1
|
van Roosmalen E, de Bekker C. Mechanisms Underlying Ophiocordyceps Infection and Behavioral Manipulation of Ants: Unique or Ubiquitous? Annu Rev Microbiol 2024; 78:575-593. [PMID: 39270680 DOI: 10.1146/annurev-micro-041522-092522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Parasite manipulation of host behavior, as an effective strategy to establish transmission, has evolved multiple times across taxa, including fungi. Major strides have been made to propose molecular mechanisms that underlie manipulative parasite-host interactions including the manipulation of carpenter ant behavior by Ophiocordyceps. This research suggests that the secretion of parasite proteins and light-driven biological rhythms are likely involved in the infection and manipulation biology of Ophiocordyceps and other manipulating parasites. Here, we discuss research on Ophiocordyceps considering findings from other (fungal) parasites that either are relatively closely related (e.g., other insect- and plant-infecting Hypocreales) or also manipulate insect behavior (e.g., Entomophthorales). As such, this review aims to put forward this question: Are the mechanisms behind Ophiocordyceps manipulation and infection unique, or did they convergently evolve? From this discussion, we pose functional hypotheses about the infection biology of Ophiocordyceps that will need to be addressed in future studies.
Collapse
|
2
|
Masoudi A, Joseph RA, Keyhani NO. Viral- and fungal-mediated behavioral manipulation of hosts: summit disease. Appl Microbiol Biotechnol 2024; 108:492. [PMID: 39441364 PMCID: PMC11499535 DOI: 10.1007/s00253-024-13332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Summit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce "summiting" in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. KEY POINTS: • Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal. • Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms. • Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
Collapse
Affiliation(s)
- Abolfazl Masoudi
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Ross A Joseph
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
3
|
Moyano A, Croce AC, Scolari F. Pathogen-Mediated Alterations of Insect Chemical Communication: From Pheromones to Behavior. Pathogens 2023; 12:1350. [PMID: 38003813 PMCID: PMC10675518 DOI: 10.3390/pathogens12111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Pathogens can influence the physiology and behavior of both animal and plant hosts in a manner that promotes their own transmission and dispersal. Recent research focusing on insects has revealed that these manipulations can extend to the production of pheromones, which are pivotal in chemical communication. This review provides an overview of the current state of research and available data concerning the impacts of bacterial, viral, fungal, and eukaryotic pathogens on chemical communication across different insect orders. While our understanding of the influence of pathogenic bacteria on host chemical profiles is still limited, viral infections have been shown to induce behavioral changes in the host, such as altered pheromone production, olfaction, and locomotion. Entomopathogenic fungi affect host chemical communication by manipulating cuticular hydrocarbons and pheromone production, while various eukaryotic parasites have been observed to influence insect behavior by affecting the production of pheromones and other chemical cues. The effects induced by these infections are explored in the context of the evolutionary advantages they confer to the pathogen. The molecular mechanisms governing the observed pathogen-mediated behavioral changes, as well as the dynamic and mutually influential relationships between the pathogen and its host, are still poorly understood. A deeper comprehension of these mechanisms will prove invaluable in identifying novel targets in the perspective of practical applications aimed at controlling detrimental insect species.
Collapse
Affiliation(s)
- Andrea Moyano
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Anna Cleta Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Francesca Scolari
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy; (A.M.); (A.C.C.)
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| |
Collapse
|
4
|
Will I, Attardo GM, de Bekker C. Multiomic interpretation of fungus-infected ant metabolomes during manipulated summit disease. Sci Rep 2023; 13:14363. [PMID: 37658067 PMCID: PMC10474057 DOI: 10.1038/s41598-023-40065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
Camponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts. Nevertheless, the underlying mechanisms still need to be fully characterized. To investigate the small molecules producing summiting behavior, we infected C. floridanus ants with O. camponoti-floridani and sampled their heads for LC-MS/MS when we observed the characteristic summiting phenotype. We link this metabolomic data with our previous genomic and transcriptomic data to propose mechanisms that underlie manipulated summiting behavior in "zombie ants." This "multiomic" evidence points toward the dysregulation of neurotransmitter levels and neuronal signaling. We propose that these processes are altered during infection and manipulation based on (1) differential expression of neurotransmitter synthesis and receptor genes, (2) altered abundance of metabolites and neurotransmitters (or their precursors) with known behavioral effects in ants and other insects, and (3) possible suppression of a connected immunity pathway. We additionally report signals for metabolic activity during manipulation related to primary metabolism, detoxification, and anti-stress protectants. Taken together, these findings suggest that host manipulation is likely a multi-faceted phenomenon, with key processes changing at multiple levels of molecular organization.
Collapse
Affiliation(s)
- I Will
- Biology Department, University of Central Florida, Orlando, USA.
| | - G M Attardo
- Entomology and Nematology Department, University of California-Davis, Davis, USA
| | - C de Bekker
- Biology Department, University of Central Florida, Orlando, USA.
- Biology Department, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Li Z, Bhat B, Frank ET, Oliveira-Honorato T, Azuma F, Bachmann V, Parker DJ, Schmitt T, Economo EP, Ulrich Y. Behavioural individuality determines infection risk in clonal ant colonies. Nat Commun 2023; 14:5233. [PMID: 37634010 PMCID: PMC10460416 DOI: 10.1038/s41467-023-40983-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
In social groups, infection risk is not distributed evenly across individuals. Individual behaviour is a key source of variation in infection risk, yet its effects are difficult to separate from other factors (e.g., age). Here, we combine epidemiological experiments with chemical, transcriptomic, and automated behavioural analyses in clonal ant colonies, where behavioural individuality emerges among identical workers. We find that: (1) Caenorhabditis-related nematodes parasitise ant heads and affect their survival and physiology, (2) differences in infection emerge from behavioural variation alone, and reflect spatially-organised division of labour, (3) infections affect colony social organisation by causing infected workers to stay in the nest. By disproportionately infecting some workers and shifting their spatial distribution, infections reduce division of labour and increase spatial overlap between hosts, which should facilitate parasite transmission. Thus, division of labour, a defining feature of societies, not only shapes infection risk and distribution but is also modulated by parasites.
Collapse
Affiliation(s)
- Zimai Li
- Max Planck Institute for Chemical Ecology, Jena, Germany
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bhoomika Bhat
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Erik T Frank
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | | | - Fumika Azuma
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Valérie Bachmann
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Thomas Schmitt
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Evan P Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuko Ulrich
- Max Planck Institute for Chemical Ecology, Jena, Germany.
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Will I, Beckerson WC, de Bekker C. Using machine learning to predict protein-protein interactions between a zombie ant fungus and its carpenter ant host. Sci Rep 2023; 13:13821. [PMID: 37620441 PMCID: PMC10449854 DOI: 10.1038/s41598-023-40764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Parasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host responses. These proteins, classified as a type of "effector," often act via protein-protein interactions (PPIs). The fungal parasite Ophiocordyceps camponoti-floridani (zombie ant fungus) manipulates Camponotus floridanus (carpenter ant) behavior to promote transmission. The most striking aspect of this behavioral change is a summit disease phenotype where infected hosts ascend and attach to an elevated position. Plausibly, interspecific PPIs drive aspects of Ophiocordyceps infection and host manipulation. Machine learning PPI predictions offer high-throughput methods to produce mechanistic hypotheses on how this behavioral manipulation occurs. Using D-SCRIPT to predict host-parasite PPIs, we found ca. 6000 interactions involving 2083 host proteins and 129 parasite proteins, which are encoded by genes upregulated during manipulated behavior. We identified multiple overrepresentations of functional annotations among these proteins. The strongest signals in the host highlighted neuromodulatory G-protein coupled receptors and oxidation-reduction processes. We also detected Camponotus structural and gene-regulatory proteins. In the parasite, we found enrichment of Ophiocordyceps proteases and frequent involvement of novel small secreted proteins with unknown functions. From these results, we provide new hypotheses on potential parasite effectors and host targets underlying zombie ant behavioral manipulation.
Collapse
Affiliation(s)
- Ian Will
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
| | - William C Beckerson
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Charissa de Bekker
- Department of Biology, University of Central Florida, 4110 Libra Drive, Orlando, FL, 32816, USA.
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Elya C, Lavrentovich D, Lee E, Pasadyn C, Duval J, Basak M, Saykina V, de Bivort B. Neural mechanisms of parasite-induced summiting behavior in 'zombie' Drosophila. eLife 2023; 12:e85410. [PMID: 37184212 PMCID: PMC10259475 DOI: 10.7554/elife.85410] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/14/2023] [Indexed: 05/16/2023] Open
Abstract
For at least two centuries, scientists have been enthralled by the "zombie" behaviors induced by mind-controlling parasites. Despite this interest, the mechanistic bases of these uncanny processes have remained mostly a mystery. Here, we leverage the Entomophthora muscae-Drosophila melanogaster "zombie fly" system to reveal the mechanistic underpinnings of summit disease, a manipulated behavior evoked by many fungal parasites. Using a high-throughput approach to measure summiting, we discovered that summiting behavior is characterized by a burst of locomotion and requires the host circadian and neurosecretory systems, specifically DN1p circadian neurons, pars intercerebralis to corpora allata projecting (PI-CA) neurons and corpora allata (CA), the latter being solely responsible for juvenile hormone (JH) synthesis and release. Using a machine learning classifier to identify summiting animals in real time, we observed that PI-CA neurons and CA appeared intact in summiting animals, despite invasion of adjacent regions of the "zombie fly" brain by E. muscae cells and extensive host tissue damage in the body cavity. The blood-brain barrier of flies late in their infection was significantly permeabilized, suggesting that factors in the hemolymph may have greater access to the central nervous system during summiting. Metabolomic analysis of hemolymph from summiting flies revealed differential abundance of several compounds compared to non-summiting flies. Transfusing the hemolymph of summiting flies into non-summiting recipients induced a burst of locomotion, demonstrating that factor(s) in the hemolymph likely cause summiting behavior. Altogether, our work reveals a neuro-mechanistic model for summiting wherein fungal cells perturb the fly's hemolymph, activating a neurohormonal pathway linking clock neurons to juvenile hormone production in the CA, ultimately inducing locomotor activity in their host.
Collapse
Affiliation(s)
- Carolyn Elya
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Danylo Lavrentovich
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Emily Lee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Cassandra Pasadyn
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Jasper Duval
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Maya Basak
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Valerie Saykina
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Benjamin de Bivort
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
8
|
Csata E, Casacci LP, Ruther J, Bernadou A, Heinze J, Markó B. Non-lethal fungal infection could reduce aggression towards strangers in ants. Commun Biol 2023; 6:183. [PMID: 36797462 PMCID: PMC9935638 DOI: 10.1038/s42003-023-04541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Many parasites interfere with the behaviour of their hosts. In social animals, such as ants, parasitic interference can cause changes on the level of the individual and also on the level of the society. The ant-parasitic fungus Rickia wasmannii influences the behaviour of Myrmica ants by expanding the host's nestmate recognition template, thereby increasing the chance of the colony accepting infected non-nestmates. Infected ants consistently show an increase of the alkane tricosane (n-C23) in their cuticular hydrocarbon profiles. Although experimental application of single compounds often elicits aggression towards manipulated ants, we hypothesized that the increase of n-C23 might underlie the facilitated acceptance of infected non-nestmates. To test this, we mimicked fungal infection in M. scabrinodis by applying synthetic n-C23 to fresh ant corpses and observed the reaction of infected and uninfected workers to control and manipulated corpses. Infected ants appeared to be more peaceful towards infected but not uninfected non-nestmates. Adding n-C23 to uninfected corpses resulted in reduced aggression in uninfected ants. This supports the hypothesis that n-C23 acts as a 'pacifying' signal. Our study indicates that parasitic interference with the nestmate discrimination of host ants might eventually change colony structure by increasing genetic heterogeneity in infected colonies.
Collapse
Affiliation(s)
- Enikő Csata
- Institute for Zoology, University of Regensburg, Universitätsstraße 31, D-93040, Regensburg, Germany. .,Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006, Cluj-Napoca, Romania.
| | - Luca Pietro Casacci
- Department of Life Sciences and Systems Biology, University of Turin, via Accademia Albertina 13, 10123, Torino, Italy.
| | - Joachim Ruther
- grid.7727.50000 0001 2190 5763Institute for Zoology, University of Regensburg, Universitätsstraße 31, D‐93040 Regensburg, Germany
| | - Abel Bernadou
- grid.7727.50000 0001 2190 5763Institute for Zoology, University of Regensburg, Universitätsstraße 31, D‐93040 Regensburg, Germany ,grid.15781.3a0000 0001 0723 035XCentre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jürgen Heinze
- grid.7727.50000 0001 2190 5763Institute for Zoology, University of Regensburg, Universitätsstraße 31, D‐93040 Regensburg, Germany
| | - Bálint Markó
- grid.7399.40000 0004 1937 1397Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania ,grid.7399.40000 0004 1937 13973B Centre for Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| |
Collapse
|
9
|
de Bekker C, Das B. Hijacking time: How Ophiocordyceps fungi could be using ant host clocks to manipulate behavior. Parasite Immunol 2022; 44:e12909. [PMID: 35103986 PMCID: PMC9287076 DOI: 10.1111/pim.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022]
Abstract
Ophiocordyceps fungi manipulate ant behaviour as a transmission strategy. Conspicuous changes in the daily timing of disease phenotypes suggest that Ophiocordyceps and other manipulators could be hijacking the host clock. We discuss the available data that support the notion that Ophiocordyceps fungi could be hijacking ant host clocks and consider how altering daily behavioural rhythms could benefit the fungal infection cycle. By reviewing time‐course transcriptomics data for the parasite and the host, we argue that Ophiocordyceps has a light‐entrainable clock that might drive daily expression of candidate manipulation genes. Moreover, ant rhythms are seemingly highly plastic and involved in behavioural division of labour, which could make them susceptible to parasite hijacking. To provisionally test whether the expression of ant behavioural plasticity and rhythmicity genes could be affected by fungal manipulation, we performed a gene co‐expression network analysis on ant time‐course data and linked it to available behavioural manipulation data. We found that behavioural plasticity genes reside in the same modules as those affected during fungal manipulation. These modules showed significant connectivity with rhythmic gene modules, suggesting that Ophiocordyceps could be indirectly affecting the expression of those genes as well.
Collapse
Affiliation(s)
- Charissa de Bekker
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| | - Biplabendu Das
- Department of Biology and Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Das B, de Bekker C. Time-course RNASeq of Camponotus floridanus forager and nurse ant brains indicate links between plasticity in the biological clock and behavioral division of labor. BMC Genomics 2022; 23:57. [PMID: 35033027 PMCID: PMC8760764 DOI: 10.1186/s12864-021-08282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Circadian clocks allow organisms to anticipate daily fluctuations in their environment by driving rhythms in physiology and behavior. Inter-organismal differences in daily rhythms, called chronotypes, exist and can shift with age. In ants, age, caste-related behavior and chronotype appear to be linked. Brood-tending nurse ants are usually younger individuals and show “around-the-clock” activity. With age or in the absence of brood, nurses transition into foraging ants that show daily rhythms in activity. Ants can adaptively shift between these behavioral castes and caste-associated chronotypes depending on social context. We investigated how changes in daily gene expression could be contributing to such behavioral plasticity in Camponotus floridanus carpenter ants by combining time-course behavioral assays and RNA-Sequencing of forager and nurse brains. Results We found that nurse brains have three times fewer 24 h oscillating genes than foragers. However, several hundred genes that oscillated every 24 h in forager brains showed robust 8 h oscillations in nurses, including the core clock genes Period and Shaggy. These differentially rhythmic genes consisted of several components of the circadian entrainment and output pathway, including genes said to be involved in regulating insect locomotory behavior. We also found that Vitellogenin, known to regulate division of labor in social insects, showed robust 24 h oscillations in nurse brains but not in foragers. Finally, we found significant overlap between genes differentially expressed between the two ant castes and genes that show ultradian rhythms in daily expression. Conclusion This study provides a first look at the chronobiological differences in gene expression between forager and nurse ant brains. This endeavor allowed us to identify a putative molecular mechanism underlying plastic timekeeping: several components of the ant circadian clock and its output can seemingly oscillate at different harmonics of the circadian rhythm. We propose that such chronobiological plasticity has evolved to allow for distinct regulatory networks that underlie behavioral castes, while supporting swift caste transitions in response to colony demands. Behavioral division of labor is common among social insects. The links between chronobiological and behavioral plasticity that we found in C. floridanus, thus, likely represent a more general phenomenon that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08282-x.
Collapse
Affiliation(s)
- Biplabendu Das
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| | - Charissa de Bekker
- Department of Biology, College of Sciences, University of Central Florida, Orlando, FL, 32816, USA. .,Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, 32816, USA.
| |
Collapse
|