1
|
Thakur S, Adams E, Prahl C, Vuong A, Ramsey M, Cummings ME. Different social experiences drive the development of divergent stress coping styles in female swordtails (Xiphophorus nigrensis). Horm Behav 2025; 168:105675. [PMID: 39824047 DOI: 10.1016/j.yhbeh.2025.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/13/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Individual variation in stress coping styles is widespread and consequential to health and fitness. Proactive (bold behavior, low stress reactivity, low cognitive flexibility) and reactive (shy behavior, high stress reactivity, high cognitive flexibility) coping styles are found in many species, but the developmental forces shaping them remain elusive. We examined how social influences, specifically mating interactions, shape the development of adult female coping styles with a manipulative rearing experiment using El Abra swordtails, Xiphophorus nigrensis. We raised juvenile females in environments with different male reproductive phenotypes: coercive-only, courting-only, or complex (both coercive and courting males). At adulthood, we measured female stress reactivity (cortisol release following acute stress), boldness (scototaxis and open field responses), and cognitive flexibility (as inhibitory control in a detour task). Females raised in coercive and complex environments developed higher cortisol reactivity than females raised with only courtship. Stress coping trait correlations varied significantly across social environments producing different coping styles across treatments. Traditional proactive and reactive stress coping styles developed in the coercive-only environment with negative correlations between stress response and boldness, stress response and cognitive flexibility, and boldness and cognitive flexibility. Meanwhile, the courtship-only environment produced a negative correlation between stress response and boldness. We thus demonstrate that the relationship between stress response and boldness can be socially modulated. These findings suggest that developmental variation in social experiences can shape suites of traits with complex relationships; and that highly stressful social interactions, such as sexual coercion, can be a strong driver of stress coping styles.
Collapse
Affiliation(s)
- Sunishka Thakur
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.
| | - Elena Adams
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Chloe Prahl
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Alan Vuong
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Mary Ramsey
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|
2
|
Müller M, Pillay N. Cognitive flexibility in urban yellow mongooses, Cynictis penicillata. Anim Cogn 2024; 27:14. [PMID: 38429567 PMCID: PMC10907452 DOI: 10.1007/s10071-024-01839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 03/03/2024]
Abstract
Cognitive flexibility enables animals to alter their behaviour and respond appropriately to environmental changes. Such flexibility is important in urban settings where environmental changes occur rapidly and continually. We studied whether free-living, urban-dwelling yellow mongooses, Cynictis penicillata, in South Africa, are cognitively flexible in reversal learning and attention task experiments (n = 10). Reversal learning was conducted using two puzzle boxes that were distinct visually and spatially, each containing a preferred or non-preferred food type. Once mongooses learned which box contained the preferred food type, the food types were reversed. The mongooses successfully unlearned their previously learned response in favour of learning a new response, possibly through a win-stay, lose-shift strategy. Attention task experiments were conducted using one puzzle box surrounded by zero, one, two or three objects, introducing various levels of distraction while solving the task. The mongooses were distracted by two and three distractions but were able to solve the task despite the distractions by splitting their attention between the puzzle box task and remaining vigilant. However, those exposed to human residents more often were more vigilant. We provide the first evidence of cognitive flexibility in urban yellow mongooses, which enables them to modify their behaviour to urban environments.
Collapse
Affiliation(s)
- Mijke Müller
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Tomasek M, Stark M, Dufour V, Jordan A. Cognitive flexibility in a Tanganyikan bower-building cichlid, Aulonocranus dewindti. Anim Cogn 2023; 26:1959-1971. [PMID: 37851187 PMCID: PMC10770232 DOI: 10.1007/s10071-023-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Cognitive flexibility, the ability to modify one's decision rules to adapt to a new situation, has been extensively studied in many species. In fish, though, data on cognitive flexibility are scarce, especially in the wild. We studied a lekking species of cichlid fish in Lake Tanganyika, Aulonocranus dewindti. Males create sand bowers as spawning sites and maintain them by removing any objects falling into it. In the first part of our experiment, we investigated the existence of spontaneous decision rules for the maintenance of the bowers. We showed that if a snail shell and a stone are placed in their bower, fish prefer to remove the shell first. In the second phase of our experiment, we took advantage of this spontaneous decision rule to investigate whether this rule was flexible. We tested five individuals in a choice against preference task, in which the fish had to modify their preference rule and remove the stone first to be allowed to then remove the shell and have a clean bower. While there was no overall trend towards flexibility in this task, there was variation at an individual level. Some individuals increased their preference for removing the shell first, deciding quickly and with little exploration of the objects. Others were more successful at choosing against preference and showed behaviours suggesting self-regulatory inhibition abilities. Bower-building cichlids could therefore be a promising model to study cognitive flexibility, and other aspects of animal cognition in the wild.
Collapse
Affiliation(s)
- Maëlan Tomasek
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France.
- University of Konstanz, 78464, Constance, Germany.
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany.
| | - Midori Stark
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| | - Valérie Dufour
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France
| | - Alex Jordan
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| |
Collapse
|
4
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
5
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Adaptive phenotypic plasticity induces individual variability along a cognitive trade-off. Proc Biol Sci 2023; 290:20230350. [PMID: 37357854 PMCID: PMC10291716 DOI: 10.1098/rspb.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Rochais C, Schradin C, Pillay N. Cognitive performance is linked to survival in free-living African striped mice. Proc Biol Sci 2023; 290:20230205. [PMID: 36883277 PMCID: PMC9993040 DOI: 10.1098/rspb.2023.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Cognition is shaped by evolution and is predicted to increase fitness. However, the link between cognition and fitness in free-living animals is unresolved. We studied the correlates of cognition and survival in a free-living rodent inhabiting an arid environment. We tested 143 striped mice (Rhabdomys pumilio) using a battery of cognitive tests, including: (i) an attention task, (ii) two problem-solving tasks, (iii) a learning and reversal learning task, and (iv) an inhibitory control task. We related cognitive performance with days of survival. Better problem-solving and inhibitory control performance were significant correlates of survival. Surviving males showed greater reversal learning which may be related to sex-specific behavioural and life-history characteristics. Specific cognitive traits and not a composite measure of general intelligence underpins fitness in this free-living rodent population, enhancing our understanding of the evolution of cognition in non-human animals.
Collapse
Affiliation(s)
- Celine Rochais
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Carsten Schradin
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
- IPHC, UNISTRA, CNRS, 23 Rue du Loess, 67200 Strasbourg, France
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| |
Collapse
|
7
|
Delacoux M, Guenther A. Stressfulness of the design influences consistency of cognitive measures and their correlation with animal personality traits in wild mice (Mus musculus). Anim Cogn 2023; 26:997-1009. [PMID: 36737560 PMCID: PMC10066096 DOI: 10.1007/s10071-023-01748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
Individual variation in cognition is being increasingly recognized as an important evolutionary force but contradictory results so far hamper a general understanding of consistency and association with other behaviors. Partly, this might be caused by external factors imposed by the design. Stress, for example, is known to influence cognition, with mild stress improving learning abilities, while strong or chronic stress impairs them. Also, there might be intraspecific variation in how stressful a given situation is perceived. We investigated two personality traits (stress coping and voluntary exploration), spatial learning with two mazes, and problem-solving in low- and high-stress tests with a group of 30 female wild mice (Mus musculus domesticus). For each test, perceived stress was assessed by measuring body temperature change with infrared thermography, a new non-invasive method that measures skin temperature as a proxy of changes in the sympathetic system activity. While spatial learning and problem-solving were found to be repeatable traits in mice in earlier studies, none of the learning measures were significantly repeatable between the two stress conditions in our study, indicating that the stress level impacts learning. We found correlations between learning and personality traits; however, they differed between the two stress conditions and between the cognitive tasks, suggesting that different mechanisms underlie these processes. These findings could explain some of the contradictory findings in the literature and argue for very careful design of cognitive test setups to draw evolutionary implications.
Collapse
Affiliation(s)
- Mathilde Delacoux
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany. .,Department for Collective Behavior, Max Planck Institute of Animal Behavior, 78464, Constance, Germany. .,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464, Constance, Germany.
| | - Anja Guenther
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
8
|
Learning predictably changing spatial patterns across days in a food-caching bird. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Lalot M, Bovet D. Prosociality and reciprocity according to parental status, communication, and personality in domestic canaries (Serinus canaria). Behav Processes 2023; 205:104818. [PMID: 36584962 DOI: 10.1016/j.beproc.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
Prosociality (behaviours that benefit to a recipient without necessarily involving a cost to the actor) has recently been shown to exist in various taxa, including birds. Studies on prosociality in primates found that prosocial tendencies of the subject could be related to sex and parental care, communication from the recipient, cognitive abilities and personality. To investigate the existence of such associations on birds, we conducted a Prosocial Choice Task with domestic canaries (Serinus canaria). In our experiment, the subject could choose between three options: a prosocial, a selfish, and a null option (with no cost for the subject). We also conducted a food sharing experiment and measured several personality traits. Our results highlighted high levels of prosociality and a tendency to reciprocity among reproductive mates. We found a higher propensity to be prosocial in nulliparous individuals than in individuals that have previously been parents, but better sharing abilities in parents than in nulliparous individuals. When they were recipient, parents also used communication more efficiently than nulliparous subjects. Data suggest that parental expertise could enhance subjects' skills in eliciting prosociality. We also highlighted some interaction between prosociality, learning abilities, and some personality traits, proactive individuals being fast learners and more prosocial, while reactive individuals being slow learners and more reciprocal. Our results suggest that prosociality and reciprocity could be linked to personality and cognitive abilities, and that it might be interesting to consider them as parts of individual's cognitive style.
Collapse
Affiliation(s)
- Mathilde Lalot
- Laboratoire Ethologie Cognition Développement, UPL, Université Paris Nanterre, F92000 Nanterre, France.
| | - Dalila Bovet
- Laboratoire Ethologie Cognition Développement, UPL, Université Paris Nanterre, F92000 Nanterre, France
| |
Collapse
|
10
|
Can animal personalities save human lives? Evidence for repeatable differences in activity and anxiety in African giant pouched rats (Cricetomys ansorgei). Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
11
|
Erdsack N, Dehnhardt G, Hanke FD. Serial visual reversal learning in harbor seals (Phoca vitulina). Anim Cogn 2022; 25:1183-1193. [PMID: 35864326 PMCID: PMC9617845 DOI: 10.1007/s10071-022-01653-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/14/2022]
Abstract
Progressively improving performance in a serial reversal learning (SRL) test has been associated with higher cognitive abilities and has served as a measure for cognitive/behavioral flexibility. Although the cognitive and sensory abilities of marine mammals have been subject of extensive investigation, and numerous vertebrate and invertebrate species were tested, SRL studies in aquatic mammals are sparse. Particularly in pinnipeds, a high degree of behavioral flexibility seems probable as they face a highly variable environment in air and underwater. Thus, we tested four harbor seals in a visual two-alternative forced-choice discrimination task and its subsequent reversals. We found significant individual differences in performance. One individual was able to solve 37 reversals showing progressive improvement of performance with a minimum of 6 errors in reversal 33. Two seals mastered two reversals, while one animal had difficulties in learning the discrimination task and failed to complete a single reversal. In conclusion, harbor seals can master an SRL experiment; however, the performance is inferior to results obtained in other vertebrates in comparable tasks. Future experiments will need to assess whether factors such as the modality addressed in the experiment have an influence on reversal learning performance or whether indeed, during evolution, behavioral flexibility has not specifically been favored in harbor seals.
Collapse
Affiliation(s)
- Nicola Erdsack
- Institute for Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
- Manatee Research Program, Mote Marine Laboratory & Aquarium, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| | - Guido Dehnhardt
- Institute for Biosciences, Sensory and Cognitive Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Frederike D Hanke
- Institute for Biosciences, Neuroethology, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
12
|
Albers J, Reichert MS. Personality affects individual variation in olfactory learning and reversal learning in the house cricket, Acheta domesticus. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
De Meester G, Pafilis P, Vasilakis G, Van Damme R. Exploration and spatial cognition show long-term repeatability but no heritability in the Aegean wall lizard. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Finkemeier MA, Krause A, Tuchscherer A, Puppe B, Langbein J. Personality traits affect learning performance in dwarf goats ( Capra hircus). Front Vet Sci 2022; 9:916459. [PMID: 35909682 PMCID: PMC9336648 DOI: 10.3389/fvets.2022.916459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
A wide range of species exhibit time- and context-consistent interindividual variation in a number of specific behaviors related to an individual's personality. Several studies have shown that individual differences in personality-associated behavioral traits have an impact on cognitive abilities. The aim of this study was to investigate the relationship between personality traits and learning abilities in dwarf goats. The behavior of 95 goats during a repeated open field (OF) and novel object test (NO) was analyzed, and two main components were identified using principal component analysis: boldness and activity. In parallel, the goats learned a 4-choice visual initial discrimination task (ID) and three subsequent reversal learning (RL) tasks. The number of animals that reached the learning criterion and the number of trials needed (TTC) in each task were calculated. Our results show that goats with the lowest learning performance in ID needed more TTC in RL1 and reached the learning criterion less frequently in RL2 and RL3 compared to animals with better learning performance in ID. This suggests a close relationship between initial learning and flexibility in learning behavior. To study the link between personality and learning, we conducted two analyses, one using only data from the first OF- and NO-test (momentary personality traits), while the other included both tests integrating only animals that were stable for their specific trait (stable personality traits). No relationship between personality and learning was found using data from only the first OF- and NO-test. However, stability in the trait boldness was found to have an effect on learning. Unbold goats outperformed bold goats in RL1. This finding supports the general hypothesis that bold animals tend to develop routines and show less flexibility in the context of learning than unbold individuals. Understanding how individual personality traits can affect cognitive abilities will help us gain insight into mechanisms that can constrain cognitive processing and adaptive behavioral responses.
Collapse
Affiliation(s)
- Marie-Antonine Finkemeier
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Annika Krause
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Birger Puppe
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Behavioural Sciences, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Jan Langbein
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
15
|
Lucon-Xiccato T. The contribution of executive functions to sex differences in animal cognition. Neurosci Biobehav Rev 2022; 138:104705. [PMID: 35605792 DOI: 10.1016/j.neubiorev.2022.104705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 01/17/2023]
Abstract
Cognitive sex differences have been reported in several vertebrate species, mostly in spatial abilities. Here, I review evidence of sex differences in a family of general cognitive functions that control behaviour and cognition, i.e., executive functions such as cognitive flexibility and inhibitory control. Most of this evidence derives from studies in teleost fish. However, analysis of literature from other fields (e.g., biomedicine, genetic, ecology) concerning mammals and birds reveals that more than 40% of species investigated exhibit sex differences in executive functions. Among species, the direction and magnitude of these sex differences vary greatly, even within the same family, suggesting sex-specific selection due to species' reproductive systems and reproductive roles of males and females. Evidence also suggests that sex differences in executive functions might provide males and females highly differentiated cognitive phenotypes. To understand the evolution of cognitive sex differences in vertebrates, future research should consider executive functions.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
16
|
Individual differences in spatial learning are correlated across tasks but not with stress response behaviour in guppies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Reyes-Contreras M, Taborsky B. Stress axis programming generates long-term effects on cognitive abilities in a cooperative breeder. Proc Biol Sci 2022; 289:20220117. [PMID: 35582802 PMCID: PMC9114936 DOI: 10.1098/rspb.2022.0117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to flexibly adjust behaviour to social and non-social challenges is important for successfully navigating variable environments. Social competence, i.e. adaptive behavioural flexibility in the social domain, allows individuals to optimize their expression of social behaviour. Behavioural flexibility outside the social domain aids in coping with ecological challenges. However, it is unknown if social and non-social behavioural flexibility share common underlying cognitive mechanisms. Support for such shared mechanism would be provided if the same neural mechanisms in the brain affected social and non-social behavioural flexibility similarly. We used individuals of the cooperatively breeding fish Neolamprologus pulcher that had undergone early-life programming of the hypothalamic-pituitary-interrenal axis by exposure to (i) cortisol, (ii) the glucocorticoid receptor antagonist mifepristone, or (iii) control treatments, and where effects of stress-axis programming on social flexibility occurred. One year after the treatments, adults learned a colour discrimination task and subsequently, a reversal-learning task testing for behavioural flexibility. Early-life mifepristone treatment marginally enhanced learning performance, whereas cortisol treatment significantly reduced behavioural flexibility. Thus, early-life cortisol treatment reduced both social and non-social behavioural flexibility, suggesting a shared cognitive basis of behavioural flexibility. Further our findings imply that early-life stress programming affects the ability of organisms to flexibly cope with environmental stressors.
Collapse
Affiliation(s)
- Maria Reyes-Contreras
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| | - Barbara Taborsky
- Division of Behavioural Ecology, Institute of Ecology and Evolution, University of Bern, Wohlenstrasse 50A, CH-3032 Hinterkappelen, Switzerland
| |
Collapse
|
18
|
Ashton BJ, Thornton A, Cauchoix M, Ridley AR. Long-term repeatability of cognitive performance. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220069. [PMID: 35620015 PMCID: PMC9128854 DOI: 10.1098/rsos.220069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/29/2022] [Indexed: 05/03/2023]
Abstract
Measures of cognitive performance, derived from psychometric tasks, have yielded important insights into the factors governing cognitive variation. However, concerns remain over the robustness of these measures, which may be susceptible to non-cognitive factors such as motivation and persistence. Efforts to quantify short-term repeatability of cognitive performance have gone some way to address this, but crucially the long-term repeatability of cognitive performance has been largely overlooked. Quantifying the long-term repeatability of cognitive performance provides the opportunity to determine the stability of cognitive phenotypes and the potential for selection to act on them. To this end, we quantified long-term repeatability of cognitive performance in wild Australian magpies over a three-year period. Cognitive performance was repeatable in two out of four cognitive tasks-associative learning and reversal-learning performance was repeatable, but spatial memory and inhibitory control performance, although trending toward significance, was not. Measures of general cognitive performance, obtained from principal components analyses carried out on each cognitive test battery, were highly repeatable. Together, these findings provide evidence that at least some cognitive phenotypes are stable, which in turn has important implications for our understanding of cognitive evolution.
Collapse
Affiliation(s)
- Benjamin J. Ashton
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Treliever Road, Penryn TR10 9FE, UK
| | - Maxime Cauchoix
- Station d'Ecologie Théorique et Expérimentale du CNRS (UMR5321), Moulis, France
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
19
|
Wallace KJ, Choudhary KD, Kutty LA, Le DH, Lee MT, Wu K, Hofmann HA. Social ascent changes cognition, behaviour and physiology in a highly social cichlid fish. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200448. [PMID: 35000445 PMCID: PMC8743896 DOI: 10.1098/rstb.2020.0448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
When an individual ascends in dominance status within their social community, they often undergo a suite of behavioural, physiological and neuromolecular changes. While these changes have been extensively characterized across a number of species, we know much less about the degree to which these changes in turn influence cognitive processes like associative learning, memory and spatial navigation. Here, we assessed male Astatotilapia burtoni, an African cichlid fish known for its dynamic social dominance hierarchies, in a set of cognitive tasks both before and after a community perturbation in which some individuals ascended in dominance status. We assayed steroid hormone (cortisol, testosterone) levels before and after the community experienced a social perturbation. We found that ascending males changed their physiology and novel object recognition preference during the perturbation, and they subsequently differed in social competence from non-ascenders. Additionally, using a principal component analysis we were able to identify specific cognitive and physiological attributes that appear to predispose certain individuals to ascend in social status once a perturbation occurs. These previously undiscovered relationships between social ascent and cognition further emphasize the broad influence of social dominance on animal decision-making. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Kelly J. Wallace
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Kavyaa D. Choudhary
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Layla A. Kutty
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Don H. Le
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Matthew T. Lee
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Karleen Wu
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA
| | - Hans A. Hofmann
- Department of Integrative Biology, The University of Texas, Austin, TX 78712, USA,Institute for Neuroscience, The University of Texas, Austin, TX 78712, USA
| |
Collapse
|
20
|
|
21
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
22
|
Task-dependent reversal learning dynamics challenge the reversal paradigm of measuring cognitive flexibility. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Vila Pouca C, Mitchell DJ, Lefèvre J, Vega‐Trejo R, Kotrschal A. Early predation risk shapes adult learning and cognitive flexibility. OIKOS 2021. [DOI: 10.1111/oik.08481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Catarina Vila Pouca
- Zoological Inst., Stockholm Univ. Stockholm Sweden
- Behavioural Ecology Group, Wageningen Univ. and Research Wageningen the Netherlands
| | | | | | | | - Alexander Kotrschal
- Zoological Inst., Stockholm Univ. Stockholm Sweden
- Behavioural Ecology Group, Wageningen Univ. and Research Wageningen the Netherlands
| |
Collapse
|
24
|
In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats. Sci Rep 2021; 11:8174. [PMID: 33854128 PMCID: PMC8046999 DOI: 10.1038/s41598-021-87588-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Integrating information on species-specific sensory perception with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent model system to investigate intraspecific variation in environmental cue sampling. Here, we developed an in situ roost-like novel environment assay for tree-roosting bats. We repeatedly tested 52 individuals of the migratory bat species, Pipistrellus nathusii, across 24 h, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intraspecific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity, given their spatial activity, a behavioral response we term 'acoustic exploration'. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment.
Collapse
|
25
|
Rowell MK, Pillay N, Rymer TL. Problem Solving in Animals: Proposal for an Ontogenetic Perspective. Animals (Basel) 2021; 11:866. [PMID: 33803609 PMCID: PMC8002912 DOI: 10.3390/ani11030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
Problem solving, the act of overcoming an obstacle to obtain an incentive, has been studied in a wide variety of taxa, and is often based on simple strategies such as trial-and-error learning, instead of higher-order cognitive processes, such as insight. There are large variations in problem solving abilities between species, populations and individuals, and this variation could arise due to differences in development, and other intrinsic (genetic, neuroendocrine and aging) and extrinsic (environmental) factors. However, experimental studies investigating the ontogeny of problem solving are lacking. Here, we provide a comprehensive review of problem solving from an ontogenetic perspective. The focus is to highlight aspects of problem solving that have been overlooked in the current literature, and highlight why developmental influences of problem-solving ability are particularly important avenues for future investigation. We argue that the ultimate outcome of solving a problem is underpinned by interacting cognitive, physiological and behavioural components, all of which are affected by ontogenetic factors. We emphasise that, due to the large number of confounding ontogenetic influences, an individual-centric approach is important for a full understanding of the development of problem solving.
Collapse
Affiliation(s)
- Misha K. Rowell
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
| | - Neville Pillay
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Tasmin L. Rymer
- College of Science and Engineering, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia;
- Centre for Tropical Environmental and Sustainability Sciences, James Cook University, P. O. Box 6811, Cairns, Queensland 4870, Australia
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa;
| |
Collapse
|
26
|
Link between past threatening experience and future neophobic behaviour depends on physiological stress responsiveness. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Gormally BMG, Romero LM. What are you actually measuring? A review of techniques that integrate the stress response on distinct time‐scales. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13648] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Seeing red? Colour biases of foraging birds are context dependent. Anim Cogn 2020; 23:1007-1018. [PMID: 32621272 PMCID: PMC7415751 DOI: 10.1007/s10071-020-01407-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 10/28/2022]
Abstract
Colours are commonly used as visual cues when measuring animals' cognitive abilities. However, animals can have innate biases towards certain colours that depend on ecological and evolutionary contexts, therefore potentially influencing their performance in experiments. For example, when foraging, the colour red can advertise profitable fruits or act as a warning signal about chemically defended prey, and an individual's propensity to take food of that colour may depend on experience, age or physical condition. Here, we investigate how these contexts influence blue tits' (Cyanistes caeruleus) and great tits' (Parus major) responses to red-coloured almond flakes. We found that juvenile birds preferred red both when it was presented simultaneously with green, and when it was presented with three alternative colours (orange, purple, green). Adult birds, however, only preferred red after a positive experience with the colour, or when it was presented with the three alternative colours. We then tested whether colour influenced avoidance learning about food unpalatability. Despite the prediction that red is a more salient warning signal than green, we found only weak evidence that birds discriminated red unpalatable almonds from a green palatable alternative more quickly than when the colours were reversed. Our results suggest that biases towards red food may depend on birds' age and previous experience, and this might influence their performance in experiments that use red stimuli. Considering the ecological relevance of colours is, therefore, important when designing experiments that involve colour cues.
Collapse
|
29
|
Predictors of individual variation in reversal learning performance in three-spined sticklebacks. Anim Cogn 2020; 23:925-938. [PMID: 32514661 DOI: 10.1007/s10071-020-01399-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 12/30/2022]
Abstract
Behavioral flexibility is a type of phenotypic plasticity that can influence how animals cope with environmental change and is often measured with a reversal learning paradigm. The goal of this study was to understand why individuals differ in behavioral flexibility, and whether individual differences in behavioral flexibility fit the predictions of coping styles theory. We tested whether individual variation in flexibility correlates with response to novelty (response to a novel object), boldness (emergence into a novel environment), and behavioral persistence (response to a barrier), and tested for trade-offs between how quickly individuals learn an initial discrimination and flexibility. We compare results when reversal learning performance is measured during an early step of reversal learning (e.g. the number of errors during the first reversal session) to when reversal learning performance is measured by time to criterion. Individuals that made fewer mistakes during an early step of reversal learning spent more time away from the novel object, were less bold, less persistent, and performed worse during initial discrimination learning. In contrast, time to criterion was not correlated with any of the behaviors measured. This result highlights the utility of dissecting the steps of reversal learning to better understand variation in behavioral flexibility. Altogether, this study suggests that individuals differ in flexibility because flexibility is a key ingredient to their overall integrated strategy for coping with environmental challenges.
Collapse
|
30
|
Bebus SE, Jones BC, Anderson RC. Development of the corticosterone stress response differs among passerine species. Gen Comp Endocrinol 2020; 291:113417. [PMID: 32027877 DOI: 10.1016/j.ygcen.2020.113417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids are steroid hormones which increase dramatically in response to a physical or perceived stressor. However, developing young of altricial species typically have a damped glucocorticoid stress response. The developmental hypothesis posits that the physiological stress response should develop concurrently with an individual's ability to respond to a challenge. The dampened response may benefit an organism, as chronic exposure to glucocorticoids can have short- and long-term detrimental effects, and altricial young are unable to escape most stressors. However, we do not know if or why species with similar ontogeny vary in their development of the physiological stress response. We assessed levels of baseline and stress-induced corticosterone (the main avian glucocorticoid) in six passerine species with varying life-history strategies, including a brood parasite, the brown-headed cowbird (Molothrus ater). Circulating baseline corticosterone levels increased with nestling age for all species. Stress-induced corticosterone levels sampled at 15-min post-capture significantly increased with nestling age at a similar rate and magnitude in brown-headed cowbirds, eastern phoebes (Sayornis phoebe), hooded warblers (Setophaga citrina), red-winged blackbirds (Agelaius phoeniceus), and song sparrows (Melospiza melodia). However, gray catbird (Dumetella carolinensis) nestlings showed an extremely dampened elevation in corticosterone in response to stress, even near fledge. Gray catbirds are unusual among songbirds, as they are open-ended song learners. Stress during development can profoundly influence avian song learning and performance abilities. However, further study is necessary to determine if there is a relationship between nestling adrenocortical activity and open- versus closed-ended song learning.
Collapse
Affiliation(s)
- Sara E Bebus
- Department of Biological Sciences, Florida Atlantic University, Davie, FL, USA.
| | - Blake Carlton Jones
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Rindy C Anderson
- Department of Biological Sciences, Florida Atlantic University, Davie, FL, USA
| |
Collapse
|
31
|
Reichert MS, Crofts SJ, Davidson GL, Firth JA, Kulahci IG, Quinn JL. Multiple factors affect discrimination learning performance, but not between-individual variation, in wild mixed-species flocks of birds. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192107. [PMID: 32431886 PMCID: PMC7211855 DOI: 10.1098/rsos.192107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Cognition arguably drives most behaviours in animals, but whether and why individuals in the wild vary consistently in their cognitive performance is scarcely known, especially under mixed-species scenarios. One reason for this is that quantifying the relative importance of individual, contextual, ecological and social factors remains a major challenge. We examined how many of these factors, and sources of bias, affected participation and performance, in an initial discrimination learning experiment and two reversal learning experiments during self-administered trials in a population of great tits and blue tits. Individuals were randomly allocated to different rewarding feeders within an array. Participation was high and only weakly affected by age and species. In the initial learning experiment, great tits learned faster than blue tits. Great tits also showed greater consistency in performance across two reversal learning experiments. Individuals assigned to the feeders on the edge of the array learned faster. More errors were made on feeders neighbouring the rewarded feeder and on feeders that had been rewarded in the previous experiment. Our estimates of learning consistency were unaffected by multiple factors, suggesting that, even though there was some influence of these factors on performance, we obtained a robust measure of discrimination learning in the wild.
Collapse
Affiliation(s)
- Michael S. Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sam J. Crofts
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
| | - Gabrielle L. Davidson
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Josh A. Firth
- Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK
- Merton College, University of Oxford, Oxford, UK
| | - Ipek G. Kulahci
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Wallace KJ, Rausch RT, Ramsey ME, Cummings ME. Sex differences in cognitive performance and style across domains in mosquitofish (Gambusia affinis). Anim Cogn 2020; 23:655-669. [PMID: 32166514 DOI: 10.1007/s10071-020-01367-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022]
Abstract
Given that the sexes often differ in their ecological and sexual selection pressures, sex differences in cognitive properties are likely. While research on sexually dimorphic cognition often focuses on performance, it commonly overlooks how sexes diverge across cognitive domains and in behaviors exhibited during a cognitive task (cognitive style). We tested male and female western mosquitofish (Gambusia affinis) in three cognitive tasks: associative learning (numerical discrimination), cognitive flexibility (detour task), and spatio-temporal learning (shuttlebox). We characterized statistical relationships between cognitive performances and cognitive style during the associative learning task with measures of anxiety, boldness, exploration, reaction time, and activity. We found sex differences in performance, cognitive style, and the relationships between cognitive domains. Females outperformed males in the spatio-temporal learning task, while the sexes performed equally in associate learning and cognitive flexibility assays. Females (but not males) exhibited a 'fast-exploratory' cognitive style during associative learning trials. Meanwhile, only males showed a significant positive relationship between domains (associative learning and cognitive flexibility). We propose that these sexually dimorphic cognitive traits result from strong sexual conflict in this taxon; and emphasize the need to explore suites of sex-specific cognitive traits and broader comparative work examining sexual selection and cognition.
Collapse
Affiliation(s)
- Kelly J Wallace
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA.
| | - Richie T Rausch
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Mary E Ramsey
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, 1 University Station C0990, Austin, TX, 78712, USA
| |
Collapse
|
33
|
Horváth G, Rodríguez‐Ruiz G, Martín J, López P, Herczeg G. Maternal diet affects juvenile Carpetan rock lizard performance and personality. Ecol Evol 2019; 9:14476-14488. [PMID: 31938534 PMCID: PMC6953655 DOI: 10.1002/ece3.5882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 11/03/2019] [Indexed: 11/07/2022] Open
Abstract
Differences in both stable and labile state variables are known to affect the emergence and maintenance of consistent interindividual behavioral variation (animal personality or behavioral syndrome), especially when experienced early in life. Variation in environmental conditions experienced by gestating mothers (viz. nongenetic maternal effects) is known to have significant impact on offspring condition and behavior; yet, their effect on behavioral consistency is not clear. Here, by applying an orthogonal experimental design, we aimed to study whether increased vitamin D3 content in maternal diet during gestation (vitamin-supplemented vs. vitamin control treatments) combined with corticosterone treatment (corticosterone-treated vs. corticosterone control treatments) applied on freshly hatched juveniles had an effect on individual state and behavioral consistency of juvenile Carpetan rock lizards (Iberolacerta cyreni). We tested the effect of our treatments on (a) climbing speed and the following levels of behavioral variation, (b) strength of animal personality (behavioral repeatability), (c) behavioral type (individual mean behavior), and (d) behavioral predictability (within-individual behavioral variation unrelated to environmental change). We found higher locomotor performance of juveniles from the vitamin-supplemented group (42.4% increase), irrespective of corticosterone treatment. While activity personality was present in all treatments, shelter use personality was present only in the vitamin-supplemented × corticosterone-treated treatment and risk-taking personality was present in corticosterone control treatments. Contrary to our expectations, behavioral type was not affected by our treatments, indicating that individual quality can affect behavioral strategies without affecting group-level mean behavior. Behavioral predictability decreased in individuals with low climbing speed, which could be interpreted as a form of antipredator strategy. Our results clearly demonstrate that maternal diet and corticosterone treatment have the potential to induce or hamper between-individual variation in different components of boldness, often in interactions.
Collapse
Affiliation(s)
- Gergely Horváth
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| | | | - José Martín
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Pilar López
- Department of Evolutionary EcologyMuseo Nacional de Ciencias NaturalesCSICMadridSpain
| | - Gábor Herczeg
- Behavioural Ecology GroupDepartment of Systematic Zoology and EcologyEötvös Loránd UniversityBudapestHungary
| |
Collapse
|
34
|
Rojas‐Ferrer I, Thompson MJ, Morand‐Ferron J. Is exploration a metric for information gathering? Attraction to novelty and plasticity in black‐capped chickadees. Ethology 2019. [DOI: 10.1111/eth.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Gibelli J, Aubin-Horth N, Dubois F. Individual differences in anxiety are related to differences in learning performance and cognitive style. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Mazza V, Dammhahn M, Eccard JA, Palme R, Zaccaroni M, Jacob J. Coping with style: individual differences in responses to environmental variation. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2760-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Greggor AL, Trimmer PC, Barrett BJ, Sih A. Challenges of Learning to Escape Evolutionary Traps. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00408] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
38
|
Roy T, Suriyampola PS, Flores J, López M, Hickey C, Bhat A, Martins EP. Color preferences affect learning in zebrafish, Danio rerio. Sci Rep 2019; 9:14531. [PMID: 31601932 PMCID: PMC6787237 DOI: 10.1038/s41598-019-51145-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/25/2019] [Indexed: 01/03/2023] Open
Abstract
Animals may exhibit preference for colors that match their environment or the resources in the environment. These preferences may impact ability to learn associations with these colors and revert the associations when the reward contingency is modified. We used zebrafish Danio rerio from four populations to test if color preferences impact associative and reversal learning ability. First, we tested if preference for blue or green impact associative ability. We subjected individual fish through eight trials to associate a social stimulus with blue or green. Next, we tested if preference for red or green impact associative reversal learning ability. We trained fish in groups of three to associate a social stimulus with red or green over three trials, and reversed the reward contingency during the following session. Results showed that zebrafish preferred green over blue and domesticated fish chose green more than blue when there was a reward attached. Zebrafish also preferred red over green. Fish from one wild population learned with both colors and reversed learning only from green to red and not vice-versa. Fish from another population showed an overwhelming preference for red irrespective of what was rewarded. Domesticated fish did not show reversal learning ability.
Collapse
Affiliation(s)
- Tamal Roy
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA.
| | - Piyumika S Suriyampola
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
| | - Jennifer Flores
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
| | - Melissa López
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
| | - Collin Hickey
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
| | - Anuradha Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Emília P Martins
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85287, USA
| |
Collapse
|
39
|
Mazza V, Jacob J, Dammhahn M, Zaccaroni M, Eccard JA. Individual variation in cognitive style reflects foraging and anti-predator strategies in a small mammal. Sci Rep 2019; 9:10157. [PMID: 31300696 PMCID: PMC6626059 DOI: 10.1038/s41598-019-46582-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Balancing foraging gain and predation risk is a fundamental trade-off in the life of animals. Individual strategies to acquire, process, store and use information to solve cognitive tasks are likely to affect speed and flexibility of learning, and ecologically relevant decisions regarding foraging and predation risk. Theory suggests a functional link between individual variation in cognitive style and behaviour (animal personality) via speed-accuracy and risk-reward trade-offs. We tested whether cognitive style and personality affect risk-reward trade-off decisions posed by foraging and predation risk. We exposed 21 bank voles (Myodes glareolus) that were bold, fast learning and inflexible and 18 voles that were shy, slow learning and flexible to outdoor enclosures with different risk levels at two food patches. We quantified individual food patch exploitation, foraging and vigilance behaviour. Although both types responded to risk, fast animals increasingly exploited both food patches, gaining access to more food and spending less time searching and exercising vigilance. Slow animals progressively avoided high-risk areas, concentrating foraging effort in the low-risk one, and devoting >50% of visit to vigilance. These patterns indicate that individual differences in cognitive style/personality are reflected in foraging and anti-predator decisions that underlie the individual risk-reward bias.
Collapse
Affiliation(s)
- Valeria Mazza
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany. .,Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany. .,Department of Biology, University of Florence, Florence, Italy.
| | - Jens Jacob
- Julius Kühn Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Melanie Dammhahn
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Marco Zaccaroni
- Department of Biology, University of Florence, Florence, Italy
| | - Jana A Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
40
|
Sorato E, Zidar J, Garnham L, Wilson A, Løvlie H. Heritabilities and co-variation among cognitive traits in red junglefowl. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0285. [PMID: 30104430 DOI: 10.1098/rstb.2017.0285] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Natural selection can act on between-individual variation in cognitive abilities, yet evolutionary responses depend on the presence of underlying genetic variation. It is, therefore, crucial to determine the relative extent of genetic versus environmental control of these among-individual differences in cognitive traits to understand their causes and evolutionary potential. We investigated heritability of associative learning performance and of a cognitive judgement bias (optimism), as well as their covariation, in a captive pedigree-bred population of red junglefowl (Gallus gallus, n > 300 chicks over 5 years). We analysed performance in discriminative and reversal learning (two facets of associative learning), and cognitive judgement bias, by conducting animal models to disentangle genetic from environmental contributions. We demonstrate moderate heritability for reversal learning, and weak to no heritability for optimism and discriminative learning, respectively. The two facets of associative learning were weakly negatively correlated, consistent with hypothesized trade-offs underpinning individual cognitive styles. Reversal, but not discriminative learning performance, was associated with judgement bias; less optimistic individuals reversed a previously learnt association faster. Together these results indicate that genetic and environmental contributions differ among traits. While modular models of cognitive abilities predict a lack of common genetic control for different cognitive traits, further investigation is required to fully ascertain the degree of covariation between a broader range of cognitive traits and the extent of any shared genetic control.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Enrico Sorato
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Josefina Zidar
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Laura Garnham
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| | - Alastair Wilson
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Hanne Løvlie
- Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, Linköping 581 83, Sweden
| |
Collapse
|
41
|
Madden JR, Langley EJG, Whiteside MA, Beardsworth CE, van Horik JO. The quick are the dead: pheasants that are slow to reverse a learned association survive for longer in the wild. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0297. [PMID: 30104439 PMCID: PMC6107567 DOI: 10.1098/rstb.2017.0297] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Cognitive abilities probably evolve through natural selection if they provide individuals with fitness benefits. A growing number of studies demonstrate a positive relationship between performance in psychometric tasks and (proxy) measures of fitness. We assayed the performance of 154 common pheasant (Phasianus colchicus) chicks on tests of acquisition and reversal learning, using a different set of chicks and different set of cue types (spatial location and colour) in each of two years and then followed their fates after release into the wild. Across all birds, individuals that were slow to reverse previously learned associations were more likely to survive to four months old. For heavy birds, individuals that rapidly acquired an association had improved survival to four months, whereas for light birds, slow acquirers were more likely to be alive. Slow reversers also exhibited less exploratory behaviour in assays when five weeks old. Fast acquirers visited more artificial feeders after release. In contrast to most other studies, we showed that apparently ‘poor’ cognitive performance (slow reversal speed suggesting low behavioural flexibility) correlates with fitness benefits in at least some circumstances. This correlation suggests a novel mechanism by which continued exaggeration of cognitive abilities may be constrained. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.
Collapse
Affiliation(s)
- Joah R Madden
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Ellis J G Langley
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| | - Jayden O van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
42
|
Dougherty LR, Guillette LM. Linking personality and cognition: a meta-analysis. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0282. [PMID: 30104427 DOI: 10.1098/rstb.2017.0282] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
In the past decade, several conceptual papers have linked variation in animal personality to variation in cognition, and recent years have seen a flood of empirical studies testing this link. However, these results have not been synthesized in a quantitative way. Here, we systematically search the literature and conduct a phylogenetically controlled meta-analysis of empirical papers that have tested the relationship between animal personality (exploration, boldness, activity, aggression and sociability) and cognition (initial learning/reversal speed, number of correct choices/errors after standard training). We find evidence for a small but significant relationship between variation in personality and variation in learning across species in the absolute scale; however, the direction of this relationship is highly variable and when both positive and negative effect sizes are considered, the average effect size does not differ significantly from zero. Importantly, this variation among studies is not explained by differences in personality or learning measure, or taxonomic grouping. Further, these results do not support current hypotheses suggesting that that fast-explorers are fast-learners or that slow-explorers perform better on tests of reversal learning. Rather, we find evidence that bold animals are faster learners, but only when boldness is measured in response to a predator (or simulated predator) and not when boldness is measured by exposure to a novel object (or novel food). Further, although only a small sub-sample of papers reported results separately for males and females, sex explained a significant amount of variation in effect size. These results, therefore, suggest that, while personality and learning are indeed related across a range of species, the direction of this relationship is highly variable. Thus further empirical work is needed to determine whether there are important moderators of this relationship.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7RB, UK
| | - Lauren M Guillette
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK .,Department of Psychology, University of Alberta, Edmonton, Canada AB T6G 2R3
| |
Collapse
|
43
|
Fuss T, Witte K. Sex differences in color discrimination and serial reversal learning in mollies and guppies. Curr Zool 2019; 65:323-332. [PMID: 31263491 PMCID: PMC6595423 DOI: 10.1093/cz/zoz029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/16/2019] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility provides an individual with the ability to adapt its behavior in response to environmental changes. Studies on mammals, birds, and teleosts indicate greater behavioral flexibility in females. Conversely, males appear to exhibit greater behavioral persistence. We, therefore, investigated sex differences in behavioral flexibility in 2 closely related molly species (Poecilia latipinna, P. mexicana) and their more distant relative, the guppy P. reticulata by comparing male and female individuals in a serial, visual reversal learning task. Fish were first trained in color discrimination, which was quickly learned by all females (guppies and mollies) and all molly males alike. Despite continued training over more than 72 sessions, male guppies did not learn the general test procedure and were, therefore, excluded from further testing. Once the reward contingency was reversed serially, molly males of both species performed considerably better by inhibiting their previous response and reached the learning criterion significantly faster than their respective conspecific females. Moreover, Atlantic molly males clearly outperformed all other individuals (males and females) and some of them even reached the level of 1-trial learning. Thus, the apparently universal pattern of higher female behavioral flexibility seems to be inverted in the 2 examined molly species, although the evolutionary account of this pattern remains highly speculative. These findings were complemented by the observed lower neophobia of female sailfin mollies compared with their male conspecifics. This sex difference was not observed in Atlantic mollies that were observed to be significantly less distressed in a novel situation than their consexuals. Hypothetically, sex differences in behavioral flexibility can possibly be explained in terms of the different roles that males and females play in mating competition, mate choice, and reproduction or, more generally, in complex social interactions. Each of these characteristics clearly differed between the closely related mollies and the more distantly related guppies.
Collapse
Affiliation(s)
- Theodora Fuss
- Research Group of Ecology and Behavioral Biology, Institute of Biology, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen, Germany
| | - Klaudia Witte
- Research Group of Ecology and Behavioral Biology, Institute of Biology, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen, Germany
| |
Collapse
|
44
|
van Horik JO, Langley EJ, Whiteside MA, Madden JR. A single factor explanation for associative learning performance on colour discrimination problems in common pheasants ( Phasianus colchicus). INTELLIGENCE 2019; 74:53-61. [PMID: 31217648 PMCID: PMC6558991 DOI: 10.1016/j.intell.2018.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/12/2023]
Abstract
It remains unclear whether performance of non-human animals on cognitive test batteries can be explained by domain general cognitive processes, as is found in humans. The persistence of this dispute is likely to stem from a lack of clarity of the psychological or neural processes involved. One broadly accepted cognitive process, that may predict performance in a range of psychometric tasks, is associative learning. We therefore investigated intra-individual performances on tasks that incorporate processes of associative learning, by assessing the speed of acquisition and reversal learning in up to 187 pheasants (Phasianus colchicus) on four related binary colour discrimination tasks. We found a strong, positive significant bivariate relationship between an individual's acquisition and reversal learning performances on one cue set. Weak, positive significant bivariate relationships were also found between an individual's performance on pairs of reversal tasks and between the acquisition and reversal performances on different cue sets. A single factor, robust to parallel analysis, explained 36% of variation in performance across tasks. Inter-individual variation could not be explained by differential prior experience, age, sex or body condition. We propose that a single factor explanation, which we call 'a', summarises the covariance among scores obtained from these visual discrimination tasks, as they all assess capacities for associative learning. We argue that 'a' may represent an underlying cognitive ability exhibited by an individual, which manifests across a variety of tasks requiring associative processes.
Collapse
Affiliation(s)
- Jayden O. van Horik
- Centre for Research in Animal Behaviour, Psychology, University of Exeter, UK
| | | | | | | |
Collapse
|
45
|
Abstract
As an increasing number of researchers investigate the cognitive abilities of an ever-wider range of animals, animal cognition is currently among the most exciting fields within animal behavior. Tinbergen would be proud: all four of his approaches are being pursued and we are learning much about how animals collect information and how they use that information to make decisions for their current and future states as well as what animals do not perceive or choose to ignore. Here I provide an overview of this productivity, alighting only briefly on any single example, to showcase the diversity of species, of approaches and the sheer mass of research effort currently under way. We are getting closer to understanding the minds of other animals and the evolution of cognition at an increasingly rapid rate.
Collapse
Affiliation(s)
- Susan D Healy
- School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
46
|
Wright CM, Lichtenstein JLL, Doering GN, Pretorius J, Meunier J, Pruitt JN. Collective personalities: present knowledge and new frontiers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the question. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Zidar J, Balogh A, Favati A, Jensen P, Leimar O, Sorato E, Løvlie H. The relationship between learning speed and personality is age- and task-dependent in red junglefowl. Behav Ecol Sociobiol 2018; 72:168. [PMID: 30369707 PMCID: PMC6182743 DOI: 10.1007/s00265-018-2579-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/06/2022]
Abstract
Abstract Cognition is fundamental to animals’ lives and an important source of phenotypic variation. Nevertheless, research on individual variation in animal cognition is still limited. Further, although individual cognitive abilities have been suggested to be linked to personality (i.e., consistent behavioral differences among individuals), few studies have linked performance across multiple cognitive tasks to personality traits. Thus, the interplays between cognition and personality are still unclear. We therefore investigated the relationships between an important aspect of cognition, learning, and personality, by exposing young and adult red junglefowl (Gallus gallus) to multiple learning tasks (discriminative, reversal, and spatial learning) and personality assays (novel arena, novel object, and tonic immobility). Learning speed was not correlated across learning tasks, and learning speed in discrimination and spatial learning tasks did not co-vary with personality. However, learning speed in reversal tasks was associated with individual variation in exploration, and in an age-dependent manner. More explorative chicks learned the reversal task faster than less explorative ones, while the opposite association was found for adult females (learning speed could not be assayed in adult males). In the same reversal tasks, we also observed a sex difference in learning speed of chicks, with females learning faster than males. Our results suggest that the relationship between cognition and personality is complex, as shown by its task- and age-dependence, and encourage further investigation of the causality and dynamics of this relationship. Significance statement In the ancestor of today’s chickens, the red junglefowl, we explored how personality and cognition relate by exposing both chicks and adults to several learning tasks and personality assays. Our birds differed in personality and learning speed, while fast learners in one task did not necessarily learn fast in another (i.e., there were no overall “smarter” birds). Exploration correlated with learning speed in the more complex task of reversal learning: faster exploring chicks, but slower exploring adult females, learned faster, compared to less explorative birds. Other aspects of cognition and personality did not correlate. Our results suggest that cognition and personality are related, and that the relationship can differ depending on task and age of the animal. Electronic supplementary material The online version of this article (10.1007/s00265-018-2579-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Josefina Zidar
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Alexandra Balogh
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden.,2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Anna Favati
- 2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Per Jensen
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Olof Leimar
- 2Department of Zoology, Stockholm University, 10691 Stockholm, Sweden
| | - Enrico Sorato
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| | - Hanne Løvlie
- 1Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
49
|
Weber BM, Bowers EK, Terrell KA, Falcone JF, Thompson CF, Sakaluk SK. Pre- and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and survival of nestling house wrens. Funct Ecol 2018; 32:1995-2007. [PMID: 30344358 PMCID: PMC6191837 DOI: 10.1111/1365-2435.13126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023]
Abstract
Corticosterone plays a central role in maintaining homeostasis, promoting energy acquisition, and regulating the stress response in birds. Exposure to elevated levels of corticosterone during development can profoundly alter offspring behaviour and physiology, but the effects of elevated maternal corticosterone on offspring development remain poorly understood.We tested two competing hypotheses concerning the effect of maternally derived corticosterone on growth and development of free-living house wrens: (i) elevated maternal corticosterone causes damaging effects on nestling phenotype and fitness (collateral damage hypothesis) and (ii) increased maternal corticosterone enhances offspring fitness by preparing nestlings for the environment experienced by their mother (environmental/maternal-matching hypothesis).We used a non-invasive means to increase maternal corticosterone by providing females with corticosterone-injected mealworms prior to and during egg production in the absence of any overt pre-natal maternal stress. To disentangle pre- and post-natal effects of this elevation in maternal corticosterone, we cross-fostered young in two experiments: (i) nestlings of control and experimental females were reared by unmanipulated, natural females in a uniform maternal environment; (ii) a split-brood design that enabled us to assess the interaction between the mother's corticosterone treatment and that of the nestlings.There were significant pre-natal effects of increased maternal corticosterone on nestling growth and survival. Offspring of females experiencing experimentally increased corticosterone were heavier and larger than offspring of control females. There also was a significant interaction between maternal corticosterone treatment and the corticosterone treatment to which young were exposed within the egg in their effect on nestling survival while in the nest; experimental young exhibited greater survival than control young, but only when reared by control mothers. There was also a significant effect of maternal corticosterone treatment on nestling stress reactivity and, in both experiments, on the eventual recruitment of offspring as breeding adults in the local population.These patterns are broadly consistent with the environmental/maternal-matching hypothesis, and highlight the importance of disentangling pre- and post-natal effects of manipulations of maternal hormone levels on offspring phenotype.
Collapse
Affiliation(s)
- Beth M Weber
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - E Keith Bowers
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Kimberly A Terrell
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
- Department of Research and Conservation, Memphis Zoo, Memphis, TN, USA
| | | | - Charles F Thompson
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| | - Scott K Sakaluk
- Behavior, Ecology, Evolution and Systematics Section, School of Biological Sciences, Illinois State University, Normal, IL, USA
| |
Collapse
|
50
|
Sommer-Trembo C, Plath M. Consistent individual differences in associative learning speed are not linked to boldness in female Atlantic mollies. Anim Cogn 2018; 21:661-670. [PMID: 29974274 DOI: 10.1007/s10071-018-1201-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/18/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
Recent studies on consistent individual differences in behavioural tendencies (animal personality) raised the question of whether individual differences in cognitive abilities can be linked to certain personality types. We tested female Atlantic mollies (Poecilia mexicana) in two different classical conditioning experiments. For the first time, we provide evidence for highly consistent individual differences in associative learning speed in fish. We characterized the same individuals for boldness in two experimental situations (latency to emerge from shelter and freezing time after a simulated predator attack) and found high behavioural repeatability. When we tested for a potential correlation between associative learning speed and boldness, however, there was no evidence for a link between them. Our study design included several steps to avoid typical pitfalls of disadvantaging shy individuals during learning tests. We caution that other experimental studies may have suffered from erroneous interpretations due to a more cautious coping style of shy individuals in the respective setup used to assess learning.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- Department of Ecology and Evolution, Goethe University Frankfurt, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany.
| | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China
| |
Collapse
|