1
|
Ogino M, Farine DR. Collective intelligence facilitates emergent resource partitioning through frequency-dependent learning. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230177. [PMID: 39034703 PMCID: PMC11293853 DOI: 10.1098/rstb.2023.0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 07/23/2024] Open
Abstract
Deciding where to forage must not only account for variations in habitat quality but also where others might forage. Recent studies have suggested that when individuals remember recent foraging outcomes, negative frequency-dependent learning can allow them to avoid resources exploited by others (indirect competition). This process can drive the emergence of consistent differences in resource use (resource partitioning) at the population level. However, indirect cues of competition can be difficult for individuals to sense. Here, we propose that information pooling through collective decision-making-i.e. collective intelligence-can allow populations of group-living animals to more effectively partition resources relative to populations of solitary animals. We test this hypothesis by simulating (i) individuals preferring to forage where they were recently successful and (ii) cohesive groups that choose one resource using a majority rule. While solitary animals can partially avoid indirect competition through negative frequency-dependent learning, resource partitioning is more likely to emerge in populations of group-living animals. Populations of larger groups also better partition resources than populations of smaller groups, especially in environments with more choices. Our results give insight into the value of long- versus short-term memory, home range sizes and the evolution of specialization, optimal group sizes and territoriality. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Mina Ogino
- Department of Evolutionary Biology and Environmental Science, University of Zurich, ZurichWinterthurerstrasse 190, 8057, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, KonstanzAm Obstberg 1, 78315 Radolfzell, Germany
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental Science, University of Zurich, ZurichWinterthurerstrasse 190, 8057, Switzerland
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, KonstanzAm Obstberg 1, 78315 Radolfzell, Germany
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, CanberraACT 2600, Australia
| |
Collapse
|
2
|
Pereira JM, Ramos JA, Ceia FR, Krüger L, Marques AM, Paiva VH. Boldness predicts foraging behaviour, habitat use and chick growth in a central place marine predator. Oecologia 2024; 205:135-147. [PMID: 38739168 PMCID: PMC11144154 DOI: 10.1007/s00442-024-05557-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Animal personality can shape individual's fitness. Yet, the mechanistic relationship by which individual's personality traits lead to variations in fitness remains largely underexplored. Here, we used novel object tests to measure boldness of chick-provisioning Cory's shearwaters (Calonectris borealis) from a coastal colony off west Portugal, and deployed GPS loggers to study their at-sea behaviour and distribution. We then tested whether boldness predicts individual differences in adult's trophic ecology and variations in chick growth, to assess potential implications of personality-specific foraging behaviours. Foraging effort was higher for shyer than for bolder individuals, which, during short forays, exhibited larger foraging ranges, and foraged in regions of higher and more variable bathymetry. This suggests that nearby the colony bolder individuals expanded their foraging area to maximize resource acquisition and increase the probability of foraging success. When endeavouring to longer distances, bolder individuals exhibited comparably shorter foraging ranges and targeted low bathymetry regions, likely with enhanced prey availability, while shyer individuals exhibited much larger foraging ranges indicating greater flexibility when foraging in oceanic realms. Despite such differences between bolder and shyer individuals their isotopic niches were similar. Yet, chicks raised by bolder parents grew at a faster rate than those raised by shyer parents. Together, our results suggest that differences in resource acquisition strategies could play a key role through which individual's boldness may influence breeding performance, even when individuals have similar isotopic preferences.
Collapse
Affiliation(s)
- Jorge M Pereira
- Department of Life Sciences, University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Jaime A Ramos
- Department of Life Sciences, University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Filipe R Ceia
- Department of Life Sciences, University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Lucas Krüger
- Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, 620 000, Punta Arenas, Chile
- Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Ana M Marques
- Department of Life Sciences, University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vitor H Paiva
- Department of Life Sciences, University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
3
|
Baker CJ, Frère CH, Franklin CE, Campbell HA, Irwin TR, Dwyer RG. Long-term tracking reveals a dynamic crocodylian social system. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
4
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
5
|
Ramellini S, Imperio S, Morinay J, De Pascalis F, Catoni C, Morganti M, Rubolini D, Cecere JG. Individual foraging site fidelity increases from incubation to nestling rearing in a colonial bird. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|