1
|
Carroll MJ, Brown N, Huang E. E-B-ocimene and brood cannibalism: Interplay between a honey bee larval pheromone and brood regulation in summer dearth colonies. PLoS One 2025; 20:e0317668. [PMID: 39913563 PMCID: PMC11801708 DOI: 10.1371/journal.pone.0317668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Honey bees balance colony populations against available food resources by adjusting brood rearing during nutritionally-stressed periods. Workers limit colony populations primarily through brood cannibalism of eggs and young larvae but often resume brood rearing when conditions improve. However, extended brood cannibalism reduces brood and removes brood signals that mediate brood rearing, such as E-β-ocimene, a volatile pheromone produced by eggs, young larvae, prepupae and ovipositing queens. We examined the effects of pollen supplementation on ocimene signaling in nutritionally-stressed colonies. Pollen-deprived colonies showed declines in ocimene emissions that coincided with sustained brood cannibalism of pheromone-producing brood. In contrast, pollen-supplemented colonies reared more brood and released more ocimene. Twelve day old workers that completed adult development in pollen-deprived colonies had less well developed hypopharyngeal glands and fat bodies than workers that matured in pollen-supplemented colonies. Given that ocimene emissions increased once brood rearing resumed, we considered the possibility that ocimene may help suppress brood cannibalism and support egg retention in nutritionally stressed nuc colonies. Broodless nucleus frames were treated with synthetic ocimene releases equivalent to 3,744 L2-L3 larvae. All ocimene-supplemented nucs retained large numbers of eggs and young larvae four days after initial treatment. By contrast, half of the unsupplemented nucs cannibalized all of their eggs and L1 larvae. Most of the remaining unsupplemented nuc colonies retained fewer eggs and L1 larvae than ocimene supplemented nuc colonies. E-B-ocimene may prime nutritionally stressed workers to increase brood rearing during dearth periods by projecting the presence of healthy eggs and young larvae.
Collapse
Affiliation(s)
- Mark J. Carroll
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Nicholas Brown
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| | - Eden Huang
- Carl Hayden Bee Research Center USDA-ARS, Tucson, Arizona, United States of America
| |
Collapse
|
2
|
Tarpy DR. Collective decision-making during reproduction in social insects: a conceptual model for queen supersedure in honey bees (Apis mellifera). CURRENT OPINION IN INSECT SCIENCE 2024; 66:101260. [PMID: 39244089 DOI: 10.1016/j.cois.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/12/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Insect societies have served as excellent examples for co-ordinated decision-making. The production of sexuals is the most important group decision that social insects face since it affects both direct and indirect fitness. The behavioral processes by which queens are selected have been of particular interest since they are the primary egg layers that enable colony function. As a model system, previous research on honey bee reproduction has focused on swarming behavior and nest site selection. One significant gap in our knowledge of the collective decision-making process over reproduction is how daughter queens simply replace old or failing queens (=supersedure) rather than being reared for the purposes of colony fission (=swarming) or queen loss (=emergency queen rearing). Here, I present a conceptual model that provides a framework for understanding the collective decisions by colonies to supersede their mother queens, as well as provide some key recommendations on future empirical work.
Collapse
Affiliation(s)
- David R Tarpy
- Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, NC, USA; Graduate Program in Biology-Evolution & Ecology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Quinlan GM, Grozinger CM. Evaluating the role of social context and environmental factors in mediating overwintering physiology in honey bees (Apis mellifera). J Exp Biol 2024; 227:jeb247314. [PMID: 38516936 DOI: 10.1242/jeb.247314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
In temperate climates, honey bees show strong phenotypic plasticity associated with seasonal changes. In summer, worker bees typically only survive for about a month and can be further classified as young nurse bees (which feed the developing brood) and older forager bees. In winter, brood production and foraging halt and the worker bees live for several months. These differences in task and longevity are reflected in their physiology, with summer nurses and long-lived winter bees typically having large fat bodies, high expression levels of vitellogenin (a longevity-, nutrition- and immune-related gene), and large provisioning glands in their head. The environmental factors (both within the colony and within the surrounding environment) that trigger this transition to long-lived winter bees are poorly understood. One theory is that winter bees are an extended nurse bee state, brought on by a reduction in nursing duties in autumn (i.e. lower brood area). We examined that theory here by assessing nurse bee physiology in both the summer and autumn, in colonies with varying levels of brood. We found that season is a better predictor of nurse bee physiology than brood area. This suggests that seasonal factors beyond brood area, such as pollen availability and colony demography, may be necessary for inducing the winter bee phenotype. This finding furthers our understanding of winter bee biology, which could have important implications for colony management for winter, a critical period for colony survival.
Collapse
Affiliation(s)
- Gabriela M Quinlan
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Beshers SN. Regulation of division of labor in insects: a colony-level perspective. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101155. [PMID: 38109969 DOI: 10.1016/j.cois.2023.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
Studies of division of labor have focused mainly on individual workers performing tasks. Here I propose a shift in perspective: colonies perform tasks, and task performance should be evaluated at the colony level. I then review studies from the recent literature from this perspective, on topics including evaluating task performance; specialization and efficiency; flexibility and task performance; response threshold models; and variation in behavior arising from diverse sensory experiences and learning. The use of specialized workers is only one of a variety of strategies that colonies may follow in performing tasks. The ability of colonies to produce consistent responses and to compensate for changes in the labor pool supports the idea of a task allocation system that precedes specialization. The colony-level perspective raises new questions about how tasks are done and the strategies used to improve colony task performance.
Collapse
Affiliation(s)
- Samuel N Beshers
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Daniels BC, Wang Y, Page RE, Amdam GV. Identifying a developmental transition in honey bees using gene expression data. PLoS Comput Biol 2023; 19:e1010704. [PMID: 37733808 PMCID: PMC10547183 DOI: 10.1371/journal.pcbi.1010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/03/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
In many organisms, interactions among genes lead to multiple functional states, and changes to interactions can lead to transitions into new states. These transitions can be related to bifurcations (or critical points) in dynamical systems theory. Characterizing these collective transitions is a major challenge for systems biology. Here, we develop a statistical method for identifying bistability near a continuous transition directly from high-dimensional gene expression data. We apply the method to data from honey bees, where a known developmental transition occurs between bees performing tasks in the nest and leaving the nest to forage. Our method, which makes use of the expected shape of the distribution of gene expression levels near a transition, successfully identifies the emergence of bistability and links it to genes that are known to be involved in the behavioral transition. This proof of concept demonstrates that going beyond correlative analysis to infer the shape of gene expression distributions might be used more generally to identify collective transitions from gene expression data.
Collapse
Affiliation(s)
- Bryan C. Daniels
- School of Complex Adaptive Systems, Arizona State University, Tempe, Arizona, United States of America
| | - Ying Wang
- Banner Health Corporation, Phoenix, Arizona, United States of America
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
6
|
Corby-Harris V, Snyder L, Meador C, Watkins-DeJong E, Obernesser BT, Brown N, Carroll MJ. Diet and pheromones interact to shape honey bee (Apis mellifera) worker physiology. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104442. [PMID: 36195173 DOI: 10.1016/j.jinsphys.2022.104442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/31/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Honey bee colony health is a function of the individuals, their interactions, and the environment. A major goal of honey bee research is to understand how colonies respond to stress. Individual-level studies of the bee stress response are tractable, but their results do not always translate to the colony level. Nutritional stress is an important factor in colony declines. Nutrition studies are typically conducted on individual nurse workers (nurses), who are primarily responsible for converting pollen into brood. Nurse physiology is sensitive to both pollen and pheromones, which communicate signals among colony members. Here, we asked whether pheromones influence nurse nutrient pathways involved in brood care, and whether diet influences colony communication. We exposed caged, nurse-aged workers to different combinations of pheromones and pollen, and measured traits related to brood care. We found that pheromones enhanced pollen-dependent processes such as hypopharyngeal gland growth and mrjp1 expression, and buffered the negative effects of starvation. Pollen also enhanced how nurse phenotypes respond to pheromones. Therefore, diet and pheromones interact to influence nurse nutritional physiology and aspects of brood care. These findings have implications for studying colony function and health in an increasingly stressful climate.
Collapse
Affiliation(s)
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | | | | | - Nicholas Brown
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| | - Mark J Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85719, United States
| |
Collapse
|
7
|
Moreno E, José Corriale M, Arenas A. Differences in olfactory sensitivity and odor detection correlate with foraging task specialization in honeybees Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104416. [PMID: 35780906 DOI: 10.1016/j.jinsphys.2022.104416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Division of labor is central to the ecological success of social insects. Among honeybees foragers, specialization for collecting nectar or pollen correlates with their sensitivity to gustatory stimuli (e.g. sugars). We hypothesize that pollen and nectar foragers also differ in their sensitivity to odors, and therefore in their likelihood to show odor-mediated responses. To assess foragerś sensitivity to natural odors, we quantified the conditioning of the proboscis extension reflex (PER) to increasing concentrations (0.001; 0.01; 0.1; 1 M) of linalool or nonanal. Furthermore, we compared electroantennogram (EAG) recordings to correlate bees' conditioned responses with the electrophysiological responses of their antennae. To further explore differences of the antennal response of foragers in relation to task-related odors, we registered EAG signals for two behaviorally ''meaningful'' odors that mediate pollen collection: fresh pollen odors and the brood pheromone (E)-β-ocimene. Pollen foragers performed better than nectar foragers in PER conditioning trials when linalool and nonanal were presented at low concentrations (0.001, 0.01 M). Consistently, their antennae showed stronger EAG signals (higher amplitudes) to these odors, suggesting that differences in sensitivity can be explained at the periphery of the olfactory system. Pollen and nectar foragers detect pollen odors differently, but not (E)-β-ocimene. Pollen volatiles evoked EAG signals with hyper and depolarization components. In pollen foragers, the contribution of the hyperpolarization component was higher than in nectar foragers. We discuss our findings in terms of adaptive advantages to learn subtle olfactory cues that influence the ability to better identify/discriminate food sources.
Collapse
Affiliation(s)
- Emilia Moreno
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Corriale
- Grupo de Estudios sobre Biodiversidad en Agroecosistemas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Arenas
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Metz BN, Chakrabarti P, Sagili RR. Honey Bee (Hymenoptera: Apidae) Nursing Responses to Cuticular Cues Emanating from Short-term Changes in Larval Rearing Environment. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6414650. [PMID: 34723331 PMCID: PMC8559155 DOI: 10.1093/jisesa/ieab085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Honey bee larvae are dependent on the social structure of colony for their provisioning and survival. With thousands of larvae being managed collectively by groups of foragers (collecting food resources) and nurse bees (processing food and provisioning larvae), coordination of colony efforts in rearing brood depends on multiple dynamic cues of larval presence and needs. Much of these cues appear to be chemical, with larvae producing multiple pheromones, major being brood ester pheromone (BEP; nonvolatile blend of fatty acid esters) that elicits both short-term releaser effects and long-term primer effects. While BEP can affect colony food collection and processing with the signaling of larval presence, it is unclear if BEP signals individual larval needs. To understand this aspect, in a series of experiments we manipulated larval feeding environment by depriving larvae from adult bee contact for 4-h period and examined (1) nurse bee interactions with contact-deprived and nondeprived larvae and larval extracts; (2) forager bee responses to contact-deprived and nondeprived larval extracts. We also characterized BEP of contact-deprived and nondeprived larvae. We found that nurse honey bees tend to aggregate more over contact-deprived larvae when compared with nondeprived larvae, but that these effects were not found in response to whole hexane extracts. Our analytical results suggest that BEP components changed in both quantity and quality over short period of contact deprivation. These changes affected foraging behavior, but did not appear to directly affect nursing behavior, suggesting that different chemical cues are involved in regulating nursing effort to individual larvae.
Collapse
Affiliation(s)
- Bradley N Metz
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Priyadarshini Chakrabarti
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Walsh EM, Khan O, Grunseich J, Helms AM, Ing NH, Rangel J. Pesticide Exposure During Development Does Not Affect the Larval Pheromones, Feeding Rates, or Morphology of Adult Honey Bee (Apis mellifera) Queens. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent work demonstrated that honey bee (Apis mellifera L.) queens reared in pesticide-laden beeswax exhibit significant changes in the composition of the chemicals produced by their mandibular glands including those that comprise queen mandibular pheromone, which is a critical signal used in mating as well as queen tending behavior. For the present study, we hypothesized that pesticide exposure during development would alter other queen-produced chemicals, including brood pheromone in immature queens, thus resulting in differential feeding of queen larvae by nurse workers, ultimately impacting adult queen morphology. We tested these hypotheses by rearing queens in beeswax containing field-relevant concentrations of (1) a combination of tau-fluvalinate and coumaphos, (2) amitraz, or (3) a combination of chlorothalonil and chlorpyrifos. These pesticides are ubiquitous in most commercial beekeeping operations in North America. We observed nurse feeding rates of queen larvae grafted into pesticide-laden beeswax, analyzed the chemical composition of larval queen pheromones and measured morphological markers in adult queens. Neither the nurse feeding rates, nor the chemical profiles of immature queen pheromones, differed significantly between queens reared in pesticide-laden wax compared to queens reared in pesticide-free wax. Moreover, pesticide exposure during development did not cause virgin or mated adult queens to exhibit differences in morphological markers (i.e., body weight, head width, or thorax width). These results were unexpected given our previous research and indicate that future work is needed to fully understand how pesticide exposure during development affects honey bee queen physiology, as well as how various adult queen quality metrics relate to each other.
Collapse
|
10
|
DeGrandi-Hoffman G, Corby-Harris V, Carroll M, Toth AL, Gage S, Watkins deJong E, Graham H, Chambers M, Meador C, Obernesser B. The Importance of Time and Place: Nutrient Composition and Utilization of Seasonal Pollens by European Honey Bees ( Apis mellifera L.). INSECTS 2021; 12:insects12030235. [PMID: 33801848 PMCID: PMC8000538 DOI: 10.3390/insects12030235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/29/2023]
Abstract
Simple Summary Honey bees rely on pollen and nectar to provide nutrients to support their yearly colony cycle. Specifics of the cycle differ among geographic regions as do the species of flowering plants and the nutrients they provide. We examined responses of honey bees from two different queen lines fed pollens from locations that differed in floral species composition and yearly colony cycles. We detected differences between the queen lines in the amount of pollen they consumed and the size of their hypopharyngeal glands (HPG). There were also seasonal differences between the nutrient composition of pollens. Spring pollens collected from colonies in both locations had higher amino and fatty acid concentrations than fall pollens. There also were seasonal differences in responses to the pollens consumed by bees from both queen lines. Bees consumed more spring than fall pollen, but digested less of it so that bees consumed more protein from fall pollens. Though protein consumption was higher with fall pollen, HPG were larger in spring bees. Abstract Honey bee colonies have a yearly cycle that is supported nutritionally by the seasonal progression of flowering plants. In the spring, colonies grow by rearing brood, but in the fall, brood rearing declines in preparation for overwintering. Depending on where colonies are located, the yearly cycle can differ especially in overwintering activities. In temperate climates of Europe and North America, colonies reduce or end brood rearing in the fall while in warmer climates bees can rear brood and forage throughout the year. To test the hypothesis that nutrients available in seasonal pollens and honey bee responses to them can differ we analyzed pollen in the spring and fall collected by colonies in environments where brood rearing either stops in the fall (Iowa) or continues through the winter (Arizona). We fed both types of pollen to worker offspring of queens that emerged and open mated in each type of environment. We measured physiological responses to test if they differed depending on the location and season when the pollen was collected and the queen line of the workers that consumed it. Specifically, we measured pollen and protein consumption, gene expression levels (hex 70, hex 110, and vg) and hypopharyngeal gland (HPG) development. We found differences in macronutrient content and amino and fatty acids between spring and fall pollens from the same location and differences in nutrient content between locations during the same season. We also detected queen type and seasonal effects in HPG size and differences in gene expression between bees consuming spring vs. fall pollen with larger HPG and higher gene expression levels in those consuming spring pollen. The effects might have emerged from the seasonal differences in nutritional content of the pollens and genetic factors associated with the queen lines we used.
Collapse
Affiliation(s)
- Gloria DeGrandi-Hoffman
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
- Correspondence:
| | - Vanessa Corby-Harris
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mark Carroll
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Amy L. Toth
- Department of Entomology, Iowa State University, 2310 Pammel Drive, 339 Science Hall II, Ames, IA 50011, USA;
| | - Stephanie Gage
- Georgia Institute of Technology, School of Physics, Howey Physics Building, 837 State Street NW, Atlanta, GA 30313, USA;
| | - Emily Watkins deJong
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 East Allen Road, Tucson, AZ 85719, USA; (V.C.-H.); (Mark Carroll); (E.W.d.); (H.G.); (Mona Chambers); (C.M.)
| | - Bethany Obernesser
- Department of Entomology, University of Arizona, Forbes 410, P.O. Box 210036, Tucson, AZ 85721, USA;
| |
Collapse
|
11
|
DeGrandi-Hoffman G, Gage SL, Corby-Harris V, Carroll M, Chambers M, Graham H, Watkins deJong E, Hidalgo G, Calle S, Azzouz-Olden F, Meador C, Snyder L, Ziolkowski N. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:114-124. [PMID: 29990468 DOI: 10.1016/j.jinsphys.2018.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/16/2018] [Accepted: 07/03/2018] [Indexed: 05/24/2023]
Abstract
Free-ranging herbivores have yearly life cycles that generate dynamic resource needs. Honey bee colonies also have a yearly life cycle that might generate nutritional requirements that differ between times of brood rearing and colony expansion in the spring and population contraction and preparation for overwintering in the fall. To test this, we analyzed polyfloral mixes of spring and fall pollens to determine if the nutrient composition differed with season. Next, we fed both types of seasonal pollens to bees reared in spring and fall. We compared the development of brood food glands (i.e., hypopharyngeal glands - HPG), and the expression of genes in the fat body between bees fed pollen from the same (in-season) or different season (out-of-season) when they were reared. Because pathogen challenges often heighten the effects of nutritional stress, we infected a subset of bees with Nosema to determine if bees responded differently to the infection depending on the seasonal pollen they consumed. We found that spring and fall pollens were similar in total protein and lipid concentrations, but spring pollens had higher concentrations of amino and fatty acids that support HPG growth and brood production. Bees responded differently when fed in vs. out of season pollen. The HPG of both uninfected and Nosema-infected spring bees were larger when they were fed spring (in-season) compared to fall pollen. Spring bees differentially regulated more than 200 genes when fed in- vs. out-of-season pollen. When infected with Nosema, approximately 400 genes showed different infection-induced expression patterns in spring bees depending on pollen type. In contrast, HPG size in fall bees was not affected by pollen type, though HPG were smaller in those infected with Nosema. Very few genes were differentially expressed with pollen type in uninfected (4 genes) and infected fall bees (5 genes). Pollen type did not affect patterns of infection-induced expression in fall bees. Our data suggest that physiological responses to seasonal pollens differ between bees reared in the spring and fall with spring bees being significantly more sensitive to pollen type especially when infected with Nosema. This study provides evidence that seasonal pollens may provide levels of nutrients that align with the activities of honey bees during their yearly colony cycle. The findings are important for the planning and establishment of forage plantings to sustain honey bees, and in the development of seasonal nutritional supplements fed to colonies when pollen is unavailable.
Collapse
Affiliation(s)
| | | | | | - Mark Carroll
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Mona Chambers
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Henry Graham
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | | | | - Samantha Calle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | - Farida Azzouz-Olden
- College of Agriculture, Communities, and the Environment, Kentucky State University, Frankfort, KY, USA
| | | | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ, USA
| | | |
Collapse
|
12
|
Ma R, Villar G, Grozinger CM, Rangel J. Larval pheromones act as colony-wide regulators of collective foraging behavior in honeybees. Behav Ecol 2018. [DOI: 10.1093/beheco/ary090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R Ma
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - G Villar
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA
| | - C M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA
| | - J Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Conroy LP, Roff DA. Adult social environment alters female reproductive investment in the cricket Gryllus firmus. Behav Ecol 2018. [DOI: 10.1093/beheco/arx193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Lauren P Conroy
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Derek A Roff
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| |
Collapse
|
14
|
Kapheim KM. Nutritional, endocrine, and social influences on reproductive physiology at the origins of social behavior. CURRENT OPINION IN INSECT SCIENCE 2017; 22:62-70. [PMID: 28805640 DOI: 10.1016/j.cois.2017.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Understanding the evolutionary origins of social behavior in insects requires understanding the physiological basis for reproductive plasticity. Solitary bees and wasps or those living in small, flexible societies will be key to understanding how conserved pathways have evolved to give rise to reproductive castes. Nutrient-sensing and endocrine pathways are decoupled from reproduction in some life stages of social insects. Heterochrony, particularly as it is related to diapause physiology, may be an important mechanism by which this decoupling occurs. Additional research is needed to understand how these pathways became sensitive to cues from the social environment. Future research targeting species with a diversity of social behaviors and diapause strategies will be key to understanding the physiological basis of social evolution.
Collapse
Affiliation(s)
- Karen M Kapheim
- Utah State University, Department of Biology, 5305 Old Main Hill, Logan, UT 84322, USA.
| |
Collapse
|