1
|
Collins SM, Hendrix JG, Webber QMR, Boyle SP, Kingdon KA, Blackmore RJ, d'Entremont KJN, Hogg J, Ibáñez JP, Kennah JL, Lamarre J, Mejías M, Newediuk L, Richards C, Schwedak K, Wijekulathilake C, Turner JW. Bibliometric investigation of the integration of animal personality in conservation contexts. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14021. [PMID: 36285603 DOI: 10.1111/cobi.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Consistent individual differences in behavior, commonly termed animal personality, are a widespread phenomenon across taxa that have important consequences for fitness, natural selection, and trophic interactions. Animal personality research may prove useful in several conservation contexts, but which contexts remains to be determined. We conducted a structured literature review of 654 studies identified by combining search terms for animal personality and various conservation subfields. We scored the relevance of personality and conservation issues for each study to identify which studies meaningfully integrated the 2 fields as opposed to surface-level connections or vague allusions. We found a taxonomic bias toward mammals (29% of all studies). Very few amphibian or reptile studies applied personality research to conservation issues (6% each). Climate change (21%), invasive species (15%), and captive breeding and reintroduction (13%) were the most abundant conservation subfields that occurred in our search, though a substantial proportion of these papers weakly integrated conservation and animal personality (climate change 54%, invasive species 51%, captive breeding and reintroduction 40%). Based on our results, we recommend that researchers strive for consistent and broadly applicable terminology when describing consistent behavioral differences to minimize confusion and improve the searchability of research. We identify several gaps in the literature that appear to be promising and fruitful avenues for future research, such as disease transmission as a function of sociability or exploration as a driver of space use in protected areas. Practitioners can begin informing future conservation efforts with knowledge gained from animal personality research.
Collapse
Affiliation(s)
- Sydney M Collins
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jack G Hendrix
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Quinn M R Webber
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Sean P Boyle
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katrien A Kingdon
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert J Blackmore
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Kyle J N d'Entremont
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jennifer Hogg
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Juan P Ibáñez
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Joanie L Kennah
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Miguel Mejías
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Levi Newediuk
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Cerren Richards
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Katrina Schwedak
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Chirathi Wijekulathilake
- Cognitive and Behavioural Ecology Program, Departments of Biology and Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Julie W Turner
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Wildlife Division, Government of Newfoundland and Labrador, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
2
|
MacKinlay RD, Shaw RC. A systematic review of animal personality in conservation science. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13935. [PMID: 35561041 PMCID: PMC10084254 DOI: 10.1111/cobi.13935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/26/2022] [Indexed: 04/13/2023]
Abstract
Although animal personality research may have applied uses, this suggestion has yet to be evaluated by assessing empirical studies examining animal personality and conservation. To address this knowledge gap, we performed a systematic review of the peer-reviewed literature relating to conservation science and animal personality. Criteria for inclusion in our review included access to full text, primary research articles, and relevant animal conservation or personality focus (i.e., not human personality studies). Ninety-two articles met these criteria. We summarized the conservation contexts, testing procedures (including species and sample size), analytical approach, claimed personality traits (activity, aggression, boldness, exploration, and sociability), and each report's key findings and conservation-focused suggestions. Although providing evidence for repeatability in behavior is crucial for personality studies, repeatability quantification was implemented in only half of the reports. Nonetheless, each of the 5 personality traits were investigated to some extent in a range of conservations contexts. The most robust studies in the field showed variance in how personality relates to other ecologically important variables across species and contexts. Moreover, many studies were first attempts at using personality for conservation purposes in a given study system. Overall, it appears personality is not yet a fully realized tool for conservation. To apply personality research to conservation problems, we suggest researchers think about where individual differences in behavior may affect conservation outcomes in their system, assess where there are opportunities for repeated measures, and follow the most current methodological guides on quantifying personality.
Collapse
Affiliation(s)
- Regan D. MacKinlay
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Rachael C. Shaw
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
3
|
Shipley ON, Kelly JB, Bizzarro JJ, Olin JA, Cerrato RM, Power M, Frisk MG. Evolution of realized Eltonian niches across
Rajidae
species. Ecosphere 2021. [DOI: 10.1002/ecs2.3368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Oliver N. Shipley
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Joseph B. Kelly
- Department for Ecology and Evolution Stony Brook University Stony Brook New York11794USA
| | - Joseph J. Bizzarro
- Moss Landing Marine Laboratories California State University 8272 Moss Landing Road Moss Landing California95039USA
- Cooperative Institute for Marine Ecosystems and Climate University of California, Santa Cruz 110 McAllister Way Santa Cruz California95060USA
| | - Jill A. Olin
- Great Lakes Research Center Michigan Technological University Houghton Michigan49931USA
| | - Robert M. Cerrato
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| | - Michael Power
- Department of Biology University of Waterloo 200 University Avenue West Waterloo OntarioN2L 3G1Canada
| | - Michael G. Frisk
- School of Marine and Atmospheric Sciences Stony Brook University Stony Brook New York11794USA
| |
Collapse
|
4
|
Maskrey DK, Sneddon LU, Arnold KE, Wolfenden DCC, Thomson JS. The impact of personality, morphotype and shore height on temperature-mediated behavioural responses in the beadlet anemone Actinia equina. J Anim Ecol 2020; 89:2311-2324. [PMID: 32830317 DOI: 10.1111/1365-2656.13301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 11/30/2022]
Abstract
Between-individual variation in behavioural phenotype, termed personality, is an important determinant of how populations cope with acute environmental fluctuation related to climate change. Personality in the beadlet sea anemone Actinia equina is linked to genetically distinct morphotypes, which are associated with different heights on the shore. In the intertidal zone, high-shore environments experience more environmental fluctuation due to longer periods of exposure, and animals adapted to live in these environments are predicted to deal more effectively with environmental perturbation than their low-shore counterparts. We collected beadlet anemones of two different morphotypes from three different shore heights. We investigated variation in two behaviours at three different temperatures and in a temporal control treatment where the temperature was not changed: startle response time, the time it took an anemone to re-extend its tentacles after a threatening stimulus, and immersion response time, the time to re-extend tentacles after simulated tidal immersion. These behaviours reflect risk-taking and allow individuals to be categorized as bold, shy or intermediate based upon response times. Both behaviours showed significant changes as the temperature increased. For immersion response, the morphotype associated with the low-shore-lengthened response times at high temperatures. For startle response, all animals lengthened their response times at high temperatures but animals collected from the low-shore lengthened theirs to the greatest degree. At the individual level, although control individuals exhibited temporal changes in their response times, a clear effect of temperature was present in both behaviours. Shy and bold individuals became more intermediate at higher temperatures in immersion response (this effect was present to a lesser degree in control individuals), while intermediate individuals raised their response times at higher temperatures for startle response. Given that prolonged tentacle retraction reduces foraging opportunities and can negatively impact respiratory efficiency, our data suggest that some individuals within a single population of A. equina, particularly those associated with the lower shore, may exhibit less effective behavioural responses to temperature shifts than others. These findings demonstrate that acute temperature changes influence risk-taking, and could have profound short and long-term implications for survival in the face of climate change.
Collapse
Affiliation(s)
- Daniel K Maskrey
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Lynne U Sneddon
- School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Kathryn E Arnold
- Department of Environment and Geography, University of York, York, UK
| | | | - Jack S Thomson
- Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Brundu G, Farina S, Domenici P. Going back into the wild: the behavioural effects of raising sea urchins in captivity. CONSERVATION PHYSIOLOGY 2020; 8:coaa015. [PMID: 32587698 PMCID: PMC7304559 DOI: 10.1093/conphys/coaa015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 06/11/2023]
Abstract
Sea urchin harvesting has rapidly expanded in the last decades. Since many sea urchin species play important ecological role, large-scale commercial sea urchin fisheries can have complex effects on benthic communities. In many temperate regions, overharvesting has compromised marine ecosystems to such an extent that reintroduction of sea urchins raised in captivity may be a valid solution for the enhancement of depleted marine wild populations. In some regions of the Mediterranean Sea, improving the growth efficiency of captive sea urchin Paracentrotus lividus to be reintroduced has become a widespread practice. However, no study has yet considered the potential behavioural effects of raising sea urchins in captivity when they are introduced in the natural environment. This study provides information about the behavioural effects of captivity on P. lividus in terms of locomotion performance, a trait that can be fundamental for responding to predators and for relocation after environmental disturbances such as currents and waves. Movements of captive-born and wild sea urchins were video-recorded and compared in (i) total exposure to external cues, (ii) partial exposure to external cues and (iii) absence of external cues. Latency of locomotion, average speed and average velocity of sea urchins showed significant differences with respect to the level of exposure and their origin (i.e. wild vs. captive-born). Our results demonstrate that captive-born sea urchins in the wild showed long latency and slower locomotor performance when compared to wild sea urchins. Conversely, the straightness-of-path and locomotion direction of captive-born and wild sea urchins were similar in natural settings. Our results therefore suggest that captive-born sea urchins suffer the negative effects of captivity when introduced in a natural environment. Understanding the factors that decrease the performance of sea urchin will be important for developing procedures aimed at minimizing the negative effect of captivity before release into the wild.
Collapse
Affiliation(s)
- G Brundu
- IMC-International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| | - S Farina
- IMC-International Marine Centre, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| | - P Domenici
- IAS- Institute of Anthropic Impact and Sustainability in Marine Environment, CNR, Loc. Sa Mardini, Torre Grande, 09170 Oristano, Italy
| |
Collapse
|
6
|
Gauthier PT, Vijayan MM. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113757. [PMID: 31896476 DOI: 10.1016/j.envpol.2019.113757] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
While wastewater treatment standards have been progressively increasing, emerging contaminants such as pharmaceuticals can nonetheless pass through treatment and end up in our watersheds. Pharmaceuticals in the parts-per-billion range can impact fish behavior, survival, and recruitment in the wild. However, the ecological risk posed by whole municipal wastewater effluents (MWWE), a complex mixture, is not clear. This knowledge gap is particularly evident for early lifestages (ELS) of fish, and because effluent discharge events are typically short, the effects of short-term MWWE exposures to ELS fish are particularly important from an environmental perspective. Here we tested the effects of rapid 30-min exposures, and short-term 24- and 72-h exposures to MWWE on development, behaviors, and stress response in zebrafish (Danio rerio) embryos, larvae, and juveniles. We obtained 24-h composite samples of tertiary-treated MWWE that contained a mixture of chemicals with affinities for serotonergic, adrenergic, dopaminergic, and ion-channel receptors. Embryos exposed to 5%, 10%, and 50% MWWE experienced developmental delays in somitogenesis and hatching rate, although there was no effect on survival. Embryonic photomotor responses were affected following 30-min and 24-h exposures to 10% and 50% MWWE, and larval visual motor responses were reduced from 24-h exposure to 10% MWWE. Exposure to 10% MWWE dulled the juvenile cortisol and lactate response following an acute air-exposure. Compromised behavioral and stress performances demonstrate the capacity of MWWE to impact phenotypes critical to the survival of fish in the environment. Taken together, we found that zebrafish were sensitive to toxic effects of MWWE at multiple life-stages.
Collapse
Affiliation(s)
- Patrick T Gauthier
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada
| | - Mathilakath M Vijayan
- University of Calgary, Department of Biological Sciences, 2500 University Drive N.W., Calgary, T2N 1N4, Alberta, Canada.
| |
Collapse
|
7
|
Abstract
Expanding human populations favors a few species while extinguishing and endangering many others (Maxwell et al., 2016; Pimm et al., 2014). Understanding how animals perceive and learn about dangers and rewards can aid conservationists seeking to limit abundant or restore rare species (Schakner and Blumstein, 2016; Greggor et al., 2014; Angeloni et al., 2008; Fernández-Juricic and Schulte, 2016). Cognition research is informing conservation science by suggesting how naïve prey learn novel predators (Griffin et al., 2000; Moseby et al., 2015; Schakner et al., 2016; Blumstein, 2016), the mechanisms underlying variation in tolerance of human disturbance (Bostwick et al., 2014), and when natural aversions and fear learning can be leveraged to humanely control predators (Nielsen et al., 2015; Colman et al., 2014; Norbury et al., 2014; Lance et al., 2010; Cross et al., 2013). Insights into the relationships between cognition and adaptability suggest that behavioral inflexibility often presages species rarity (Amiel et al., 2011; Reif et al., 2011; Sol et al., 2008; Zhang et al., 2014; but see Kellert, 1984). Human compassion and restraint are ultimately required to conserve species. Cognitive science can therefore further inform conservation by revealing the complex inner worlds of the animals we threaten and, in partnership with environmental psychologists, explore how such newfound knowledge affects our empathy for other species and ultimately the public's actions on behalf of species in need of conservation (Collado et al., 2013; Zhang et al., 2014).
Collapse
|