1
|
Özcan Türkmen M, Karaduman T, Mergen H. Comparison of ELISA and RIA methods to quantify arginine vasopressin hormone levels in cell culture. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Türkmen MÖ, Karaduman T, Tuncdemir BE, Ünal MA, Mergen H. Functional analyses of three different mutations in the AVP-NPII gene causing familial neurohypophyseal diabetes insipidus. Endocrine 2021; 74:658-665. [PMID: 34232487 DOI: 10.1007/s12020-021-02803-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/14/2021] [Indexed: 11/26/2022]
Abstract
PURPOSE Familial neurohypophyseal diabetes insipidus (FNDI), a rare disorder, which is clinically characterized by polyuria and polydipsia, results from mutations in the arginine vasopressin-neurophysin II (AVP-NPII) gene. The aim of this study was to perform functional analyses of three different mutations (p.G45C, 207_209delGGC, and p.G88V) defined in the AVP-NPII gene of patients diagnosed with FNDI, which are not included in the literature. METHODS For functional analysis studies, the relevant mutations were created using PCR-based site-directed mutagenesis and restriction fragment replacement strategy and expressed in Neuro2A cells. AVP secretion into the cell culture medium was determined by radioimmunoassay (RIA) analysis. Fluorescence imaging studies were conducted to determine the differences in the intracellular trafficking of wild-type (WT) and mutant AVP-NPII precursors. Molecular dynamics (MD) simulations were performed to determine the changing of the conformational properties of domains for both WT and 207-209delGGC mutant structures and dynamics behavior of residues. RESULTS Reduced levels of AVP in the supernatant culture medium of p.G45C and p.G88V transfected cells compared to 207_209delGGC and WT cells were found. Fluorescence imaging studies showed that a substantial portion of the mutant p.G45C and p.G88V AVP-NPII precursors appeared to be located in the endoplasmic reticulum (ER), whereas 207_209delGGC and WT AVP-NPII precursors were distributed throughout the cytoplasm. CONCLUSIONS The mutations p.G45C and p.G88V cause a failure in the intracellular trafficking of mutant AVP-NPII precursors. However, 207_209delGGC mutation does not result in impaired cellular trafficking, probably due to not having any significant effect in processes such as the proper folding, gain of three-dimensional structure, or processing. These results will provide valuable information for understanding the influence of mutations on the function of the AVP precursor hormone and cellular trafficking. Therefore, this study will contribute to elucidate the mechanisms of the molecular pathology of AVP-NPII mutations.
Collapse
Affiliation(s)
- Merve Özcan Türkmen
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey.
| | - Tugce Karaduman
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | | | | | - Hatice Mergen
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| |
Collapse
|
3
|
A Rare Case of Familial Neurogenic Diabetes Insipidus in a 22-Year-Old Man. AACE Clin Case Rep 2021; 7:338-341. [PMID: 34765727 PMCID: PMC8573270 DOI: 10.1016/j.aace.2020.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective Diabetes insipidus (DI) can be classified into 2 types: central/neurogenic DI and nephrogenic DI. Most cases of central DI occur after brain surgery, trauma, tumor, or infection. Here we report a rare case of familial central DI due to a heterozygous AVP gene mutation. Methods A case of familial neurogenic DI has been described with thorough clinical, laboratory, and genetic workup. PubMed and Google scholar databases were used for literature discussion. Results A 22-year-old man presented with polyuria and polydipsia. He drank about 4 gallons of water everyday and urinated large volumes very frequently. His physical examination was unremarkable. After 2 hours of water-deprivation, his serum sodium level was 147 mmol/L, serum osmolality was 302 mOsm/kg with concurrent urine osmolality of 78 mOsm/kg, vasopressin level was <0.8 pg/mL, and copeptin level was <2.8 pmol/L, suggesting neurogenic DI. His brain magnetic resonance imaging revealed the absence of the posterior pituitary bright spot but a normal anterior pituitary gland. Genetic analysis revealed a nonfunctional heterozygous mutation in the AVP gene. Further questioning revealed that his mother also had the disease and that he had been treated with desmopressin as a child; however, it was later self-stopped. The patient was reinitiated on desmopressin, which improved his symptoms. Conclusion Genetic mutations in the AVP gene represent a very rare etiology of DI, and patients with DI respond well to desmopressin treatment.
Collapse
|
4
|
Zhang C, Yao H, Ma Q, Yu B. Ultrasensitive glucose detection from tears and saliva through integrating a glucose oxidase-coupled DNAzyme and CRISPR-Cas12a. Analyst 2021; 146:6576-6581. [PMID: 34586111 DOI: 10.1039/d1an01385h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The accurate and sensitive detection of glucose from secretory clinical samples, such as tears and saliva, remains a great challenge. In this research, a novel ultrasensitive glucose detection method consisting of a glucose oxidase (GOx), pistol-like DNAzyme (PLDz), and CRISPR-Cas12a system is proposed. First, the oxidation of glucose catalyzed by GOx leads to the production of H2O2; the self-cleavage activity of PLDz is activated after recognition of the produced H2O2. The two procedures triggered by COx and PLDz play an important role in accurately identifying glucose and converting glucose signals to nucleic acids. The obtained PLDz fragments can be recognized by the Cas12 enzyme and thus activate the trans-cleavage activity of the Cas12a enzyme. Finally, the surrounding reporter probes are cut by the Cas12a enzyme to produce fluorescence signals. In summary, an ultra-sensitive and specific fluorescence method has been developed for glucose detection from secretory clinical samples, which could potentially contribute to the noninvasive diagnosis of diabetes mellitus.
Collapse
Affiliation(s)
- Caiying Zhang
- Department of Endocrinology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji City, Zhejiang Province, 311800, China
| | - Hongfeng Yao
- Department of Clinical Laboratory, Zhuji Affiliated Hospital of Shaoxing University, Zhuji City, Zhejiang Province, 311800, China
| | - Qiang Ma
- Department of Endocrinology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji City, Zhejiang Province, 311800, China
| | - Bin Yu
- Department of medical administration, the Second Affiliated Hospital of Zhejiang University, Hangzhou City, Zhejiang Province, 312000, China.
| |
Collapse
|
5
|
Zannetti A, Benga G, Brunetti A, Napolitano F, Avallone L, Pelagalli A. Role of Aquaporins in the Physiological Functions of Mesenchymal Stem Cells. Cells 2020; 9:cells9122678. [PMID: 33322145 PMCID: PMC7763964 DOI: 10.3390/cells9122678] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that control osmotically-driven water transport across cell membranes. Recent studies have focused on the assessment of fluid flux regulation in relation to the biological processes that maintain mesenchymal stem cell (MSC) physiology. In particular, AQPs seem to regulate MSC proliferation through rapid regulation of the cell volume. Furthermore, several reports have shown that AQPs play a crucial role in modulating MSC attachment to the extracellular matrix, their spread, and migration. Shedding light on how AQPs are able to regulate MSC physiological functions can increase our knowledge of their biological behaviours and improve their application in regenerative and reparative medicine.
Collapse
Affiliation(s)
- Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
| | - Gheorghe Benga
- Romanian Academy, Cluj-Napoca Branch, Strada Republicii 9, 400015 Cluj-Napoca, Romania
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| | - Francesco Napolitano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, via Veterinaria 1, 80137 Naples, Italy
| | - Alessandra Pelagalli
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145 Naples, Italy
- Department of Advanced Biomedical Sciences, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
6
|
Hussain A, Baier RJ, Mehrem AA, Soylu H, Fraser D, Elsayed Y. Central Diabetes Insipidus in a Preterm Neonate Unresponsive to Intranasal Desmopressin. Neonatal Netw 2020; 39:339-346. [PMID: 33318230 DOI: 10.1891/0730-0832/11-t-679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Central or neurogenic diabetes insipidus (DI) is uncommon in the pediatric age group and rarely occurs in neonates. It should be suspected in any neonate presenting with excessive urine output and hypernatremia that persists despite increased fluid administration. Diabetes insipidus may be secondary to asphyxia, intraventricular hemorrhage, infection, and structural abnormalities or may be idiopathic or genetic. Diagnosis includes a careful history, laboratory testing, and magnetic resonance imaging. Management of neonatal DI involves a careful balance between fluid intake and pharmacologic treatment. In this article we report a case of an extremely low birth weight infant presenting with central DI possibly caused by abnormality of the pituitary gland. Persistent hypernatremia was the initial presentation. Increased fluids were given initially but were only partially helpful. Eventually subcutaneous desmopressin (DDAVP) was required. The infant was unresponsive to intranasal DDAVP and required subcutaneous DDAVP upon discharge.
Collapse
|
7
|
Bijkerk R, Trimpert C, van Solingen C, de Bruin RG, Florijn BW, Kooijman S, van den Berg R, van der Veer EP, Bredewold EOW, Rensen PCN, Rabelink TJ, Humphreys BD, Deen PMT, van Zonneveld AJ. MicroRNA-132 controls water homeostasis through regulating MECP2-mediated vasopressin synthesis. Am J Physiol Renal Physiol 2018; 315:F1129-F1138. [DOI: 10.1152/ajprenal.00087.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fine-tuning of the body’s water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.
Collapse
Affiliation(s)
- Roel Bijkerk
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Renal Division, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen van Solingen
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University Medical Center, New York, New York
| | - Ruben G. de Bruin
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Barend W. Florijn
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosa van den Berg
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric P. van der Veer
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Edwin O. W. Bredewold
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Internal Medicine (Endocrinology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J. Rabelink
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin D. Humphreys
- Renal Division, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Renal Division, Washington University School of Medicine, St. Louis, Missouri
| | - Peter M. T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Bhat N, Balliu E, Osipoff J, Lane A, Wilson T. Opioid-induced hyponatremia in a patient with central diabetes insipidus: independence from ADH. J Pediatr Endocrinol Metab 2017; 30:693-696. [PMID: 28593907 DOI: 10.1515/jpem-2017-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/03/2017] [Indexed: 12/21/2022]
Abstract
Hyponatremia can be a complication of opioid therapy, which has been postulated to occur secondary to inappropriate antidiuretic hormone secretion (syndrome of inappropriate antidiuretic hormone secretion [SIADH]). We report severe hyponatremia following wisdom teeth extraction with opioid analgesia in a 19-year-old female with diabetes insipidus (DI) and acquired panhypopituitarism that challenges this theory. As this patient has DI, we believe opioid treatment caused severe hyponatremia by the following mechanisms: (1) Opioids have a direct antidiuretic effect independent of changes in ADH, as demonstrated in Brattleboro rats with central DI. (2) Hydrocodone may have stimulated this patient's thirst center contributing to hyponatremia, as demonstrated in animal studies. Opioid use can cause hyponatremia in patients independent of ADH. It is important for clinicians to be aware of this so that patients can be appropriately counseled.
Collapse
|
9
|
Juul KV, Bichet DG, Nielsen S, Nørgaard JP. The physiological and pathophysiological functions of renal and extrarenal vasopressin V2 receptors. Am J Physiol Renal Physiol 2014; 306:F931-40. [PMID: 24598801 DOI: 10.1152/ajprenal.00604.2013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The arginine vasopressin (AVP) type 2 receptor (V2R) is unique among AVP receptor subtypes in signaling through cAMP. Its key function is in the kidneys, facilitating the urine concentrating mechanism through the AVP/V2 type receptor/aquaporin 2 system in the medullary and cortical collecting ducts. Recent clinical and research observations strongly support the existence of an extrarenal V2R. The clinical importance of the extrarenal V2R spans widely from stimulation of coagulation factor in the endothelium to as yet untested potential therapeutic targets. These include V2R-regulated membranous fluid turnover in the inner ear, V2R-regulated mitogensis and apoptosis in certain tumor tissues, and numerous other cell types where the physiological role of V2Rs still requires further research. Here, we review current evidence on the physiological and pathophysiological functions of renal and extrarenal V2Rs. These functions of V2R are important, not only in rare diseases with loss or gain of function of V2R but also in relation to the recent use of nonpeptide V2R antagonists to treat hyponatremia and possibly retard the growth of cysts and development of renal failure in autosomal dominant polycystic kidney disease. The main functions of V2R in principal cells of the collecting duct are water, salt, and urea transport by modifying the trafficking of aquaporin 2, epithelial Na(+) channels, and urea transporters and vasodilation and stimulation of coagulation factor properties, mainly seen with pharmacological doses of 1-desamino-8-D-AVP. The AVPR2 gene is located on the X chromosome, in a region with high probability of escape from inactivation; this may lead to phenotypic sex differences, with females expressing higher levels of transcript than males.
Collapse
Affiliation(s)
- Kristian Vinter Juul
- Medical Science Urology, Ferring Pharmaceuticals, 11 Kay Fiskers Plads, Copenhagen S DK-2300, Denmark.
| | | | | | | |
Collapse
|
10
|
Leroy C, Karrouz W, Douillard C, Do Cao C, Cortet C, Wémeau JL, Vantyghem MC. Diabetes insipidus. ANNALES D'ENDOCRINOLOGIE 2013; 74:496-507. [DOI: 10.1016/j.ando.2013.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/23/2013] [Accepted: 10/07/2013] [Indexed: 01/13/2023]
|