.1111/ele.14345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti-predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Shweta Bansal
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Matthew J Silk
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
de Cerqueira LVMP, González Tokman D, Correa CMA, Storck‐Tonon D, Cupello M, Peres CA, Salomão RP. Insularization drives physiological condition of Amazonian dung beetles. Ecol Evol 2023; 13:e10772. [PMID: 38077521 PMCID: PMC10701085 DOI: 10.1002/ece3.10772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 10/16/2024] Open
Abstract
The fragmentation and degradation of otherwise continuous natural landscapes pose serious threats to the health of animal populations, consequently impairing their fitness and survival. While most fragmentation ecology studies focus on habitat remnants embedded withinn terrestrial matrices, the effects of true insularization remains poorly understood. Land-bridge islands created by major dams leads to habitat loss and fragmentation, negatively affecting terrestrial biodiversity. To assess the effects of insularization, we conducted a study on the key aspects of dung beetle physiological condition and body size throughout the Balbina Hydroelectric Reservoir located in the Central Amazon. We assessed these traits at the population and assemblage levels, collecting dung beetles from both forest islands and continuous forest areas while analyzing various landscape variables. We show that landscapes with higher forest cover positively affected dung beetle body size. Interestingly, dung beetle responses to insularization were species-dependent; larger islands tended to host larger individuals of Deltochilum aspericole, while in Canthon triangularis, smaller islands showed larger body sizes. However, individuals from the mainland were larger than those from the islands. Moreover, the proportion of closed-canopy forest in the landscapes also impacted physiological attributes. It negatively affected the body size of Deltochilum aspericole and the lipid mass of Dichotomius boreus, but positively affected the lipid mass of Canthon triangularis. These findings contribute to a better understanding of how habitat fragmentation in aquatic matrices affects the size structure and physiology of insect assemblages. This is essential in formulating effective conservation strategies for preserving biodiversity loss in tropical forest regions and mitigating the consequences of hydropower infrastructure.
Collapse
Affiliation(s)
| | | | - César M. A. Correa
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
| | - Danielle Storck‐Tonon
- Laboratório de Zoologia, CPEDAUniversidade do Estado de Mato GrossoTangará da SerraBrazil
| | - Mario Cupello
- Departamento de Zoologia, Laboratório de Sistemática e Bioecologia de ColeopteraUniversidade Federal do ParanáCuritibaBrazil
| | - Carlos A. Peres
- School of Environmental SciencesUniversity of East AngliaNorwichUK
| | - Renato Portela Salomão
- Programa de Pós‐Graduação em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
- Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantla de BazMexico
| |
Collapse
|
7
|
Beck KB, Farine DR, Firth JA, Sheldon BC. Variation in local population size predicts social network structure in wild songbirds. J Anim Ecol 2023; 92:2348-2362. [PMID: 37837224 PMCID: PMC10952437 DOI: 10.1111/1365-2656.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
The structure of animal societies is a key determinant of many ecological and evolutionary processes. Yet, we know relatively little about the factors and mechanisms that underpin detailed social structure. Among other factors, social structure can be influenced by habitat configuration. By shaping animal movement decisions, heterogeneity in habitat features, such as vegetation and the availability of resources, can influence the spatiotemporal distribution of individuals and subsequently key socioecological properties such as the local population size and density. Differences in local population size and density can impact opportunities for social associations and may thus drive substantial variation in local social structure. Here, we investigated spatiotemporal variation in population size at 65 distinct locations in a small songbird, the great tit (Parus major) and its effect on social network structure. We first explored the within-location consistency of population size from weekly samples and whether the observed variation in local population size was predicted by the underlying habitat configuration. Next, we created social networks from the birds' foraging associations at each location for each week and examined if local population size affected social structure. We show that population size is highly repeatable within locations across weeks and years and that some of the observed variation in local population size was predicted by the underlying habitat, with locations closer to the forest edge having on average larger population sizes. Furthermore, we show that local population size affected social structure inferred by four global network metrics. Using simple simulations, we then reveal that much of the observed social structure is shaped by social processes. Across different population sizes, the birds' social structure was largely explained by their preference to forage in flocks. In addition, over and above effects of social foraging, social preferences between birds (i.e. social relationships) shaped certain network features such as the extent of realized social connections. Our findings thus suggest that individual social decisions substantially contribute to shaping certain social network features over and above effects of population size alone.
Collapse
Affiliation(s)
- Kristina B. Beck
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
- Division of Ecology and Evolution, Research School of BiologyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Department of Collective BehaviourMax Planck Institute of Animal BehaviourKonstanzGermany
| | - Josh A. Firth
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| | - Ben C. Sheldon
- Department of Biology, Edward Grey InstituteUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Philson CS, Blumstein DT. Emergent social structure is typically not associated with survival in a facultatively social mammal. Biol Lett 2023; 19:20220511. [PMID: 36918036 PMCID: PMC10014246 DOI: 10.1098/rsbl.2022.0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
For social animals, group social structure has important consequences for disease and information spread. While prior studies showed individual connectedness within a group has fitness consequences, less is known about the fitness consequences of group social structure for the individuals who comprise the group. Using a long-term dataset on a wild population of facultatively social yellow-bellied marmots (Marmota flaviventer), we showed social structure had largely no relationship with survival, suggesting consequences of individual social phenotypes may not scale to the group social phenotype. An observed relationship for winter survival suggests a potentially contrasting direction of selection between the group and previous research on the individual level; less social individuals, but individuals in more social groups experience greater winter survival. This work provides valuable insights into evolutionary implications across social phenotypic scales.
Collapse
Affiliation(s)
- Conner S. Philson
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, 621 Young Drive South, Los Angeles, CA 90095-1606, USA
- Rocky Mountain Biological Laboratory, Box 519, Crested Butte, CO 81224, USA
| |
Collapse
|
9
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
10
|
Welklin JF, Lantz SM, Khalil S, Moody NM, Karubian J, Webster MS. Photoperiod and rainfall are associated with seasonal shifts in social structure in a songbird. Behav Ecol 2022. [DOI: 10.1093/beheco/arac110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Seasonally breeding animals often exhibit different social structures during non-breeding and breeding periods that coincide with seasonal environmental variation and resource abundance. However, we know little about the environmental factors associated with when seasonal shifts in social structure occur. This lack of knowledge contrasts with our well-defined knowledge of the environmental cues that trigger a shift to breeding physiology in seasonally breeding species. Here, we identified some of the main environmental factors associated with seasonal shifts in social structure and initiation of breeding in the red-backed fairywren (Malurus melanocephalus), an Australian songbird. Social network analyses revealed that social groups, which are highly territorial during the breeding season, interact in social “communities” on larger home ranges during the non-breeding season. Encounter rates among non-breeding groups were related to photoperiod and rainfall, with shifting photoperiod and increased rainfall associated with a shift toward territorial breeding social structure characterized by reductions in home range size and fewer encounters among non-breeding social groups. Similarly, onset of breeding was highly seasonal and was also associated with non-breeding season rainfall, with greater rainfall leading to earlier breeding. These findings reveal that for some species, the environmental factors associated with the timing of shifts in social structure across seasonal boundaries can be similar to those that determine timing of breeding. This study increases our understanding of the environmental factors associated with seasonal variation in social structure and how the timing of these shifts may respond to changing climates.
Collapse
Affiliation(s)
- Joseph F Welklin
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| | - Samantha M Lantz
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Sarah Khalil
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Nicole M Moody
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
- Department of Ecology and Evolutionary Biology, Brown University , 80 Waterman St, Providence, RI 02912 , USA
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University , 400 Lindy Boggs Center, New Orleans, LA 70118 , USA
| | - Michael S Webster
- Department of Neurobiology and Behavior, Cornell University , 215 Tower Rd, Ithaca, NY 14853 , USA
- Cornell Lab of Ornithology , 159 Sapsucker Woods Rd, Ithaca, NY 14850 , USA
| |
Collapse
|
11
|
Philson CS, Blumstein DT. Group social structure has limited impact on reproductive success in a wild mammal. Behav Ecol 2022. [DOI: 10.1093/beheco/arac102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
The frequency and type of dyadic social interactions individuals partake in has important fitness consequences. Social network analysis is an effective tool to quantify the complexity and consequences of these behaviors on the individual level. Less work has used social networks to quantify the social structure—specific attributes of the pattern of all social interactions in a network—of animal social groups, and its fitness consequences for those individuals who comprise the group. We studied the association between social structure, quantified via five network measures, and annual reproductive success in wild, free-living female yellow-bellied marmots (Marmota flaviventer). We quantified reproductive success in two ways: (1) if an individual successfully weaned a litter and (2) how many pups were weaned. Networks were constructed from 38 968 interactions between 726 unique individuals in 137 social groups across 19 years. Using generalized linear mixed models, we found largely no relationship between either measure of reproductive success and social structure. We found a modest relationship that females residing in more fragmentable social groups (i.e., groups breakable into two or more separate groups of two or more individuals) weaned larger litters. Prior work showed that yellow-bellied marmots residing in more fragmentable groups gained body mass faster—another important fitness correlate. Interestingly, we found no strong relationships between other attributes of social group structure, suggesting that in this facultatively social mammal, the position of individuals within their group, the individual social phenotype, may be more important for fitness than the emergent group social phenotype.
Collapse
Affiliation(s)
- Conner S Philson
- Department of Ecology and Evolutionary Biology, University of California , 621 Young Drive South, Los Angeles, CA 90095-1606 , USA
- Rocky Mountain Biological Laboratory , Box 519, Crested Butte, CO 81224 , USA
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California , 621 Young Drive South, Los Angeles, CA 90095-1606 , USA
- Rocky Mountain Biological Laboratory , Box 519, Crested Butte, CO 81224 , USA
| |
Collapse
|
12
|
Utsumi K, Staley C, Núñez H, Eifler MA, Eifler DA. The social system of the lava lizard, Microlophus atacamensis: the interplay between social structure and social organization. REVISTA CHILENA DE HISTORIA NATURAL 2022. [DOI: 10.1186/s40693-022-00113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Background
Animal social systems can be described through four main components: social structure, social organization, mating system, and care system. Social structure describes the relationships between individuals in a population, while social organization describes the group composition, size, and spatiotemporal variation of a population. We use the frameworks of social structure and social organization to study the social system of Microlophus atacamensis, a lizard found in the rocky intertidal zone along the Chilean coast. The area M. atacamensis inhabits poses specific challenges stemming from their use of two distinct habitat types in the intertidal zone: they forage in the cool areas near the water’s edge and use large rocks in more inland areas for basking and refuge.
Methods
Our assessment of their social system focused on two separate populations: one to characterize social structure by means of focal observations and social network analysis, and a second to assess social organization via home range and core area analyses. Further, we examined the social system in two habitat types that comprise the intertidal zone: cobble fields and interspersed large rocks.
Results
Social network analysis revealed an interconnected network with a few highly central individuals. Body size influenced the outcomes of aggressive interactions, with interactions being more common in cobble fields where males had more associates and more repeated interactions than females. Spatial analyses revealed that the social organization of M. atacamensis is characterized by (1) high home range overlap, specifically in the cobble fields and (2) relatively exclusive core areas dispersed across both habitat types.
Conclusion
A social system is composed of both cooperative and competitive behaviors. While our study focused on competitive interactions, the extent and influence of cooperative behaviors is still unclear and merits future research. We suggest that M. atacamensis has a variable social system in which territoriality on large rocks affects access to stationary resources in that habitat (e.g., basking sites and refuges), while competition in the cobble fields could lay the foundation for a system of dominance relationships controlling access to variable food resources in cobble field areas of the intertidal zone.
Collapse
|
13
|
Marfurt SM, Allen SJ, Bizzozzero MR, Willems EP, King SL, Connor RC, Kopps AM, Wild S, Gerber L, Wittwer S, Krützen M. Association patterns and community structure among female bottlenose dolphins: environmental, genetic and cultural factors. Mamm Biol 2022; 102:1373-1387. [PMID: 36998433 PMCID: PMC10040398 DOI: 10.1007/s42991-022-00259-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 05/16/2022] [Indexed: 11/06/2022]
Abstract
AbstractSocial structuring from assortative associations may affect individual fitness, as well as population-level processes. Gaining a broader understanding of social structure can improve our knowledge of social evolution and inform wildlife conservation. We investigated association patterns and community structure of female Indo-Pacific bottlenose dolphins (Tursiops aduncus) in Shark Bay, Western Australia, assessing the role of kinship, shared culturally transmitted foraging techniques, and habitat similarity based on water depth. Our results indicated that associations are influenced by a combination of uni- and biparental relatedness, cultural behaviour and habitat similarity, as these were positively correlated with a measure of dyadic association. These findings were matched in a community level analysis. Members of the same communities overwhelmingly shared the same habitat and foraging techniques, demonstrating a strong homophilic tendency. Both uni- and biparental relatedness between dyads were higher within than between communities. Our results illustrate that intraspecific variation in sociality in bottlenose dolphins is influenced by a complex combination of genetic, cultural, and environmental aspects.
Collapse
Affiliation(s)
- Svenja M. Marfurt
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Simon J. Allen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
- School of Biological Sciences, University of Western Australia, Perth, WA 6009 Australia
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | - Manuela R. Bizzozzero
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Erik P. Willems
- Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Stephanie L. King
- School of Biological Sciences, University of Western Australia, Perth, WA 6009 Australia
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | | | - Anna M. Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Sonja Wild
- Cognitive and Cultural Ecology Research Group, Max Planck Institute of Animal Behaviour, Am Obstberg 1, 78315 Radolfzell, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstrasse 10, 78464 Constance, Germany
| | - Livia Gerber
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Samuel Wittwer
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Experimental manipulation of food distribution alters social networks and information transmission across environments in a food-caching bird. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
15
|
Perry SE, Carter A, Foster JG, Nöbel S, Smolla M. What Makes Inventions Become Traditions? ANNUAL REVIEW OF ANTHROPOLOGY 2022. [DOI: 10.1146/annurev-anthro-012121-012127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although anthropology was the first academic discipline to investigate cultural change, many other disciplines have made noteworthy contributions to understanding what influences the adoption of new behaviors. Drawing on a broad, interdisciplinary literature covering both humans and nonhumans, we examine ( a) which features of behavioral traits make them more transmissible, ( b) which individual characteristics of inventors promote copying of their inventions, ( c) which characteristics of individuals make them more prone to adopting new behaviors, ( d) which characteristics of dyadic relationships promote cultural transmission, ( e) which properties of groups (e.g., network structures) promote transmission of traits, and ( f) which characteristics of groups promote retention, rather than extinction, of cultural traits. One of anthropology's strengths is its readiness to adopt and improve theories and methods from other disciplines, integrating them into a more holistic approach; hence, we identify approaches that might be particularly useful to biological and cultural anthropologists, and knowledge gaps that should be filled.
Collapse
Affiliation(s)
- Susan E. Perry
- Evolution and Culture Program, Department of Anthropology and Behavior, University of California, Los Angeles, California, USA
| | - Alecia Carter
- Department of Anthropology, University College London, London, United Kingdom
| | - Jacob G. Foster
- Department of Sociology, University of California, Los Angeles, California, USA
| | - Sabine Nöbel
- Université Toulouse 1 Capitole and Institute for Advanced Study in Toulouse, Toulouse, France
- Laboratoire Évolution et Diversité Biologique, CNRS, UMR 5174, IRD, Université de Toulouse, Toulouse, France
| | - Marco Smolla
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
16
|
He P, Klarevas‐Irby JA, Papageorgiou D, Christensen C, Strauss ED, Farine DR. A guide to sampling design for
GPS
‐based studies of animal societies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Biology University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - James A. Klarevas‐Irby
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Biology University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Department of Migration Max Planck Institute of Animal Behavior Radolfzell Germany
- Mpala Research Centre Nanyuki Kenya
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - Charlotte Christensen
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Mpala Research Centre Nanyuki Kenya
| | - Eli D. Strauss
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Constance Germany
- Department of Evolutionary Biology and Environmental Science University of Zurich Zurich Switzerland
- Division of Ecology and Evolution, Research School of Biology Australian National University Canberra Australia
- Department of Ornithology National Museums of Kenya Nairobi Kenya
| |
Collapse
|
17
|
Roose R, Oliver M, Haulsee D, Breece M, Carlisle A, Fox D. The sociality of Atlantic sturgeon and sand tiger sharks in estuarine environment. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Giuntini S, Pedruzzi L. Sex and the patch: the influence of habitat fragmentation on terrestrial vertebrates’ mating strategies. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2059787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Silvia Giuntini
- Dipartimento di Biologia, Università di Pisa, Via Alessandro Volta 6, Pisa 56126, Italy
- Environmental Analysis and Management Unit, Guido Tosi Research Group, Department of Theoretical and Applied Sciences, Università degli Studi dell’Insubria, Varese, Italy
| | - Luca Pedruzzi
- Dipartimento di Biologia, Università di Pisa, Via Alessandro Volta 6, Pisa 56126, Italy
| |
Collapse
|
19
|
Senigaglia V, Christiansen F, Bejder L, Sprogis K, Cantor M. Human food provisioning impacts the social environment, home range and fitness of a marine top predator. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Costello RA, Cook PA, Formica VA, Brodie ED. Group and individual social network metrics are robust to changes in resource distribution in experimental populations of forked fungus beetles. J Anim Ecol 2022; 91:895-907. [PMID: 35220593 PMCID: PMC9313900 DOI: 10.1111/1365-2656.13684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 11/18/2022]
Abstract
Social interactions drive many important ecological and evolutionary processes. It is therefore essential to understand the intrinsic and extrinsic factors that underlie social patterns. A central tenet of the field of behavioural ecology is the expectation that the distribution of resources shapes patterns of social interactions. We combined experimental manipulations with social network analyses to ask how patterns of resource distribution influence complex social interactions. We experimentally manipulated the distribution of an essential food and reproductive resource in semi‐natural populations of forked fungus beetles Bolitotherus cornutus. We aggregated resources into discrete clumps in half of the populations and evenly dispersed resources in the other half. We then observed social interactions between individually marked beetles. Half‐way through the experiment, we reversed the resource distribution in each population, allowing us to control any demographic or behavioural differences between our experimental populations. At the end of the experiment, we compared individual and group social network characteristics between the two resource distribution treatments. We found a statistically significant but quantitatively small effect of resource distribution on individual social network position and detected no effect on group social network structure. Individual connectivity (individual strength) and individual cliquishness (local clustering coefficient) increased in environments with clumped resources, but this difference explained very little of the variance in individual social network position. Individual centrality (individual betweenness) and measures of overall social structure (network density, average shortest path length and global clustering coefficient) did not differ between environments with dramatically different distributions of resources. Our results illustrate that the resource environment, despite being fundamental to our understanding of social systems, does not always play a central role in shaping social interactions. Instead, our results suggest that sex differences and temporally fluctuating environmental conditions may be more important in determining patterns of social interactions.
Collapse
Affiliation(s)
| | - Phoebe A. Cook
- Department of Biology University of Virginia Charlottesville VA USA
| | | | - Edmund D. Brodie
- Department of Biology University of Virginia Charlottesville VA USA
| |
Collapse
|
21
|
(Gentry) Richardson KE, Roche DP, Mugel SG, Lancaster ND, Sieving KE, Freeberg TM, Lucas JR. Social dynamics of core members in mixed-species bird flocks change across a gradient of foraging habitat quality. PLoS One 2022; 17:e0262385. [PMID: 35108278 PMCID: PMC8809581 DOI: 10.1371/journal.pone.0262385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Social associations within mixed-species bird flocks can promote information flow about food availability and provide predator avoidance benefits. The relationship between flocking propensity, foraging habitat quality, and interspecific competition can be altered by human-induced habitat degradation. Here we take a close look at sociality within two ecologically important flock-leader (core) species, the Carolina chickadee (Poecile carolinensis) and tufted titmouse (Baeolophus bicolor), to better understand how degradation of foraging habitat quality affects mixed-species flocking dynamics. We compared interactions of free ranging wild birds across a gradient of foraging habitat quality in three managed forest remnants. Specifically, we examined aspects of the social network at each site, including network density, modularity, and species assortativity. Differences in the social networks between each end of our habitat gradient suggest that elevated levels of interspecific association are more valuable in the habitat with low quality foraging conditions. This conclusion is supported by two additional findings: First, foraging height for the subordinate Carolina chickadee relative to the tufted titmouse decreased with an increase in the number of satellite species in the most disturbed site but not in the other two sites. Second, the chickadee gargle call rate, an acoustic signal emitted during agonistic encounters between conspecifics, was relatively higher at the high-quality site. Collectively, these results suggest an increase in heterospecific associations increases the value of cross-species information flow in degraded habitats.
Collapse
Affiliation(s)
| | - Daniel P. Roche
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Stephen G. Mugel
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Nolan D. Lancaster
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Kathryn E. Sieving
- Department of Wildlife Ecology & Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Todd M. Freeberg
- Department of Psychology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jeffrey R. Lucas
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
22
|
|
23
|
Riley JL, Noble DWA, Stow AJ, Bolton PE, While GM, Dennison S, Byrne RW, Whiting MJ. Socioecology of the Australian Tree Skink (Egernia striolata). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is great diversity in social behavior across the animal kingdom. Understanding the factors responsible for this diversity can help inform theory about how sociality evolves and is maintained. The Australian Tree Skink (Egernia striolata) exhibits inter- and intra-population variability in sociality and is therefore a good system for informing models of social evolution. Here, we conducted a multi-year study of a Tree Skink population to describe intra-population variation in the social organization and mating system of this species. Skinks aggregated in small groups of 2–5 individuals, and these aggregations were typically associated with shared shelter sites (crevices and hollows within rocks and trees). Aggregations were typically made up of one or more adult females and, often, one male and/or juvenile(s). Social network and spatial overlap analyses showed that social associations were strongly biased toward kin. Tree skinks also exhibited high site fidelity regardless of age or sex. There were high levels of genetic monogamy observed with most females (87%) and males (68%) only breeding with a single partner. Our results indicate that Tree Skinks reside in small family groups and are monogamous, which corresponds with existing research across populations. Similar to previous work, our study area consisted of discrete habitat patches (i.e., rock outcrops, trees, or both), which likely limits offspring dispersal and promotes social tolerance between parents and their offspring. Our study clearly demonstrates that there is intra-population variability in Tree Skink social behavior, but it also provides evidence that there is a high degree of inter-population consistency in sociality across their geographic range. We also highlight promising possible avenues for future research, specifically discussing the importance of studying the nature and extent of Tree Skink parental care and quantifying the fitness outcomes of kin-based sociality in this species, which are topics that will further our understanding of the mechanisms underlying variation in vertebrate social behavior.
Collapse
|
24
|
Gareta García M, Farine DR, Brachotte C, Borgeaud C, Bshary R. Wild female vervet monkeys change grooming patterns and partners when freed from feeding constraints. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Jordán F, Kovács B, Verdolin JL. Resource availability influences global social network properties in Gunnison’s prairie dogs (Cynomys gunnisoni). BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Increasingly we are discovering that the interactions between individuals within social groups can be quite complex and flexible. Social network analysis offers a toolkit to describe and quantify social structure, the patterns we observe, and evaluate the social and environmental factors that shape group dynamics. Here, we used 14 Gunnison’s prairie dogs networks to evaluate how resource availability and network size influenced four global properties of the networks (centralization, clustering, average path length, small word index). Our results suggest a positive correlation between overall network cohesion and resource availability, such that networks became less centralized and cliquish as biomass/m2 availability decreased. We also discovered that network size modulates the link between social interactions and resource availability and is consistent with a more ‘decentralized’ group. This study highlights the importance of how individuals modify social cohesions and network connectedness as a way to reduce intragroup competition under different ecological conditions.
Collapse
Affiliation(s)
- Ferenc Jordán
- Balaton Limnological Institute, Centre for Ecological Research, Tihany, Hungary
- Evolutionary Systems Research Group, Centre for Ecological Research, Tihany, Hungary
| | | | - Jennifer L. Verdolin
- School of Natural Resources and Environment, University of Arizona, Tucson, AZ, USA
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
26
|
Muller Z, Harris S. A review of the social behaviour of the giraffe
Giraffa camelopardalis
: a misunderstood but socially complex species. Mamm Rev 2021. [DOI: 10.1111/mam.12268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zoe Muller
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Stephen Harris
- School of Biological Sciences University of Bristol Bristol Life Sciences Building, 24 Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
27
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
28
|
Kalbitzer U, Chapman CA. Patterns of female social relationships in a primate with female-biased dispersal. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
He P, Montiglio PO, Somveille M, Cantor M, Farine DR. The role of habitat configuration in shaping animal population processes: a framework to generate quantitative predictions. Oecologia 2021; 196:649-665. [PMID: 34159423 PMCID: PMC8292241 DOI: 10.1007/s00442-021-04967-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/10/2021] [Indexed: 12/20/2022]
Abstract
By shaping where individuals move, habitat configuration can fundamentally structure animal populations. Yet, we currently lack a framework for generating quantitative predictions about the role of habitat configuration in modulating population outcomes. To address this gap, we propose a modelling framework inspired by studies using networks to characterize habitat connectivity. We first define animal habitat networks, explain how they can integrate information about the different configurational features of animal habitats, and highlight the need for a bottom–up generative model that can depict realistic variations in habitat potential connectivity. Second, we describe a model for simulating animal habitat networks (available in the R package AnimalHabitatNetwork), and demonstrate its ability to generate alternative habitat configurations based on empirical data, which forms the basis for exploring the consequences of alternative habitat structures. Finally, we lay out three key research questions and demonstrate how our framework can address them. By simulating the spread of a pathogen within a population, we show how transmission properties can be impacted by both local potential connectivity and landscape-level characteristics of habitats. Our study highlights the importance of considering the underlying habitat configuration in studies linking social structure with population-level outcomes.
Collapse
Affiliation(s)
- Peng He
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany. .,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany. .,Department of Biology, University of Konstanz, Konstanz, Germany. .,Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland.
| | | | - Marius Somveille
- Birdlife International, The David Attenborough Building, Cambridge, UK.,Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mauricio Cantor
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Evolutionary Biology and Environmental Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Payne E, Sinn D, Spiegel O, Leu S, Gardner M, Godfrey S, Wohlfeil C, Sih A. Consistent after all: behavioural repeatability in a long-lived lizard across a 6-year field study. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Genovart M, Gimenez O, Bertolero A, Choquet R, Oro D, Pradel R. Decrease in social cohesion in a colonial seabird under a perturbation regime. Sci Rep 2020; 10:18720. [PMID: 33127979 PMCID: PMC7603481 DOI: 10.1038/s41598-020-75259-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/14/2020] [Indexed: 11/29/2022] Open
Abstract
Social interactions, through influence on behavioural processes, can play an important role in populations’ resilience (i.e. ability to cope with perturbations). However little is known about the effects of perturbations on the strength of social cohesion in wild populations. Long-term associations between individuals may reflect the existence of social cohesion for seizing the evolutionary advantages of social living. We explore the existence of social cohesion and its dynamics under perturbations by analysing long-term social associations, in a colonial seabird, the Audouin’s gull Larus audouinii, living in a site experiencing a shift to a perturbed regime. Our goals were namely (1) to uncover the occurrence of long-term social ties (i.e. associations) between individuals and (2) to examine whether the perturbation regime affected this form of social cohesion. We analysed a dataset of more than 3500 individuals from 25 years of monitoring by means of contingency tables and within the Social Network Analysis framework. We showed that associations between individuals are not only due to philopatry or random gregariousness but that there are social ties between individuals over the years. Furthermore, social cohesion decreased under the perturbation regime. We sustain that perturbations may lead not only to changes in individuals’ behaviour and fitness but also to a change in populations’ social cohesion. The consequences of decreasing social cohesion are still not well understood, but they can be critical for the population dynamics of social species.
Collapse
Affiliation(s)
- M Genovart
- CEAB (CSIC), Accés Cala Sant Francesc 14, 17300, Blanes, Spain. .,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Spain.
| | - O Gimenez
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| | - A Bertolero
- Associació Ornitològica Picampall de les Terres de l'Ebre, 43580, Deltebre, Spain
| | - R Choquet
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| | - D Oro
- CEAB (CSIC), Accés Cala Sant Francesc 14, 17300, Blanes, Spain.,IMEDEA (CSIC-UIB), Miquel Marquès 21, 07190, Esporles, Spain
| | - R Pradel
- CEFE, CNRS, Univ. Montpellier, Univ. Paul Valéry Montpellier 3, EPHE, IRD, 34293, Montpellier, France
| |
Collapse
|
32
|
Rat M, Mathe‐Hubert H, McKechnie AE, Sueur C, Cunningham SJ. Extreme and variable environmental temperatures are linked to reduction of social network cohesiveness in a highly social passerine. OIKOS 2020. [DOI: 10.1111/oik.07463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Margaux Rat
- FitzPatrick Inst. of African Ornithology, DST‐NRF Centre of Excellence, Univ. of Cape Town Rondebosch South Africa
| | - Hugo Mathe‐Hubert
- Eawag, Swiss Federal Inst. of Aquatic Science and Technology and Inst. of Integrative Biology ETH Switzerland
- Centre National de la Recherche Scientifique (CNRS), Lab. Techniques de l'Ingénierie Médical et de la Complexité ‐ Informatique, Mathématiques et Applications, Grenoble ((TIMC‐IMAG) Grenoble France
| | - Andrew E. McKechnie
- FitzPatrick Inst. of African Ornithology, DST‐NRF Centre of Excellence, Dept of Zoology and Entomology, Univ. of Pretoria Hatfield South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Inst. Pretoria South Africa
| | - Cedric Sueur
- Univ. de Strasbourg, CNRS, IPHC UMR Strasbourg France
- Inst. Universitaire de France Paris France
| | - Susan J. Cunningham
- FitzPatrick Inst. of African Ornithology, DST‐NRF Centre of Excellence, Univ. of Cape Town Rondebosch South Africa
| |
Collapse
|
33
|
Formica V, Donald H, Marti H, Irgebay Z, Brodie E. Social network position experiences more variable selection than weaponry in wild subpopulations of forked fungus beetles. J Anim Ecol 2020; 90:168-182. [PMID: 32808282 DOI: 10.1111/1365-2656.13322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
The phenotypic expression and fitness consequences of behaviours that are exhibited during social interactions are especially sensitive to their local social context. This context-dependence is expected to generate more variation in the sign and magnitude of selection on social behaviour than that experienced by static characters like morphology. Relatively few studies, however, have examined selection on behavioural traits in multiple populations. We estimated sexual selection in the wild to determine if the strength and form of selection on social phenotypes is more variable than that on morphology. We compared selection gradients on social network position, body size, and weaponry of male forked fungus beetles Bolitotherus cornutus as they influenced mating success across nine natural subpopulations. Male horn length consistently experienced positive sexual selection. However, the sign and magnitude of selection on individual measures of network centrality (strength and betweenness) differed significantly among subpopulations. Moreover, selection on social behaviours occurred at a local scale ('soft selection'), whereas selection on horn length occurred at the metapopulation scale ('hard selection'). These results indicate that an individual with a given social phenotype could experience different fitness consequences depending on the network it occupies. While individuals seem to be unable to escape the fitness effects of their morphology, they may have the potential to mediate the pressures of selection on behavioural phenotypes by moving among subpopulations or altering social connections within a network.
Collapse
Affiliation(s)
- Vincent Formica
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Hannah Donald
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Hannah Marti
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zhazira Irgebay
- Department of Biology, Swarthmore College, Swarthmore, PA, USA
| | - Edmund Brodie
- Mountain Lake Biological Station and Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
34
|
Shelton DS, Shelton SG, Daniel DK, Raja M, Bhat A, Tanguay RL, Higgs DM, Martins EP. Collective Behavior in Wild Zebrafish. Zebrafish 2020; 17:243-252. [PMID: 32513074 DOI: 10.1089/zeb.2019.1851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic change is expected to alter environments at alarming rates. To predict the impact of modified environments on social behavior, we must study the relationship between environmental features and collective behavior in a genetically tractable model, zebrafish (Danio rerio). Here, we conducted a field study to examine the relationship between salient environmental features and collective behavior in four populations of zebrafish. We found zebrafish in flowing water formed volatile groups, whereas those in still water had more consistent membership and leadership. Groups in fast-flowing water were large (up to 2000 fish) and tightly knit with short nearest neighbor distances, whereas group sizes were smaller (11 fish/group) with more space between individual fish in still and slow-flowing water. These observations point to a possible profound role of water flow in influencing collective behavior in wild zebrafish.
Collapse
Affiliation(s)
- Delia S Shelton
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA.,Leibniz Institute for Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Biological Sciences, University of Windsor, Windsor, Canada
| | | | - Danita K Daniel
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Manickam Raja
- Department of Biomedical Engineering, The Kavery College of Engineering, Salem, India
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon, USA
| | - Dennis M Higgs
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| | - Emília P Martins
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
35
|
Bond ML, König B, Lee DE, Ozgul A, Farine DR. Proximity to humans affects local social structure in a giraffe metapopulation. J Anim Ecol 2020; 90:212-221. [PMID: 32515083 DOI: 10.1111/1365-2656.13247] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023]
Abstract
Experimental laboratory evidence suggests that animals with disrupted social systems express weakened relationship strengths and have more exclusive social associations, and that these changes have functional consequences. A key question is whether anthropogenic pressures have a similar impact on the social structure of wild animal communities. We addressed this question by constructing a social network from 6 years of systematically collected photographic capture-recapture data spanning 1,139 individual adult female Masai giraffes inhabiting a large, unfenced, heterogeneous landscape in northern Tanzania. We then used the social network to identify distinct social communities, and tested whether social or anthropogenic and other environmental factors predicted differences in social structure among these communities. We reveal that giraffes have a multilevel social structure. Local preferences in associations among individuals scale up to a number of distinct, but spatially overlapping, social communities, that can be viewed as a large interconnected metapopulation. We then find that communities that are closer to traditional compounds of Indigenous Masai people express weaker relationship strengths and the giraffes in these communities are more exclusive in their associations. The patterns we characterize in response to proximity to humans reflect the predictions of disrupted social systems. Near bomas, fuelwood cutting can reduce food resources, and groups of giraffes are more likely to encounter livestock and humans on foot, thus disrupting the social associations among group members. Our results suggest that human presence could potentially be playing an important role in determining the conservation future of this megaherbivore.
Collapse
Affiliation(s)
- Monica L Bond
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,Wild Nature Institute, Concord, NH, USA
| | - Barbara König
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Derek E Lee
- Wild Nature Institute, Concord, NH, USA.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Arpat Ozgul
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Damien R Farine
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Center for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
36
|
Fisher DN, Pruitt JN. Insights from the study of complex systems for the ecology and evolution of animal populations. Curr Zool 2020; 66:1-14. [PMID: 32467699 PMCID: PMC7245006 DOI: 10.1093/cz/zoz016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/02/2019] [Indexed: 12/01/2022] Open
Abstract
Populations of animals comprise many individuals, interacting in multiple contexts, and displaying heterogeneous behaviors. The interactions among individuals can often create population dynamics that are fundamentally deterministic yet display unpredictable dynamics. Animal populations can, therefore, be thought of as complex systems. Complex systems display properties such as nonlinearity and uncertainty and show emergent properties that cannot be explained by a simple sum of the interacting components. Any system where entities compete, cooperate, or interfere with one another may possess such qualities, making animal populations similar on many levels to complex systems. Some fields are already embracing elements of complexity to help understand the dynamics of animal populations, but a wider application of complexity science in ecology and evolution has not occurred. We review here how approaches from complexity science could be applied to the study of the interactions and behavior of individuals within animal populations and highlight how this way of thinking can enhance our understanding of population dynamics in animals. We focus on 8 key characteristics of complex systems: hierarchy, heterogeneity, self-organization, openness, adaptation, memory, nonlinearity, and uncertainty. For each topic we discuss how concepts from complexity theory are applicable in animal populations and emphasize the unique insights they provide. We finish by outlining outstanding questions or predictions to be evaluated using behavioral and ecological data. Our goal throughout this article is to familiarize animal ecologists with the basics of each of these concepts and highlight the new perspectives that they could bring to variety of subfields.
Collapse
Affiliation(s)
- David N Fisher
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
37
|
Burns DDR, Franks DW, Parr C, Robinson EJH. Ant colony nest networks adapt to resource disruption. J Anim Ecol 2020; 90:143-152. [PMID: 32141609 DOI: 10.1111/1365-2656.13198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/30/2020] [Indexed: 01/03/2023]
Abstract
Animal social structure is shaped by environmental conditions, such as food availability. This is important as conditions are likely to change in the future and changes to social structure can have cascading ecological effects. Wood ants are a useful taxon for the study of the relationship between social structure and environmental conditions, as some populations form large nest networks and they are ecologically dominant in many northern hemisphere woodlands. Nest networks are formed when a colony inhabits more than one nest, known as polydomy. Polydomous colonies are composed of distinct sub-colonies that inhabit spatially distinct nests and that share resources with each other. In this study, we performed a controlled experiment on 10 polydomous wood ant (Formica lugubris) colonies to test how changing the resource environment affects the social structure of a polydomous colony. We took network maps of all colonies for 5 years before the experiment to assess how the networks changes under natural conditions. After this period, we prevented ants from accessing an important food source for a year in five colonies and left the other five colonies undisturbed. We found that preventing access to an important food source causes polydomous wood ant colony networks to fragment into smaller components and begin foraging on previously unused food sources. These changes were not associated with a reduction in the growth of populations inhabiting individual nests (sub-colonies), foundation of new nests or survival, when compared with control colonies. Colony splitting likely occurred as the availability of food in each nest changed causing sub-colonies to change their inter-nest connections. Consequently, our results demonstrate that polydomous colonies can adjust to environmental changes by altering their social network.
Collapse
Affiliation(s)
- Dominic D R Burns
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK
| | - Daniel W Franks
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK.,Department of Computer Science, University of York, York, UK
| | - Catherine Parr
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK.,Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Johannesburg, South Africa.,Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Elva J H Robinson
- Department of Biology, University of York, York, UK.,York Cross-disciplinary Centre for Systems Analysis, University of York, York, UK
| |
Collapse
|
38
|
Sosa S, Sueur C, Puga‐Gonzalez I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13366] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sebastian Sosa
- Université de StrasbourgCNRSIPHC UMR 7178 Strasbourg France
| | - Cédric Sueur
- Université de StrasbourgCNRSIPHC UMR 7178 Strasbourg France
- Institut Universitaire de France Paris France
| | - Ivan Puga‐Gonzalez
- Institute for Global Development and Planning University of Agder Kristiansand Norway
| |
Collapse
|
39
|
Sulawesi Crested Macaque (Macaca nigra) Grooming Networks Are Robust to Perturbation While Individual Associations Are More Labile. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractSocial and environmental disturbance occurs naturally, and species in bonded social groups should be resilient to it. Empirical evidence of social responses to disturbance in primates, however, remains limited. We constructed social networks using group-level scan samples (N = 299) to test the robustness of grooming networks in a captive group of 20 Sulawesi crested macaques (Macaca nigra) to two management interventions involving environmental and social disturbance. During the first, the institution removed six castrated males and one female, contracepted six of the nine remaining females, and moved the group to a new enclosure. The second involved the introduction of a novel, reproductive male five weeks later. Networks remained stable following the first intervention. However, after introduction of the male, the number of grooming partners and the frequency of grooming with non-maternal kin increased in female-only networks. We observed less marked increases in the grooming frequency and number of grooming partners in whole group networks. Ten weeks later, network structure was more similar to that of pre-intervention networks than post-intervention networks. Our results suggest that reproductive males play a more important role in structuring Sulawesi crested macaque social networks than castrated males, as networks expanded and relationships between non-maternal kin occurred more frequently after introduction of the reproductive male. However, network responses to interventions appeared to be temporary as networks following a period of acclimation more closely resembled pre-intervention networks than post-intervention networks. Our study demonstrates the utility of social network analysis for understanding the impact of disturbance on stable social groups.
Collapse
|
40
|
Tringali A, Sherer DL, Cosgrove J, Bowman R. Life history stage explains behavior in a social network before and during the early breeding season in a cooperatively breeding bird. PeerJ 2020; 8:e8302. [PMID: 32095315 PMCID: PMC7020825 DOI: 10.7717/peerj.8302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/26/2019] [Indexed: 12/03/2022] Open
Abstract
In species with stage-structured populations selection pressures may vary between different life history stages and result in stage-specific behaviors. We use life history stage to explain variation in the pre and early breeding season social behavior of a cooperatively breeding bird, the Florida scrub-jay (Aphelocoma coerulescens) using social network analysis. Life history stage explains much of the variation we observed in social network position. These differences are consistent with nearly 50 years of natural history observations and generally conform to a priori predictions about how individuals in different stages should behave to maximize their individual fitness. Where the results from the social network analysis differ from the a priori predictions suggest that social interactions between members of different groups are more important for breeders than previously thought. Our results emphasize the importance of accounting for life history stage in studies of individual social behavior.
Collapse
Affiliation(s)
- Angela Tringali
- Avian Ecology Program, Archbold Biological Station, Venus, FL, United States of America
| | - David L Sherer
- Avian Ecology Program, Archbold Biological Station, Venus, FL, United States of America.,Department of Biology, University of Central Florida, Orlando, FL, United States of America
| | - Jillian Cosgrove
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, United States of America
| | - Reed Bowman
- Avian Ecology Program, Archbold Biological Station, Venus, FL, United States of America
| |
Collapse
|
41
|
|
42
|
Murphy D, Mumby HS, Henley MD. Age differences in the temporal stability of a male African elephant (Loxodonta africana) social network. Behav Ecol 2019. [DOI: 10.1093/beheco/arz152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Social animals live in complex and variable socio-ecological environments where individuals adapt their behavior to local conditions. Recently, there have been calls for studies of animal social networks to take account of temporal dynamics in social relationships as these have implications for the spread of information and disease, group cohesion, and the drivers of sociality, and there is evidence that maintaining stable social relationships has fitness benefits. It has recently been recognized that male elephants form strong social bonds with other males. The nature of these relationships, and thus network structure, may vary over time in response to varying environmental conditions and as individuals age. Using social network analysis, we examine the stability of relationships and network centrality in a population of male African elephants. Our results suggest that males may maintain stable social relationships with others over time. Older males show greater stability in network centrality than younger males, suggesting younger males face uncertainty in transitioning to adult society. For elephants, where older individuals function as social repositories of knowledge, maintaining a social network underpinned by older males could be of particular importance.
Collapse
Affiliation(s)
- Derek Murphy
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Hannah S Mumby
- Department of Zoology, University of Cambridge, Cambridge, UK
- College for Life Sciences, Wissenschaftskolleg zu Berlin, Wallotstraße, Berlin, Germany
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of Witwatersrand, Wits, South Africa
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michelle D Henley
- Elephants Alive, Hoedspruit, South Africa
- Applied Ecosystem and Conservation Research Unit, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
43
|
Muller Z, Cuthill IC, Harris S. Giraffe (
Giraffa camelopardalis
) social networks in areas of contrasting human activity and lion density. Ethology 2019. [DOI: 10.1111/eth.12923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zoe Muller
- School of Biological Sciences University of Bristol Bristol UK
- Giraffe Research & Conservation Trust Nairobi Kenya
| | | | - Stephen Harris
- School of Biological Sciences University of Bristol Bristol UK
| |
Collapse
|
44
|
Deng K, Cui JG. Vocal networks remain stable after a disturbance in Emei music frogs. Ecol Evol 2019; 9:9290-9297. [PMID: 31463021 PMCID: PMC6706236 DOI: 10.1002/ece3.5473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 03/26/2019] [Accepted: 07/03/2019] [Indexed: 11/27/2022] Open
Abstract
Social network analysis has been widely used to investigate the dynamics of social interactions and the evolution of social complexity across a range of taxa. Anuran species are highly dependent on vocal communication in mate choice; however, these species have rarely been the subject of social network analysis. The present study used social network analysis to investigate whether vocal network structures are consistent in Emei music frog (Babina daunchina) after the introduction of a simulated exotic rival of varying competitiveness into the social group. We broadcasted six categories of artificial calls (either highly sexually attractive calls produced from inside male nests or calls of low sexual attractiveness produced outside nests with three, five or seven notes, respectively) to simulate an intruder with different levels of competitiveness. We then constructed vocal networks for two time periods (before and after the disturbance) and quantified three network metrics (strength, closeness, and betweenness) that measure different aspects of individual-level position. We used the mean values of these network metrics to evaluate group-level changes in network structure. We found that the mean strength, mean closeness and mean betweenness were consistent between two time periods in all ponds, despite the fact that the positions of some individuals had changed markedly after disturbance. In addition, there was no significant interaction effect between period and numbers of notes on the three network metrics. These finding suggest that the structure of vocal networks in Emei music frogs remain stable at the group level after a conspecific disturbance, regardless of the intruder's competitiveness.
Collapse
Affiliation(s)
- Ke Deng
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Jian-Guo Cui
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| |
Collapse
|
45
|
Smolla M, Akçay E. Cultural selection shapes network structure. SCIENCE ADVANCES 2019; 5:eaaw0609. [PMID: 31453324 PMCID: PMC6693906 DOI: 10.1126/sciadv.aaw0609] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/10/2019] [Indexed: 05/03/2023]
Abstract
Cultural evolution relies on the social transmission of cultural traits along a population's social network. Research indicates that network structure affects information spread and thus the capacity for cumulative culture. However, how network structure itself is driven by population-culture co-evolution remains largely unclear. We use a simple model to investigate how populations negotiate the trade-off between acquiring new skills and getting better at existing skills and how this trade-off shapes social networks. We find unexpected eco-evolutionary feedbacks from culture onto social networks and vice versa. We show that selecting for skill generalists results in sparse networks with diverse skill sets, whereas selecting for skill specialists results in dense networks and a population that specializes on the same few skills on which everyone is an expert. Our model advances our understanding of the complex feedbacks in cultural evolution and demonstrates how individual-level behavior can lead to the emergence of population-level structure.
Collapse
Affiliation(s)
- Marco Smolla
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
46
|
Abstract
Abstract
Demographic processes play a key role in shaping the patterns of social relations among individuals in a population. Social network analysis is a powerful quantitative tool for assessing the social structure formed by associations between individuals. However, demographic processes are rarely accounted for in such analyses. Here, we summarize how the structure of animal social networks is shaped by the joint effects of social behavior and turnover of individuals and suggest how a deeper understanding of these processes can open new, exciting avenues for research. Death or dispersal can have the direct effect of removing an individual and all its social connections, and can also have indirect effects, spurring changes in the distribution of social connections between remaining individuals. Recruitment and integration of juveniles and immigrant into existing social networks are critical to the emergence and persistence of social network structure. Together, these behavioral responses to loss and gain of social partners may impact how societies respond to seasonal or catastrophic turnover events. The fitness consequences of social position (e.g., survival and reproductive rates) may also create feedback between the social network structure and demography. Understanding how social structure changes in response to turnover of individuals requires further integration between long-term field studies and network modeling methods. These efforts will likely yield new insights into the connections between social networks and life history, ecological change, and evolutionary dynamics.
Collapse
Affiliation(s)
| | - Allison E Johnson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
47
|
|
48
|
Machado AMS, Cantor M, Costa APB, Righetti BPH, Bezamat C, Valle-Pereira JVS, Simões-Lopes PC, Castilho PV, Daura-Jorge FG. Homophily around specialized foraging underlies dolphin social preferences. Biol Lett 2019; 15:20180909. [PMID: 30966897 DOI: 10.1098/rsbl.2018.0909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individuals often associate socially with those who behave the same way. This principle, homophily, could structure populations into distinct social groups. We tested this hypothesis in a bottlenose dolphin population that appeared to be clustered around a specialized foraging tactic involving cooperation with net-casting fishermen, but in which other potential drivers of such social structure have never been assessed. We measured and controlled for the contribution of sex, age, genetic relatedness, home range and foraging tactics on social associations to test for homophily effects. Dolphins tended to group with others having similar home ranges and frequency of using the specialized foraging tactic, but not other traits. Such social preferences were particularly clear when dolphins were not foraging, showing that homophily extends beyond simply participating in a specific tactic. Combined, these findings highlight the need to account for multiple drivers of group formation across behavioural contexts to determine true social affiliations. We suggest that homophily around behavioural specialization can be a major driver of social patterns, with implications for other social processes. If homophily based on specialized tactics underlies animal social structures more widely, then it may be important in modulating opportunities for social learning, and therefore influence patterns of cultural transmission.
Collapse
Affiliation(s)
- A M S Machado
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - M Cantor
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil.,3 Centro de Estudos do Mar, Universidade Federal do Paraná , Pontal do Paraná, PR , Brazil.,4 School of Animal, Plant and Environmental Sciences, University of the Witswatersrand , Johannesburg , South Africa
| | - A P B Costa
- 5 Department of Biology, University of Louisiana at Lafayette , Lafayette, LA , USA
| | - B P H Righetti
- 2 Departamento de Bioquímica, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - C Bezamat
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - J V S Valle-Pereira
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - P C Simões-Lopes
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| | - P V Castilho
- 6 Departamento de Engenharia de Pesca e Ciências Biológicas, Universidade do Estado de Santa Catarina , Laguna, SC , Brazil
| | - F G Daura-Jorge
- 1 Departamento de Ecologia e Zoologia, Universidade Federal de Santa Catarina , Florianópolis, SC , Brazil
| |
Collapse
|
49
|
Hunt TN, Allen SJ, Bejder L, Parra GJ. Assortative interactions revealed in a fission–fusion society of Australian humpback dolphins. Behav Ecol 2019. [DOI: 10.1093/beheco/arz029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Understanding individual interactions within a community or population provides valuable insight into its social system, ecology, and, ultimately, resilience against external stimuli. Here, we used photo-identification data, generalized affiliation indices, and social network analyses to investigate dyadic relationships, assortative interactions, and social clustering in the Australian humpback dolphin (Sousa sahulensis). Boat-based surveys were conducted between May 2013 and October 2015 around the North West Cape, Western Australia. Our results indicated a fission–fusion society, characterized by nonrandom dyadic relationships. Assortative interactions were identified both within and between sexes and were higher among members of the same sex, indicating same-sex preferred affiliations and sexual segregation. Assortative interactions by geographic locations were also identified, but with no evidence of distinct social communities or clusters or affiliations based on residency patterns. We noted high residency among females. Models of temporal patterns of association demonstrated variable levels of stability, including stable (preferred companionships) and fluid (casual acquaintances) associations. We also demonstrated some social avoidance. Our results point to greater social complexity than previously recognized for humpback dolphins and, along with knowledge of population size and habitat use, provide the necessary baseline upon which to assess the influence of increasing human activities on this endemic, Vulnerable species.
Collapse
Affiliation(s)
- Tim N Hunt
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Allen
- School of Biological Sciences and Oceans Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Lars Bejder
- Aquatic Megafauna Research Unit, Centre for Sustainable Aquatic Ecosystems, Murdoch University, Perth, Western Australia, Australia
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Guido J Parra
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
50
|
Abstract
Network analysis has driven key developments in research on animal behaviour by providing quantitative methods to study the social structures of animal groups and populations. A recent formalism, known as multilayer network analysis, has advanced the study of multifaceted networked systems in many disciplines. It offers novel ways to study and quantify animal behaviour through connected 'layers' of interactions. In this article, we review common questions in animal behaviour that can be studied using a multilayer approach, and we link these questions to specific analyses. We outline the types of behavioural data and questions that may be suitable to study using multilayer network analysis. We detail several multilayer methods, which can provide new insights into questions about animal sociality at individual, group, population and evolutionary levels of organization. We give examples for how to implement multilayer methods to demonstrate how taking a multilayer approach can alter inferences about social structure and the positions of individuals within such a structure. Finally, we discuss caveats to undertaking multilayer network analysis in the study of animal social networks, and we call attention to methodological challenges for the application of these approaches. Our aim is to instigate the study of new questions about animal sociality using the new toolbox of multilayer network analysis.
Collapse
Affiliation(s)
- Kelly R. Finn
- Animal Behavior Graduate Group, University of California, Davis, U.S.A
| | - Matthew J. Silk
- Environment and Sustainability Institute, University of Exeter, U.K
| | - Mason A. Porter
- Department of Mathematics, University of California, Los Angeles, U.S.A
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, U.S.A
| |
Collapse
|