1
|
Gelambi M, Whitehead SR. Untargeted Metabolomics Reveals Fruit Secondary Metabolites Alter Bat Nutrient Absorption. J Chem Ecol 2024; 50:385-396. [PMID: 38758510 PMCID: PMC11399193 DOI: 10.1007/s10886-024-01503-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
The ecological interaction between fleshy fruits and frugivores is influenced by diverse mixtures of secondary metabolites that naturally occur in the fruit pulp. Although some fruit secondary metabolites have a primary role in defending the pulp against antagonistic frugivores, these metabolites also potentially affect mutualistic interactions. The physiological impact of these secondary metabolites on mutualistic frugivores remains largely unexplored. Using a mutualistic fruit bat (Carollia perspicillata), we showed that ingesting four secondary metabolites commonly found in plant tissues affects bat foraging behavior and induces changes in the fecal metabolome. Our behavioral trials showed that the metabolites tested typically deter bats. Our metabolomic surveys suggest that secondary metabolites alter, either by increasing or decreasing, the absorption of essential macronutrients. These behavioral and physiological effects vary based on the specific identity and concentration of the metabolite tested. Our results also suggest that a portion of the secondary metabolites consumed is excreted by the bat intact or slightly modified. By identifying key shifts in the fecal metabolome of a mutualistic frugivore caused by secondary metabolite consumption, this study improves our understanding of the effects of fruit chemistry on frugivore physiology.
Collapse
Affiliation(s)
- Mariana Gelambi
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Latham Hall RM 427, 220 Ag Quad Lane, Blacksburg, VA, 24060, USA.
- La Selva Biological Station, Organization for Tropical Studies, Puerto Viejo de Sarapiquí, Heredia Province, Costa Rica.
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Latham Hall RM 427, 220 Ag Quad Lane, Blacksburg, VA, 24060, USA
- La Selva Biological Station, Organization for Tropical Studies, Puerto Viejo de Sarapiquí, Heredia Province, Costa Rica
| |
Collapse
|
2
|
Wang Z, Tai W, Zhang X, Liu S, Niu Y, Chen W, Li N. Importance of plant and fruit traits on the structure of bird seed dispersal networks in different disturbed habitats. Integr Zool 2024; 19:753-762. [PMID: 38488176 DOI: 10.1111/1749-4877.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Species functional traits can influence seed dispersal processes and consequently affect species' role in the mutualistic network. Although the effect of animal traits on the structure of the seed dispersal network is well explored, it remains poorly understood how plant and fruit traits contribute to the structure. We here studied the effects of plant and fruit traits on the structure of bird seed dispersal networks across different disturbed habitats in the Meihua Mountain National Nature Reserve, Southeastern China. During the study period, 16, 20, 13, and 15 bird species were recorded foraging on 10, 11, 12, and 8 plant species, resulting in 511, 312, 265, and 201 foraging events in the protected forest, natural forest, village, and bamboo forest, respectively. The composition of these seed dispersal networks is not primarily influenced by a specific group of bulbul species, but rather by the presence of an endangered plant species, Taxus chinensis. As we expected, the structure of the four networks was different among the four disturbed habitats. Furthermore, our results also showed tree height and canopy density were the most important plant traits for structuring the seed dispersal network, while sugar, amylase, dry matter, and alkaloids were identified as significant fruit traits. Overall, our findings highlight the value of integrating trait-based ecology into the framework of the seed dispersal network and provide new insights for mutualistic network conservation in disturbed habitats.
Collapse
Affiliation(s)
- Zheng Wang
- College of Life Science, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wei Tai
- College of Life Science, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Xuan Zhang
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| | - Shouguo Liu
- College of Life Science, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yixing Niu
- College of Life Science, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wenwen Chen
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Ning Li
- Institute of Applied Ecology, Nanjing Xiaozhuang University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Gomes MTD, Bezerra-Silva A, Morais DBBA, Souza IP, Lobo LS, Oliveira JCD, Menezes IS, Fonseca RBS, Moraes ACS, Moura AC, Funch LS. A long fruiting series of Myrcia neoregeliana (Myrtaceae) shows the maintenance of seasonal resource supplies for dispersal by birds. BRAZ J BIOL 2023; 83:e275839. [PMID: 38055581 DOI: 10.1590/1519-6984.275839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- M T D Gomes
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - A Bezerra-Silva
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - D B B A Morais
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - I P Souza
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - L S Lobo
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - J C de Oliveira
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - I S Menezes
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - R B S Fonseca
- Instituto Federal de Educação, Ciência e Tecnologia Baiano - IFBaiano, Campus Santa Inês, Santa Inês, BA, Brasil
| | - A C S Moraes
- Instituto Federal de Educação, Ciência e Tecnologia Baiano - IFBaiano, Campus Valença, Valença, BA, Brasil
| | - A C Moura
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| | - L S Funch
- Universidade Estadual de Feira de Santana - UEFS, Departamento de Ciências Biológicas, Feira de Santana, BA, Brasil
| |
Collapse
|
4
|
Gelambi M, Whitehead SR. Multiscale variability in nutrients and secondary metabolites in a bat-dispersed neotropical fruit. Ecol Evol 2023; 13:e10453. [PMID: 37664504 PMCID: PMC10474796 DOI: 10.1002/ece3.10453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
Ripe fleshy fruits contain not only nutrients but also a diverse array of secondary metabolites. Nutrients serve as a reward for mutualists, whereas defensive metabolites protect the fruit against pests and predators. The composition of these chemical traits is highly variable, both across different plants and even within repeating structures on the same individual plant. This intraspecific and intraindividual variation has important fitness consequences for both plants and animals, yet patterns of variation and covariation in nutrients and secondary metabolites are not well understood, especially at smaller scales. Here, we investigate the multiscale variation and covariation between nutrients and defensive metabolites in Piper sancti-felicis ripe fruits. Means and measures of variation of sugars, proteins, phenolics, and alkenylphenols vary greatly among plants, and at least 50% of the trait variation occurs at the intraindividual level. Also, we found that proteins, but not sugars, were correlated with phenolics and alkenylphenols at multiple scales, suggesting trait variation in protein content may be more constrained than sugars. Our findings emphasize the importance of examining patterns across scales and provide the groundwork to better understand how complex patterns of variation and covariation in nutrients and defensive metabolites shape ecological interactions surrounding fruits.
Collapse
Affiliation(s)
- Mariana Gelambi
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- La Selva Biological StationOrganization for Tropical StudiesPuerto Viejo de SarapiquíHeredia ProvinceCosta Rica
| | - Susan R. Whitehead
- Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- La Selva Biological StationOrganization for Tropical StudiesPuerto Viejo de SarapiquíHeredia ProvinceCosta Rica
| |
Collapse
|
5
|
Palacio FX, Ordano M. Urbanization shapes phenotypic selection of fruit traits in a seed-dispersal mutualism. Evolution 2023; 77:1769-1779. [PMID: 37128948 DOI: 10.1093/evolut/qpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Urbanization is currently one of the trademarks of the Anthropocene, accelerating evolutionary processes and reshaping ecological interactions over short time scales. Species interactions represent a fundamental pillar of diversity that is being altered globally by anthropogenic change. Urban environments, despite their potential impact, have seldom been studied in relation to how they shape natural selection of phenotypic traits in multispecies interactions. Using a seed-dispersal mutualism as a study system, we estimated the regime and magnitude of phenotypic selection exerted by frugivores on fruit and seed traits across three plant populations with different degrees of urbanization (urban, semiurban, and rural). Urbanization weakened phenotypic selection via an indirect positive impact on fruit production and fitness and, to a lesser extent, through a direct positive effect on species visitation rates. Our results show that urban ecosystems may affect multifarious selection of traits in the short term and highlight the role of humans in shaping eco-evolutionary dynamics of multispecies interactions.
Collapse
Affiliation(s)
- Facundo X Palacio
- Sección Ornitología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata and Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - Mariano Ordano
- Fundación Miguel Lillo, San Miguel de Tucumán, Argentina
- Instituto de Ecología Regional, Universidad Nacional de Tucumán, Consejo Nacional de Investigaciones Científicas y Técnicas, Yerba Buena, Argentina
| |
Collapse
|
6
|
Stenhouse EH, Bellamy P, Kirby W, Vaughan IP, Symondson WOC, Orozco-terWengel P. Herbivorous dietary selection shown by hawfinch ( Coccothraustes coccothraustes) within mixed woodland habitats. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230156. [PMID: 37181798 PMCID: PMC10170347 DOI: 10.1098/rsos.230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023]
Abstract
Knowledge of diet and dietary selectivity is vital, especially for the conservation of declining species. Accurately obtaining this information, however, is difficult, especially if the study species feeds on a wide range of food items within heterogeneous and inaccessible environments, such as the tree canopy. Hawfinches (Coccothraustes coccothraustes), like many woodland birds, are declining for reasons that are unclear. We investigated the possible role that dietary selection may have in these declines in the UK. Here, we used a combination of high-throughput sequencing of 261 hawfinch faecal samples assessed against tree occurrence data from quadrats sampled in three hawfinch population strongholds in the UK to test for evidence of selective foraging. This revealed that hawfinches show selective feeding and consume certain tree genera disproportionally to availability. Positive selection was shown for beech (Fagus), cherry (Prunus), hornbeam (Carpinus), maples (Acer) and oak (Quercus), while Hawfinch avoided ash (Fraxinus), birch (Betula), chestnut (Castanea), fir (Abies), hazel (Corylus), rowan (Sorbus) and lime (Tilia). This approach provided detailed information on hawfinch dietary choice and may be used to predict the effects of changing food resources on other declining passerines populations in the future.
Collapse
Affiliation(s)
- Ewan H. Stenhouse
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, Wales, UK
- RSPB Centre for Conservation Science, The Lodge, Sandy SG19 2DL, UK
| | - Paul Bellamy
- RSPB Centre for Conservation Science, The Lodge, Sandy SG19 2DL, UK
| | - Will Kirby
- RSPB Centre for Conservation Science, The Lodge, Sandy SG19 2DL, UK
| | - Ian P. Vaughan
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, Wales, UK
| | | | | |
Collapse
|
7
|
Terzaghi M, De Tullio MC. The perils of planning strategies to increase vitamin C content in plants: Beyond the hype. FRONTIERS IN PLANT SCIENCE 2022; 13:1096549. [PMID: 36600921 PMCID: PMC9806220 DOI: 10.3389/fpls.2022.1096549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Ever since the identification of vitamin C (ascorbic acid, AsA) as an essential molecule that humans cannot synthesize on their own, finding adequate dietary sources of AsA became a priority in nutrition research. Plants are the main producers of AsA for humans and other non-synthesizing animals. It was immediately clear that some plant species have more AsA than others. Further studies evidenced that AsA content varies in different plant organs, in different developmental stages/environmental conditions and even within different cell compartments. With the progressive discovery of the genes of the main (Smirnoff-Wheeler) and alternative pathways coding for the enzymes involved in AsA biosynthesis in plants, the simple overexpression of those genes appeared a suitable strategy for boosting AsA content in any plant species or organ. Unfortunately, overexpression experiments mostly resulted in limited, if any, AsA increase, apparently due to a tight regulation of the biosynthetic machinery. Attempts to identify regulatory steps in the pathways that could be manipulated to obtain unlimited AsA production were also less successful than expected, confirming the difficulties in "unleashing" AsA synthesis. A different approach to increase AsA content has been the overexpression of genes coding for enzymes catalyzing the recycling of the oxidized forms of vitamin C, namely monodehydroascorbate and dehydroascorbate reductases. Such approach proved mostly effective in making the overexpressors apparently more resistant to some forms of environmental stress, but once more did not solve the issue of producing massive AsA amounts for human diet. However, it should also be considered that a hypothetical unlimited increase in AsA content is likely to interfere with plant development, which is in many ways regulated by AsA availability itself. The present review article aims at summarizing the many attempts made so far to improve AsA production/content in plants, evidencing the most promising ones, and at providing information about the possible unexpected consequences of a pure biotechnological approach not keeping into account the peculiar features of the AsA system in plants.
Collapse
Affiliation(s)
- Mattia Terzaghi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Mario C. De Tullio
- Department of Earth and Geoenvironmental Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Blendinger PG, Rojas TN, Ramírez‐Mejía AF, Bender IMA, Lomáscolo S, Magro J, Núñez Montellano MG, Ruggera RA, Valoy M, Ordano M. Nutrient balance and energy‐acquisition effectiveness: do birds adjust their fruit diet to achieve intake targets? Funct Ecol 2022. [DOI: 10.1111/1365-2435.14164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pedro G. Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán Tucumán Argentina
| | - Tobias N. Rojas
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
| | | | - Irene M. A. Bender
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
| | - Silvia Lomáscolo
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
| | - Julieta Magro
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
| | | | - Román A. Ruggera
- Instituto de Ecorregiones Andinas, Universidad Nacional de Jujuy & CONICET Jujuy Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Jujuy Jujuy Argentina
| | | | - Mariano Ordano
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET Tucumán Argentina
- Fundación Miguel Lillo Tucumán Argentina
| |
Collapse
|
9
|
Rojas TN, Zampini IC, Isla MI, Blendinger PG. Fleshy fruit traits and seed dispersers: which traits define syndromes? ANNALS OF BOTANY 2022; 129:831-838. [PMID: 34918034 PMCID: PMC9292605 DOI: 10.1093/aob/mcab150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Fruit traits and their inter-relationships can affect foraging choices by frugivores, and hence the probability of mutualistic interactions. Certain combinations of fruit traits that determine the interaction with specific seed dispersers are known as dispersal syndromes. The dispersal syndrome hypothesis (DSH) states that seed dispersers influence the combination of fruit traits found in fruits. Therefore, fruit traits can predict the type of dispersers with which plant species interact. Here, we analysed whether relationships of fruit traits can be explained by the DSH. To do so, we estimated the inter-relationships between morphological, chemical and display groups of fruit traits. In addition, we tested the importance of each trait group defining seed dispersal syndromes. METHODS Using phylogenetically corrected fruit trait data and fruit-seed disperser networks, we tested the relationships among morphological, chemical and display fruit traits with Pearson's correlations and phenotypic integration indices. Then, we used perMANOVA to test if the fruit traits involved in the analysis supported the functional types of seed dispersers. KEY RESULTS Morphological traits showed strong intragroup relationships, in contrast to chemical and display traits whose intragroup trait relationships were weak or null. Accordingly, only the morphological group of traits supported three broad seed disperser functional types (birds, terrestrial mammals and bats), consistent with the DSH. CONCLUSIONS Altogether, our results give some support to the DSH. Here, the three groups of traits interacted in different ways with seed disperser biology. Broad functional types of seed dispersers would adjust fruit consumption to anatomical limitations imposed by fruit morphology. Once this anatomical filter is sovercome, seed dispersers use almost all the range of variation in chemical and display fruit traits. This suggests that the effect of seed dispersers on fruit traits is modulated by hierarchical decisions. First, morphological constraints define which interactions can actually occur; subsequently, display and composition determine fruit preferences.
Collapse
Affiliation(s)
- Tobias Nicolas Rojas
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Iris Catiana Zampini
- Instituto de Bioprospección y Fisiología Vegetal, Universidad Nacional de Tucumán & CONICET, San Lorenzo 1469, 4000 San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - María Inés Isla
- Instituto de Bioprospección y Fisiología Vegetal, Universidad Nacional de Tucumán & CONICET, San Lorenzo 1469, 4000 San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | - Pedro G Blendinger
- Instituto de Ecología Regional, Universidad Nacional de Tucumán & CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Miguel Lillo 2005, 4000 San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
10
|
Mahandran V, Murugan CM, Anisha PS, Wang G, Chen J, Nathan PT. Chemical components change along the ontogeny of a bat fruit (Neolamarckia cadamba) with ripening asynchrony in favour of its fruit selection and seed dispersal. Naturwissenschaften 2021; 108:46. [PMID: 34581964 DOI: 10.1007/s00114-021-01756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
An asynchronous fruit-ripening strategy can enhance the chance of seed dispersal by providing ripe fruits for an extended period to foragers. However, mechanisms associated with this strategy that can facilitate seed dispersal are understudied. This study aimed to investigate whether the chemical components (minerals and secondary metabolites) of a bat fruit with ripening asynchrony change along its ontogeny (Rubiaceae: Neolamarckia cadamba). We predicted that the seed-to-pulp ratio would increase along with fruit ripeness. The chemical components of the fruit were also predicted to change along their ontogenesis in favour of fruit selection and seed dispersal by fruit bats. Our study shows that the asynchronous fruiting strategy limited the number of ripe fruits daily so that fruits were available at a steady rate. As predicted, the seed-to-pulp ratio of each fruit increased along with fruit development. A fruit's mineral concentration also increased as fruit developed, with a sharp jump at full ripeness, when fruit colour also changed. In contrast, the concentration of secondary metabolite compositions decreased gradually during the process of ontogeny. Fruit bats (Pteropodidae: Pteropus giganteus and Cynopterus sphinx) were the only nocturnal frugivore visitors of these trees and their fruit selection was driven by fruit size and colour. Both bats preferably consumed ripe fruits, which had a higher concentration of attractants (essential minerals) and a lower concentration of deterrents (secondary metabolites), supplemented with a higher seed-to-pulp ratio. The bats exhibited different foraging patterns and home ranges resulting in dispersal (as measured by feeding roost location) occurring across different spatial scales. Our study shows that the chemical components involved in an asynchronous fruit-ripening process could select for extended fruit availability by intensifying the demand for each ripe fruit among legitimate seed dispersers, which increases the likelihood of fruits being dispersed away from parent crowns.
Collapse
Affiliation(s)
- Valliyappan Mahandran
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | | | | - Gang Wang
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Chen
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | | |
Collapse
|
11
|
Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol Evol 2021; 36:1113-1123. [PMID: 34509316 DOI: 10.1016/j.tree.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 11/22/2022]
Abstract
Plant secondary metabolites (PSMs) play a central role in seed dispersal and fruit defense, with potential for large impacts on plant fitness and demography. Yet because PSMs can have multiple interactive functions across seed dispersal stages, we must systematically study their effects to determine the net consequences for plant fitness. To tackle this issue, we integrate the role of fruit PSMs into the seed dispersal effectiveness (SDE) framework. We describe PSM effects on the quantity and quality of animal-mediated seed dispersal, both in pairwise interactions and diverse disperser communities, as well as trade-offs that occur across dispersal stages. By doing so, this review provides structure to a rapidly growing field and yields insights into a critical process shaping plant populations.
Collapse
|