1
|
Boff S, Olberz S, Gülsoy İG, Preuß M, Raizer J, Ayasse M. Conventional agriculture affects sex communication and impacts local population size in a wild bee. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176319. [PMID: 39293767 DOI: 10.1016/j.scitotenv.2024.176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Man-made agricultural stressors have been identified to compromise the reproductive dynamics of bee populations within agricultural environments. With the aid of bee hotels, we explored the influence of conventional and organic farming systems on local population size and body traits of the mason bee, Osmia bicornis, in southern Germany. We further used a chemical ecology approach and bioassays to test whether farming management influence male pre-copulatory behaviors. We observed a positive relationship between the extent of organic agriculture in the landscape and both overall brood cell production and nesting frequency. Moreover, farming systems were found to influence body traits, with bees from organic sites being smaller in size and having a different cuticular hydrocarbon composition compared with those at conventional sites. Bioassays revealed that males were more sexually attracted to freeze-killed females from conventional sites compared with those from organic sites. Intriguingly, treating females from organic fields with synthetic semiochemicals enhanced their sexual attraction to levels comparable with females from conventional sites. Our findings shed light on the intricate interplay between farming practices and the reproductive behaviors of wild mason bees, emphasizing the need for a comprehensive understanding of these dynamics for effective conservation and management strategies.
Collapse
Affiliation(s)
- Samuel Boff
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Sara Olberz
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - İrem G Gülsoy
- Department of Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Marvin Preuß
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Josué Raizer
- Entomology and Biodiversity Conservation Program, Federal University of Grande Dourados, Dourados, Brazil
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
2
|
Kodrík D, Čapková Frydrychová R, Hlávková D, Skoková Habuštová O, Štěrbová H. Unusual functions of insect vitellogenins: minireview. Physiol Res 2023; 72:S475-S487. [PMID: 38165752 PMCID: PMC10861248 DOI: 10.33549/physiolres.935221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 02/01/2024] Open
Abstract
Insect vitellogenins are an intriguing class of complex proteins. They primarily serve as a source of energy for the developing embryo in insect eggs. Vitellogenesis is a complex hormonally and neurally controlled process that command synthesis of vitellogenin molecules and ensures their transport from the female fat bodies or ovarial cells into eggs. The representatives of all insect hormones such as juvenile hormones, ecdysteroids, and neurohormones participate in vitellogenesis, but juvenile hormones (most insect species) and ecdysteroids (mostly Diptera) play the most important roles in the process. Strikingly, not only insect females, but also males have been reported to synthesize vitellogenins indicating their further utility in the insect body. Indeed, it has recently been found that vitellogenins perform a variety of biological functions in the insect body. They participate in defense reactions against entomopathogens such as nematodes, fungi, and bacteria, as well as against venoms such as the honeybee Apis mellifera venom. Interestingly, vitellogenins are also present in the venom of the honeybee itself, albeit their exact role is unknown; they most likely increase the efficacy of the venom in the victim's body. Within the bee's body vitellogenins contribute to the lifespan regulation as anti-aging factor acting under tight social interactions and hormonal control. The current minireview covers all of these functions of vitellogenins and portrays them as biologically active substances that play a variety of significant roles in both insect females and males, and not only acting as passive energy sources for developing embryo.
Collapse
Affiliation(s)
- D Kodrík
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Czech Republic.
| | | | | | | | | |
Collapse
|
3
|
Hayashi S, Kenta H, Itoh T. Sexual maturation and allometry of reproductive traits in large- and small-sized male honeybees. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104550. [PMID: 37524257 DOI: 10.1016/j.jinsphys.2023.104550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/15/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The body size of male honeybees (Apis mellifera L.) is a cause of skewed reproductive success. Large males are usually produced in colonies and have advantages in competition for mating and fertilisation. However, distinct small-sized males were produced depending on the colony conditions, particularly under queen-less conditions. Understanding the reproductive traits of small-sized males is currently limited, but it may provide insight into the developmental patterns and reproductive strategies that maximise reproductive success depending on body size and colony conditions. This study evaluated the process of sexual maturation in large- and small-sized males and the allometry between reproductive traits and body size. Changes in reproductive traits, including reproductive organs, number of spermatozoa, and sperm density, occurred earlier in small-sized males than in large-sized males after emergence. These results suggest that small males are precocious. The relatively early development of small-sized males would reflect the low developmental cost, which is likely to allow the production of many males and ensure reproductive success under circumstances in which available resources are limited. Furthermore, reproductive traits were positively correlated with body size, but allometry was different for these traits. Hence, the findings suggest that there is a given investment pattern toward reproductive traits with increasing body size, which would be responsible for high mating and fertilisation success in large males.
Collapse
Affiliation(s)
- Shinya Hayashi
- Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan.
| | - Hiwatashi Kenta
- Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Tsunao Itoh
- Department of Earth System Science, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, Japan
| |
Collapse
|
4
|
Hlávková D, Skoková Habuštová O, Půža V, Vinokurov K, Kodrík D. Role of adipokinetic hormone in the Colorado potato beetle, Leptinotarsa decemlineata infected with the entomopathogenic nematode Steinernema carpocapsae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109466. [PMID: 36108997 DOI: 10.1016/j.cbpc.2022.109466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
The effects of the entomopathogenic nematode Steinernema carpocapsae on the Colorado potato beetle (CPB) Leptinotarsa decemlineata and the involvement of adipokinetic hormone (AKH) in the responsive reactions were examined in this study. It was observed that nematode application doubled the amount of AKH (Peram-CAH-I and Peram-CAH-II) in the central nervous system of L. decemlineata, indicating mobilization of anti-stress reactions in the body. Furthermore, the external co-application of Peram-CAH-II with the nematode significantly increased beetle mortality (5.6 and 1.8 times, 1 and 2 days after application, respectively). The mechanism underlying this phenomenon was investigated. As the effect on gut characteristics was equivocal, it was assumed that the nematodes profited from the observed mobilization of metabolites from the fat body into the Peram-CAH-II-induced hemolymph. This phenomenon supplied nematodes with a more nutrient-dense substrate on which they propagated. Furthermore, Peram-CAH-II lowered vitellogenin expression in the fat body, particularly in males, thus limiting the anti-pathogen defense capacity of the protein. However, there could be other possible mechanisms underpinning this chain of events. The findings could be theoretically intriguing but could also aid in developing real insect pest control methods in the future.
Collapse
Affiliation(s)
- Daniela Hlávková
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Oxana Skoková Habuštová
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Vladimír Půža
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Konstantin Vinokurov
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
5
|
Dufour's gland analysis reveals caste and physiology specific signals in Bombus impatiens. Sci Rep 2021; 11:2821. [PMID: 33531560 PMCID: PMC7854627 DOI: 10.1038/s41598-021-82366-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
Reproductive division of labor in insect societies is regulated through multiple concurrent mechanisms, primarily chemical and behavioral. Here, we examined if the Dufour’s gland secretion in the primitively eusocial bumble bee Bombus impatiens signals information about caste, social condition, and reproductive status. We chemically analyzed Dufour’s gland contents across castes, age groups, social and reproductive conditions, and examined worker behavioral and antennal responses to gland extracts. We found that workers and queens each possess caste-specific compounds in their Dufour’s glands. Queens and gynes differed from workers based on the presence of diterpene compounds which were absent in workers, whereas four esters were exclusive to workers. These esters, as well as the total amounts of hydrocarbons in the gland, provided a separation between castes and also between fertile and sterile workers. Olfactometer bioassays demonstrated attraction of workers to Dufour’s gland extracts that did not represent a reproductive conflict, while electroantennogram recordings showed higher overall antennal sensitivity in queenless workers. Our results demonstrate that compounds in the Dufour’s gland act as caste- and physiology-specific signals and are used by workers to discriminate between workers of different social and reproductive status.
Collapse
|
6
|
Villar G, Hefetz A, Grozinger CM. Evaluating the Effect of Honey Bee (Apis mellifera) Queen Reproductive State on Pheromone-Mediated Interactions with Male Drone Bees. J Chem Ecol 2019; 45:588-597. [PMID: 31342233 DOI: 10.1007/s10886-019-01086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/02/2019] [Accepted: 07/03/2019] [Indexed: 10/26/2022]
Abstract
Honey bee (Apis mellifera) queens produce pheromones responsible for mediating both male mating behavior and many critical facets of worker social organization within their colony. These pheromones are dynamic multi-component blends, allowing the communication of detailed information. Indeed, variation in the queen's mating and reproductive state is associated with significant changes in her pheromone profiles, and these different pheromone profiles elicit different behavioral and physiological responses in female workers. Here we evaluate behavioral responses of male drones to the chemical blends produced by two exocrine glands in queens, and determine if the blends and responses are altered by the queen's mating and reproductive state. We find that drone attraction to the chemical blends of mandibular glands produced by mated, laying queens versus virgin queens is reduced, suggesting that the queens produce a reliable signal of their mating receptivity. Interestingly, while the chemical blends of mating, laying queens and virgins queens largely overlap, mated, laying queens produce a greater number of chemicals and greater quantities of certain chemicals than virgin queens, suggesting that these chemicals may serve to inhibit behavioral responses of drones to mated, laying queens. Thus, our results highlight the importance of considering chemical cues and signals that serve to both stimulate and inhibit behavioral responses during social interactions in animals.
Collapse
Affiliation(s)
- Gabriel Villar
- Preanalytical Systems - R&D, Becton Dickinson and Co., 1 Becton Drive, Franklin Lakes, NJ, 07417, USA. .,Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Li Z, Yu T, Chen Y, Heerman M, He J, Huang J, Nie H, Su S. Brain transcriptome of honey bees (Apis mellifera) exhibiting impaired olfactory learning induced by a sublethal dose of imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:36-43. [PMID: 31027579 DOI: 10.1016/j.pestbp.2019.02.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Declines in honey bee populations represent a worldwide concern. The widespread use of neonicotinoid insecticides has been one of the factors linked to these declines. Sublethal doses of a neonicotinoid insecticide, imidacloprid, has been reported to cause olfactory learning deficits in honey bees via impairment of the target organ, the brain. In the present study, olfactory learning of honey bees was compared between controls and imidacloprid-treated bees. The brains of imidacloprid-treated and control bees were used for comparative transcriptome analysis by RNA-Seq to elucidate the effects of imidacloprid on honey bee learning capacity. The results showed that the learning performance of imidacloprid-treated bees was significantly impaired in comparison with control bees after chronic oral exposure to imidacloprid (0.02 ng/μl) for 11 days. Gene expression profiles between imidacloprid treatment and the control revealed that 131 genes were differentially expressed, of which 130 were downregulated in imidacloprid-treated bees. Validation of the RNA-Seq data using qRT-PCR showed that the results of qRT-PCR and RNA-Seq exhibited a high level of agreement. Gene ontology annotation indicated that the oxidation-reduction imbalance might exist in the brain of honey bees due to oxidative stress induced by imidacloprid exposure. KEGG and ingenuity pathway analysis revealed that transient receptor potential and Arrestin 2 in the phototransduction pathway were significantly downregulated in imidacloprid-treated bees, and that five downregulated genes have causal effects on behavioral response inhibition in imidacloprid-treated bees. Our results suggest that downregulation of brain genes involved in immune, detoxification and chemosensory responses may result in decreased olfactory learning capabilities in imidacloprid-treated bees.
Collapse
Affiliation(s)
- Zhiguo Li
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Tiantian Yu
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yanping Chen
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Matthew Heerman
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, USA
| | - Jingfang He
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingnan Huang
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongyi Nie
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Songkun Su
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
8
|
Kodrík D, Ibrahim E, Gautam UK, Frydrychová RČ, Bednářová A, Krištůfek V, Jedlička P. Changes in vitellogenin expression caused by nematodal and fungal infections in insects. J Exp Biol 2019; 222:jeb.202853. [DOI: 10.1242/jeb.202853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/24/2019] [Indexed: 01/05/2023]
Abstract
This study examined the expression and role of vitellogenin (Vg) in the body of the firebug Pyrrhocoris apterus (Heteroptera, Insecta) during the infection elicited by two entomopathogenic organisms, the nematode Steinernema carpocapsae and the fungus Isaria fumosorosea. Infection by S. carpocapsae significantly up-regulated Vg mRNA expression in the male body. The corresponding increase in Vg protein expression was also confirmed by electrophoretic and immunoblotting analyses. Remarkably, in females, the tendency was opposite. Nematodal infection significantly reduced both Vg mRNA and Vg protein expression levels in fat body and hemolymph, respectively. We speculate that infection of reproductive females reduces Vg expression to the level, which is still sufficient for defense, but insufficient for reproduction. This circumstance reduces energy expenditure and helps the individual to cope with the infection. Importantly, purified Vg significantly inhibited growth of Xenorhabdus spp., an entomotoxic bacteria isolated from S. carpocapsae. However, the effect of Vg against I. fumosorosea was not so obvious. The fungus significantly stimulated Vg gene expression in males, however, a similar increase was not recapitulated on the protein level. Nevertheless, in females, both mRNA and protein Vg levels were significantly reduced after the fungal infection. The obtained data demonstrate that Vg is likely an important defense protein, possibly with a specific activity. This considerably expands the known spectrum of Vg functions, as its primary role was thought to be limited to regulating egg development in the female body.
Collapse
Affiliation(s)
- Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emad Ibrahim
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Agriculture, University of Cairo, Giza, Egypt
| | - Umesh K. Gautam
- Institute of Entomology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | | | - Andrea Bednářová
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Václav Krištůfek
- Institute of Soil Biology, Biology Centre, CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Pavel Jedlička
- Institute of Biophysics, CAS, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
9
|
Ma R, Villar G, Grozinger CM, Rangel J. Larval pheromones act as colony-wide regulators of collective foraging behavior in honeybees. Behav Ecol 2018. [DOI: 10.1093/beheco/ary090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- R Ma
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - G Villar
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA
| | - C M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA, USA
| | - J Rangel
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
10
|
Villar G, Wolfson MD, Hefetz A, Grozinger CM. Evaluating the Role of Drone-Produced Chemical Signals in Mediating Social Interactions in Honey Bees (Apis mellifera). J Chem Ecol 2017; 44:1-8. [PMID: 29209933 DOI: 10.1007/s10886-017-0912-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/09/2017] [Accepted: 11/20/2017] [Indexed: 10/18/2022]
Abstract
Pheromones play a critical role in shaping societies of social insects, including honey bees, Apis mellifera. While diverse functions have been ascribed to queen- and worker-produced compounds, few studies have explored the identity and function of male-produced (drone) compounds. However, several lines of evidence suggest that drones engage in a variety of social interactions inside and outside of the colony. Here we elucidate the chemical composition of extracts of the drone mandibular gland, and test the hypothesis that compounds produced in these glands, or a synthetic blend consisting of the six main compounds, mediate drone social interactions in and out of the colony. Drone mandibular glands primarily produce a blend of saturated, unsaturated and methyl branched fatty acids ranging in chain length from nonanoic to docosanoic acids, and both gland extracts and synthetic blends of these chemicals serve to attract drones outside of the hive, but do not attract workers inside the hive. These studies shed light on the role drones and drone-produced chemicals have on mediating social interactions with other drones and highlight their potential importance in communicating with other castes.
Collapse
Affiliation(s)
- Gabriel Villar
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Megan D Wolfson
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Abraham Hefetz
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|