1
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
2
|
Biswas S, Dang DX, Kim IH. Comparison of the effects of zinc oxide and zinc aspartic acid chelate on the performance of weaning pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:125-134. [PMID: 38618040 PMCID: PMC11007467 DOI: 10.5187/jast.2023.e39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 04/16/2024]
Abstract
In this research, the growth efficiency, nutritional utilization, fecal microbial levels, and fecal score of weaned pigs were evaluated using therapeutic zinc oxide (ZnO) and zinc aspartic acid chelate (Zn-Asp). In a 42-day feeding trial, 60 weaned pigs ([Yorkshire × Landrace] × Duroc) were arbitrarily allotted (age: 21 days; 7.01 ± 0.65 kg preliminary body weight) to 3 different treatment groups with 5 repetitions (2 male and 2 female piglets) in each pen. The trial had 2 different phases, including 1-21 days as phase 1, and 22-42 days as phase 2. The nutritional treatments were: basal diet as control (CON), basal diet incorporated with 3,000 ppm ZnO as TRT1, and basal diet incorporated with 750 ppm Zn-Asp as TRT2. In comparison to the CON group, the pigs in the TRT1 and TRT2 groups had greater (p < 0.05) body weight on day 42; an average daily gain, and an average daily feed intake on days 22-42. Furthermore, during days 1-42, the average daily gain in the treatment groups trended higher (p < 0.05) than in the CON group. Additionally, the fecal score decreased (p < 0.05) at week 6, the lactic acid bacteria count tended to increase (p < 0.05), and coliform bacteria presented a trend in reduction (p < 0.05) in the TRT1 and TRT2 groups compared to the CON group. However, there was no difference in nutrient utilization (p > 0.05) among the dietary treatments. Briefly, the therapeutic ZnO and Zn-Asp nutritional approaches could decrease fecal score and coliform bacteria, increase lactic acid bacteria, and improve growth efficiency; moreover, Zn-Asp (750 ppm) can perform a comparable role to therapeutic ZnO (3,000 ppm). So we can use Zn-Asp (750 ppm) instead of therapeutic ZnO (3,000 ppm) for the better performance of weaning pigs and the reduction of environmental pollution, as therapeutic ZnO is responsible for environmental pollution.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - De Xin Dang
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| |
Collapse
|
3
|
Moniruzzaman M, Kim D, Kim H, Kim N, Chin S, Karthikeyan A, Han K, Min T. Evaluation of dietary curcumin nanospheres as phytobiotics on growth performance, serum biochemistry, nutritional composition, meat quality, gastrointestinal health, and fecal condition of finishing pigs. Front Vet Sci 2023; 10:1127309. [PMID: 36968462 PMCID: PMC10030798 DOI: 10.3389/fvets.2023.1127309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Curcumin is a bioactive functional feeding stimulant that is widely used as an additive in cuisine and animal feeds. Owing to its hydrophobic nature and low bioavailability, the nanoformulation of curcumin has recently received special attention from researchers. In this study, we investigated the effects of curcumin nanospheres (CN) on the growth performance, serum biochemistry, meat quality, intestinal immunohistochemistry, fecal malodors and microbes in finishing pigs. A total of 90 crossbred pigs (Duroc × [Yorkshire × Landrace]) with an average initial body weight of 73.77 ± 0.08 kg were randomized into 3 dietary groups in triplicate pens (10 pigs in each pen): control (CON) without supplementation of CN and the pigs in the remaining two groups were supplemented with CN at 1.0 (CN1) and 2.0 (CN2) mL/kg diet for a 40-day long experiment. The results showed that pigs fed the higher CN supplemented diet (CN2) had significantly higher final weight (FW) and weight gain (WG) than those fed the CON diet, and no significant differences were observed in the feed conversion ratio (FCR) and average daily feed intake (ADFI) after 28 days. At the end of the experiment, pigs fed the CN supplemented diet showed no significant difference in WG, ADFI or FCR compared to those on the CON diet. Overall, at the termination of the 40-day feeding trial, dietary CN had a significant effect on FW and WG, except for ADFI and FCR, in finishing pigs. After 40 days of the feeding trial, serum biochemical parameters such as glutamic-pyruvic transaminase, glutamic-oxaloacetic transaminase, triglycerides, and total cholesterol levels were significantly decreased in pigs fed the CN supplemented diet. However, high density lipoprotein levels were significantly increased in pigs fed the CN diets. Protein and lipid contents, as well as yellowness and lightness of the neck and longissimus dorsi muscles were not significantly affected by CN supplementation; however, there was a tendency to increase the redness of the longissimus dorsi muscle in pigs fed the CN2 supplemented diet compared to the CON diet. Meat grading and carcass weight significantly increased in pigs fed a higher CN supplemented diet. Fecal Escherichia coli and ammonia gas were significantly depleted in pigs fed CN diets. Histomorphological parameters, such as villus height, crypt depth and goblet cells in the jejunum of the intestine were significantly increased in pigs fed CN diet. Immunohistochemical staining showed that pro-inflammatory cytokine like tumor necrosis factor-α expression was reduced in pigs fed CN supplemented diets compared to the CON diet; however, antibodies such as immunoglobulin A and tight junction proteins such as claudin 3 were highly expressed in the intestine of pigs fed the CN diets. Overall, the results demonstrate the potential of dietary curcumin nanospheres as a nanobiotechnology tool as well as an effective feed additive for improving the performance and health status of finishing pigs.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Dahye Kim
- Division of Animal Genetics and Bioinformatics, National Institute of Animal Science (NIAS), Rural Development Administration (RDA), Wanju, Republic of Korea
| | - Hyunsoo Kim
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Nayoung Kim
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| | - Kyuhyuk Han
- AT. Consulting, Hanlim-eup, Jeju, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Bio-Resources Computing Research Center, Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju, Republic of Korea
- *Correspondence: Taesun Min ✉
| |
Collapse
|
4
|
Baholet D, Skalickova S, Vaclavkova E, Batik A, Kolackova I, Nevrkla P, Horky P. Short-term supplementation of zinc nanoparticles in weaned piglets affects zinc bioaccumulation and carcass classification. Livest Sci 2023. [DOI: 10.1016/j.livsci.2023.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
5
|
Evaluation on the Growth Performance, Nutrient Digestibility, Faecal Microbiota, Noxious Gas Emission, and Faecal Score on Weaning Pigs Supplement with and without Probiotics Complex Supplementation in Different Level of Zinc Oxide. Animals (Basel) 2023; 13:ani13030381. [PMID: 36766270 PMCID: PMC9913860 DOI: 10.3390/ani13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
A total of 200 26-day-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.55 ± 0.62 kg) were used in a 6-week experiment to evaluate the effects of adding probiotics complex supplementation (Syner-ZymeF10) with high and low ZnO diets on the performance of weaning pigs in 42 days. Pigs were randomly allotted to a 2 × 2 factorial arrangement and they were supplemented with two concentration level of ZnO with 3000 ppm and 300 ppm and probiotics complex supplementation with 0 and 0.1%. There were ten replicate pens per treatment with five pigs per pen (two gilts and three barrows). Pigs fed diets with 3000 ppm ZnO had a higher BW during the overall period and ADG during d 8-21, d 22-42, and overall period than pigs receiving 300 ppm ZnO diets (p < 0.05), as well as a G: F which tended to increase on d 8-21 and overall period (p < 0.1) and decreased tendency on faecal gas emission of methyl mercaptans and acetic acid concentration (p < 0.1). Dietary probiotics complex supplementation had decreased the E. coli count (p < 0.05) and tended to increase the Lactobacillus count (p < 0.1). Dietary probiotics complex supplementation and different level of ZnO supplementation had no significant effect on the nutrition digestibility and faecal score (p > 0.05). In conclusion, probiotic supplementation reduced the fecal E. coli counts and tended to improve Lactobacillus counts. There were no interactive effects between ZnO and probiotic complex supplementation on all the measured parameters.
Collapse
|
6
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Influence of Dietary Biosynthesized Zinc Oxide Nanoparticles on Broiler Zinc Uptake, Bone Quality, and Antioxidative Status. Animals (Basel) 2022; 13:ani13010115. [PMID: 36611723 PMCID: PMC9817535 DOI: 10.3390/ani13010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
A total of 180 broiler chickens (Cobb500) were randomly allotted to five experimental groups consisting of six replicates and six birds in each pen. Each group was fed a basal diet supplemented with 100 mg/kg ZnO (control) and 10, 40, 70, and 100 mg/kg ZnO NPs for 35 days. Resultantly, Zn uptake and accumulation in serum, breast muscle, tibia bone, and liver were linearly and significantly (p < 0.05) increased with increasing dietary ZnO NPs supplementation at 100 mg/kg compared to the control group (dietary 100 mg/kg ZnO), implying effective absorption capacity of ZnO NPs. This was followed by lower Zn excretion in feces in broilers fed ZnO NPs compared to controls (p < 0.05). Furthermore, dietary ZnO NPs at 40, 70, and 100 mg/kg levels improved broiler tibia bone morphological traits, such as weight, length, and thickness. Similarly, tibia bone mineralization increased in broilers fed ZnO NPs at 100 mg/kg compared to the control (p < 0.05), as demonstrated by tibia ash, Zn, Ca, and P retention. Antioxidative status in serum and liver tissue was also increased in broilers fed dietary ZnO NPs at 70 and 100 mg/kg compared to the control (p < 0.05). In conclusion, dietary ZnO NPs increased Zn absorption in broiler chickens and had a positive influence on tibia bone development and antioxidative status in serum and liver tissue, with dietary ZnO NPs supplementation at 70 and 100 mg/kg showing the optimum effects.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor’Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: (N.A.R.); (A.A.S.)
| |
Collapse
|
7
|
Effects of Protein-Chelated Zinc Combined with Mannan-Rich Fraction to Replace High-Dose Zinc Oxide on Growth Performance, Nutrient Digestibility, and Intestinal Health in Weaned Piglets. Animals (Basel) 2022; 12:ani12233407. [PMID: 36496927 PMCID: PMC9739869 DOI: 10.3390/ani12233407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A total of 168 weaned piglets (average initial body weight of 7.70 ± 0.75 kg) were used in a 4-week feeding trial to investigate the effects of dietary supplementation with protein-chelated zinc (Zn-Pro) alone or combined with a mannan-rich fraction (MRF) to replace high-dose zinc oxide (ZnO) for weaned piglets. The dietary treatments included a basal diet as control (CON), a ZnO diet (basal diet + 1600 mg Zn/kg from ZnO), a Zn-Pro diet (basal diet + 60 mg Zn/kg from Zn-Pro), and a MRF plus Zn-Pro diet (MRP, basal diet + 800 mg/kg MRF + 60 mg Zn/kg from Zn-Pro). The average daily gain of piglets in the MRP group was higher (p ≤ 0.05) than that in CON and Zn-Pro groups during d 15-28 and d 1-28 of experiment. The apparent total tract digestibility of dry matter, organic matter, and crude protein in the MRP group was higher (p ≤ 0.05) than that in the CON group. The serum insulin-like growth factor-1 level in the MRP group was markedly higher (p ≤ 0.05) than that of piglets in the other three treatment groups. Piglets fed the Zn-Pro and ZnO diets had greater (p ≤ 0.05) acetic acid in cecal digesta than those fed the CON diet, while the MRP diet had higher (p ≤ 0.05) cecal propionate concentration than those that were fed the CON diet on d 28 of experiment. Moreover, the villus height of ileum in the MRP group tended to be greater than the CON group (p = 0.09). Compared with the CON and MRP groups, the relative abundance of Lactobacillaceae (p = 0.08) and Lachnospiraceae (p = 0.09) in the Zn-Pro group showed an increasing trend. The relative abundance of Prevotellaceae in the Zn-Pro group was significantly lower (p ≤ 0.05) than that in the MRP group. In conclusion, the combined addition of MRF and Zn-Pro acted as a suitable alternative to ZnO to beneficially support the growth performance and intestinal health of weaned piglets, as well as contribute to a lower diarrhea rate and environmental pollution from fecal zinc excretion.
Collapse
|
8
|
Effects of Different Nutritional Zinc Forms on the Proliferation of Beneficial Commensal Microorganisms. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study compared the minimal inhibition concentrations (MICs) and their effects on the growth kinetics of seven different types of zinc (Zn) compounds and Na2EDTA in the case of three typical commensal beneficial microorganisms (Bacillus subtilis, Lactococcus lactis, and Saccharomyces cerevisiae). The seven Zn compounds included ZnSO4, four Zn–amino acid chelates, and two Zn–EDTA complexes. Both MICs and growth kinetic parameters indicated that different microorganisms show different sensitivities; for example, B. subtilis, L. lactis, and S. cerevisiae were most sensitive to ZnSO4, Na2EDTA, and Zn(NH3)2(Gly)2, respectively. Both ZnEDTA and Zn(NH3)2(Lys)2 improved the growth rate of all beneficial commensal intestinal microorganisms at low concentrations (5–10 mg/L) and showed low toxicity towards all tested strains. At higher concentrations (100–500 mg/L), all compounds decreased the growth rate and increased the lag phase. In conclusion, both growth kinetic parameters and MICs tested effectively measured the inhibitory effects of the test materials; however, growth kinetics provides a more detailed picture of the concentration-dependent effects and those on the mechanisms of microbial growth inhibition.
Collapse
|
9
|
Zhang G, Hu G, Yang Z, Zhao J. Effects of Tetrabasic Zinc Chloride on Growth Performance, Nutrient Digestibility and Fecal Microbial Community in Weaned Piglets. Front Vet Sci 2022; 9:905242. [PMID: 35782559 PMCID: PMC9244461 DOI: 10.3389/fvets.2022.905242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The study was conducted to explore the effects of tetrabasic zinc chloride (TBZC), as an alternative to zinc oxide (ZnO), on growth performance, serum indexes, and fecal microbiota of weaned piglets. A total of 108 weaned piglets (average initial body weight of 7.84 ± 0.97 kg) were randomly allocated into one of three dietary treatments with six replicate pens and six piglets per pen. The dietary treatments included a control diet (CON, negative control), a ZnO diet (CON + 1,600 mg Zn/kg from ZnO, positive control), and a TBZC diet (CON + 1,000 mg Zn/kg from TBZC). The average daily gain of pigs in the TBZC group was greater (P < 0.05) than those in CON and ZnO groups during the whole period. Piglets fed the ZnO and TBZC diets showed lower (P < 0.05) diarrhea incidence than those fed the CON diet during d 1-14 and the whole period. Piglets fed the TBZC diet had higher (P < 0.05) digestibility of crude protein and gross energy than those fed the CON diet. Serum concentrations of IGF-I and GH, as well as ALP activity, were significantly elevated (P < 0.05) in the TBZC treatment group compared to the CON group on d 14. Piglets fed the ZnO diet had greater (P < 0.05) acetate and total short-chain fatty acids concentrations, while the TBZC diet had greater (P < 0.05) fecal acetate and propionate concentrations on d 28. Moreover, TBZC supplementation significantly increased (P < 0.05) microbial α-diversity compared with the CON group. The fecal microbiota of piglets in ZnO and TBZC treatment groups tended (P = 0.08) to have greater relative abundance of Prevotellaceae compared with the CON piglets. In conclusion, TBZC acted as a suitable alternative to ZnO to reduce zinc excretion, and improve growth performance of weaned piglets.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Nutrition Laboratory of Wellhope Foods Co., Ltd, Shengyang, China
| | - Guoqing Hu
- Nutrition Laboratory of Wellhope Foods Co., Ltd, Shengyang, China
| | - Zhenyan Yang
- Animal Husbandry and Fishery Science and Innovation Department, Jinan Institute of Agricultural Sciences, Jinan, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Jinbiao Zhao
| |
Collapse
|
10
|
Baholet D, Skalickova S, Batik A, Malyugina S, Skladanka J, Horky P. Importance of Zinc Nanoparticles for the Intestinal Microbiome of Weaned Piglets. Front Vet Sci 2022; 9:852085. [PMID: 35720843 PMCID: PMC9201420 DOI: 10.3389/fvets.2022.852085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The scientific community is closely monitoring the replacement of antibiotics with doses of ZnO in weaned piglets. Since 2022, the use of zinc in medical doses has been banned in the European Union. Therefore, pig farmers are looking for other solutions. Some studies have suggested that zinc nanoparticles might replace ZnO for the prevention of diarrhea in weaning piglets. Like ZnO, zinc nanoparticles are effective against pathogenic microorganisms, e.g., Enterobacteriaceae family in vitro and in vivo. However, the effect on probiotic Lactobacillaceae appears to differ for ZnO and zinc nanoparticles. While ZnO increases their numbers, zinc nanoparticles act in the opposite way. These phenomena have been also confirmed by in vitro studies that reported a strong antimicrobial effect of zinc nanoparticles against Lactobacillales order. Contradictory evidence makes this topic still controversial, however. In addition, zinc nanoparticles vary in their morphology and properties based on the method of their synthesis. This makes it difficult to understand the effect of zinc nanoparticles on the intestinal microbiome. This review is aimed at clarifying many circumstances that may affect the action of nanoparticles on the weaning piglets' microbiome, including a comprehensive overview of the zinc nanoparticles in vitro effects on bacterial species occurring in the digestive tract of weaned piglets.
Collapse
Affiliation(s)
- Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Brno, Czechia
| | - Svetlana Malyugina
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pavel Horky
| |
Collapse
|
11
|
Mittag A, Singer A, Hoera C, Westermann M, Kämpfe A, Glei M. Impact of in vitro digested zinc oxide nanoparticles on intestinal model systems. Part Fibre Toxicol 2022; 19:39. [PMID: 35644618 PMCID: PMC9150335 DOI: 10.1186/s12989-022-00479-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Zinc oxide nanoparticles (ZnO NP) offer beneficial properties for many applications, especially in the food sector. Consequently, as part of the human food chain, they are taken up orally. The toxicological evaluation of orally ingested ZnO NP is still controversial. In addition, their physicochemical properties can change during digestion, which leads to an altered biological behaviour. Therefore, the aim of our study was to investigate the fate of two different sized ZnO NP (< 50 nm and < 100 nm) during in vitro digestion and their effects on model systems of the intestinal barrier. Differentiated Caco-2 cells were used in mono- and coculture with mucus-producing HT29-MTX cells. The cellular uptake, the impact on the monolayer barrier integrity and cytotoxic effects were investigated after 24 h exposure to 123–614 µM ZnO NP. Results
In vitro digested ZnO NP went through a morphological and chemical transformation with about 70% free zinc ions after the intestinal phase. The cellular zinc content increased dose-dependently up to threefold in the monoculture and fourfold in the coculture after treatment with digested ZnO NP. This led to reactive oxygen species but showed no impact on cellular organelles, the metabolic activity, and the mitochondrial membrane potential. Only very small amounts of zinc (< 0.7%) reached the basolateral area, which is due to the unmodified transepithelial electrical resistance, permeability, and cytoskeletal morphology. Conclusions Our results reveal that digested and, therefore, modified ZnO NP interact with cells of an intact intestinal barrier. But this is not associated with serious cell damage.
Collapse
|
12
|
Lei XJ, Liu ZZ, Park JH, Kim IH. Novel zinc sources as antimicrobial growth promoters for monogastric
animals: A review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:187-196. [PMID: 35530400 PMCID: PMC9039952 DOI: 10.5187/jast.2022.e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 11/20/2022]
Abstract
The essentiality of zinc for animals has been recognized over 80 years. Zinc is
an essential trace element that is a component of many enzymes and is associated
with the various hormones. Apart from the nutritional function, zinc has
antimicrobial property and often be supplemented in diets in the quantities
greater than which is required to meet the nutritional requirement, especially
for weaning pigs. This review will focus on the application of pharmacological
zinc and its mechanisms which may be responsible for the effects of zinc on
performance and health of monogastric animals. Various novel sources of zinc in
non-ruminant animal production will also be discussed. These should assist in
more precisely formulating feed to maximize the production performance and to
maintain the health condition of monogastric animals.
Collapse
Affiliation(s)
- Xin Jian Lei
- College of Animal Science and Technology,
Northwest A&F University, Shaanxi 712100, China
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
| | - Zhang Zhuang Liu
- College of Veterinary Medicine, Northwest
A&F University, Shaanxi 712100, China
| | - Jae Hong Park
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: Jae Hong Park, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3659, E-mail:
| | - In Ho Kim
- Department of Animal Resource and Science,
Dankook University, Cheonan 31116, Korea
- Corresponding author: In Ho Kim, Department of
Animal Resource and Science, Dankook University, Cheonan 31116, Korea. Tel:
+82-41-550-3652, E-mail:
| |
Collapse
|
13
|
Kim T, Kim M, Lee J, Moturi J, Ha S, Tajudeen H, Mun J, Hosseindoust A, Chae B. Supplementation of nano-zinc in lower doses as an alternative to
pharmacological doses of ZnO in weanling pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:70-83. [PMID: 35174343 PMCID: PMC8819322 DOI: 10.5187/jast.2022.e2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/18/2022]
Abstract
A set of studies was performed to determine the influence of dietary ZnO
concentration and source during two phases (days 0 to 14 and days 15 to 28).
Experiment 1: 168 weaned piglets were allocated to four treatment groups in six
replicates. The treatments included a basal diet without ZnO supplementation
(control), 2,500 mg ZnO/kg (In2500), 500 mg nano-ZnO/kg (N500), and 150 mg
nano-ZnO/kg (N150). Experiment 2: 168 weaned piglets were divided into three
treatment groups with eight replicates. The treatments included control, In2500,
N300, and 150 mg nano-ZnO/kg (N150). An in vitro trial showed that the growth of
Listeria monocytogenes, Escherichia coli, and
Salmonella typhimurium was inhibited when exposed to 300
and 500 ppm of ZnO after 24 h of incubation. In experiment 1, the average daily
gain (ADG) by the pigs was improved in the N500 and IN2500 treatment groups.
Colonization of coliforms and Clostridium spp. significantly
decreased in the pigs fed the N500 and IN2500 diets in phase 1. The total plasma
antioxidant capacity was greater in the IN2500 and N500 treatment groups than in
the control. Superoxide dismutase (SOD) activity was greater in pigs fed the
IN2500 (phase 1) or the IN2500 and N500 (phase 2) diets than in the control and
N150 treatment group. In experiment 2, pigs in the N300 treatment group showed a
higher ADG and lower fecal score colonization of coliforms and
Clostridium spp. compared with those in the N150 treatment
group. In conclusion, nano-ZnO at a dose of 300 ppm showed the same growth as
the pharmacological dose of Zn. This provides an option to the pharmacological
dose.
Collapse
Affiliation(s)
- TaeGyun Kim
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
| | - MinJu Kim
- Centre for Nutrition and Food Sciences,
Queensland Alliance for Agriculture and Food Innovation, The University of
Queensland, Queensland 4072, Australia
| | - JunHyung Lee
- Department of Animal Biosciences,
University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Joseph Moturi
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
| | - SangHun Ha
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
| | - Habeeb Tajudeen
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
| | - JunYoung Mun
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
| | - Abdolreza Hosseindoust
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
- Corresponding author: Abdolreza Hosseindoust,
College of Animal Life Sciences, Kangwon National University, Chuncheon 24341,
Korea. Tel: +82-33-250-8616, E-mail:
| | - ByungJo Chae
- College of Animal Life Sciences, Kangwon
National University, Chuncheon 24341, Korea
- Corresponding author: ByungJo Chae, College of
Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea. Tel:
+82-33-250-8616, E-mail:
| |
Collapse
|
14
|
Zhang G, Zhao J, Dong W, Song X, Lin G, Li D, Zhang S. Yeast-derived mannan-rich fraction as an alternative for zinc oxide to alleviate diarrhea incidence and improve growth performance in weaned pigs. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Effect of functional oils or probiotics on performance and microbiota profile of newly weaned piglets. Sci Rep 2021; 11:19457. [PMID: 34593866 PMCID: PMC8484476 DOI: 10.1038/s41598-021-98549-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to evaluate a commercial blend of functional oils based on liquid from the cashew nutshell and castor oil as a growth promoter in newly weaned piglets. A total of 225 piglets, castrated males and females with 28 days of age were randomly distributed in pens with 15 animals composing three treatments and five repetitions. The treatments were: control (without the inclusion of additives), probiotics, or functional oils. The performance was evaluated. At 50 days of age, a pool of fresh feces from 3 animals/repetition was collected to perform the sequencing of microbiota using the Illumina MiSeq platform. Supplementation with functional oils improved the piglets' daily weight gain and feed conversion ratio (P < 0.05) in the first weeks of the experiment, which resulted in higher final live weight (P < 0.05) in the phase when compared to the control treatment (24.34 kg and 21.55 kg, respectively). The animals that received probiotics showed an intermediate performance (23.66 kg final live weight) at the end of the 38 experimental days. Both additives were effective in increasing groups essential for intestinal health, such as Ruminococcaceae and Lachnospiraceae. The functional oils were more effective in reducing pathogenic bacteria, such as Campylobacter and Escherichia coli. In conclusion, the use of functional oils optimized performance and effectively modulated the microbiota of newly weaned piglets.
Collapse
|
16
|
|
17
|
Conway E, Sweeney T, Dowley A, Maher S, Rajauria G, Yadav S, Wilson J, Gabrielli W, O'Doherty JV. The effects of mushroom powder and vitamin D 2 -enriched mushroom powder supplementation on the growth performance and health of newly weaned pigs. J Anim Physiol Anim Nutr (Berl) 2021; 106:517-527. [PMID: 34302391 DOI: 10.1111/jpn.13614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 11/29/2022]
Abstract
A complete randomised block design experiment was conducted to examine the effects of mushroom powder (MP) and vitamin D2 -enriched mushroom powder (MPD2 ) on growth performance, faecal scores, coefficient of apparent total tract digestibility (CATTD) of nutrients and selected microflora in weaned pigs up to day 35 post-weaning. One hundred and ninety-two weaned pigs (7.8kg [SD 1.08kg]) were blocked according to live weight, sex and litter of origin and randomly assigned to the following: (T1) control diet; (T2) control diet +MP; (T3) control diet + MPD2 ; and (T4) control diet +zinc oxide (ZnO) (n = 12 replicates/treatment). Mushroom powders were included at 2 g/kg of feed achieving a β-glucan content of 200ppm. ZnO was included at 3100 mg/kg feed and halved to 1550 mg/kg after 21 days. Vitamin D content was enhanced in MPD2 using synthetic UVB exposure to obtain a vitamin D2 level of 100 µg/kg of feed. Faecal samples were collected on day 14 for microbial and nutrient digestibility analysis. There was no difference (p > 0.05) in ADG, G:F, faecal scores, microbial populations and CATTD of nutrients in pigs supplemented with MP or MPD2 compared with the control diet. The supplementation of MP and MPD2 caused a reduction (p < 0.05) in feed intake compared with the control and ZnO diet throughout the 35-day experimental period. ZnO supplementation increased ADG and ADFI (p < 0.05) during the first period (D0-21) compared with pigs offered MP and MPD2 . In conclusion, MP and MPD2 supplementation resulted in similar ADG, G:F, faecal scores compared with the control but were not comparable to ZnO, mainly due to a reduction in feed intake.
Collapse
Affiliation(s)
- Eadaoin Conway
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Alison Dowley
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Shane Maher
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Gaurav Rajauria
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Supriya Yadav
- Mbio, Monaghan Mushroom Group, Tyholland, Co., Monaghan, Ireland
| | - Jude Wilson
- Mbio, Monaghan Mushroom Group, Tyholland, Co., Monaghan, Ireland
| | | | - John V O'Doherty
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
18
|
Peng P, Deng D, Chen S, Li C, Luo J, Romeo A, Li T, Tang X, Fang R. The Effects of Dietary Porous Zinc Oxide Supplementation on Growth Performance, Inflammatory Cytokines and Tight Junction's Gene Expression in Early-Weaned Piglets. J Nutr Sci Vitaminol (Tokyo) 2021; 66:311-318. [PMID: 32863303 DOI: 10.3177/jnsv.66.311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was conducted to investigate the effect of dietary porous ZnO supplementation on the growth performance, inflammatory cytokines and tight junction's gene expression in weaned piglets. A total of 192 weaned piglets were randomly allocated to 4 experimental groups (n=48/group) and fed, during 14 d, with one of the following dietary treatments: 1) basal diet (NC); 2) basal diet with 3,000 mg/kg of conventional ZnO (PC); 3) basal diet with 750 mg/kg of porous ZnO (low inclusion porous ZnO, LP-ZnO); 4) basal diet with 1,500 mg/kg porous ZnO (high inclusion porous ZnO, HP-ZnO). Results showed that dietary supplementation with regular ZnO or porous ZnO (750 and 1,500 mg/kg) improved average daily gain (ADG), feed to gain ratio (F/G) and jejunum morphology, while decreasing diarrhea incidence. Compared with the NC group, porous ZnO at both doses (750 or 1,500 mg/kg) increased serum alkaline phosphatase (ALP), immunoglobulin G (IgG) and insulin-like growth factor 1 (IGF-1) concentrations, but decreased serum glucose (GLU). Moreover, the mRNA expression of anti-inflammation cytokine (TGF-β), tight junction (Occludin, ZO-1) in the jejunum by different ZnO administration were significantly increased compared with the NC group, while mRNA expression of pro-inflammatory (IL-8), membrane channels that transport water (AQP3) and miR-122a were significantly decreased. It can be concluded that porous ZnO even at low dose (750 mg/kg) can be an effective alternative to pharmacological (3,000 mg/kg) conventional ZnO in reducing diarrhea, promoting the growth performance, increasing anti-inflammatory cytokines and tight junctions, reducing pro-inflammatory cytokines of weaned piglets.
Collapse
Affiliation(s)
- Peng Peng
- College of Animal Science and Technology, Hunan Agriculture University.,Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | - Dun Deng
- Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | - Sijia Chen
- College of Animal Science and Technology, Hunan Agriculture University
| | - Chengliang Li
- College of Animal Science and Technology, Hunan Agriculture University
| | - Jie Luo
- Tangrenshen Group, Liyu Industry Park, National High-tech Development Area
| | | | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production
| | - Xiaopeng Tang
- State Key Laboratory Cultivation for Karst Mountain Ecology Environment of Guizhou Province, School of Karst Science, Guizhou Normal University
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agriculture University
| |
Collapse
|
19
|
Nielsen CL, Kongsted H, Sørensen JT, Krogh MA. Antibiotic and medical zinc oxide usage in Danish conventional and welfare-label pig herds in 2016-2018. Prev Vet Med 2021; 189:105283. [PMID: 33556801 DOI: 10.1016/j.prevetmed.2021.105283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
This register-based study compared the usage of antibiotics and medical zinc oxide (ZnOmed) in three different pig production systems: organic, conventional free-range and conventional indoor in 2016-2018. ZnOmed is used to prevent weaning diarrhoea with a dosage of max 2500 mg zinc/kg feed for 14 days post weaning. The treatment incidence (TI) of antibiotics (injectable and oral) and ZnOmed was calculated as the total number of animal daily doses (ADD) per 100 animals per day at herd level over a calendar year. Zero-inflated negative binomial models were used to compare the antibiotic and ZnOmed usage across the three production systems. The correlation between antibiotic and ZnOmed usage was evaluated using Spearman's correlation coefficient. In all age groups, the antibiotic TI was highest in the conventional indoor system, lower in the conventional free-range system and lowest in the organic system. In weaners, which is the age group with the highest antibiotic usage, conventional indoor, conventional free-range and organic herds had an average TI of 7.20, 3.37 and 0,48 ADD/100 animals/day, respectively. Another important finding in the study was that non-use of antibiotics is more common (>30% of herds) in welfare-label production systems (organic and conventional free-range) than in conventional indoor production (16% of herds). The overall differences in usage of ZnOmed between the three production systems were not statistically significant, but the probability of not using ZnOmed, was significantly higher for organic (36%) and conventional free-range herds (61%) compared to conventional indoor herds (19%). There was a weak to moderate positive correlation between antibiotic and ZnOmed usage at herd level with the weakest correlation in conventional indoor herds (0.31). The results indicate that ZnOmed does not appear to replace or prevent the use of antibiotics and suggest that ZnOmed is used differently in different systems. A weak correlation between the usage of antibiotics and ZnOmed in conventional indoor herds could reflect a frequent use of routine treatments within this system. The lower level of antibiotic usage in welfare-label systems indicates that a significant reduction in antibiotic use in pig production would require housing and management changes or regulatory changes in the conventional indoor system. The large variation in both antibiotic and ZnOmed usage between herds in similar production systems indicates that a further reduction in use of antibiotics and ZnOmed is achievable.
Collapse
Affiliation(s)
| | - Hanne Kongsted
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark.
| | - Jan Tind Sørensen
- Department of Animal Science, Aarhus University, DK-8830, Tjele, Denmark
| | | |
Collapse
|
20
|
Kociova S, Dolezelikova K, Horky P, Skalickova S, Baholet D, Bozdechova L, Vaclavkova E, Belkova J, Nevrkla P, Skladanka J, Do T, Zitka O, Haddad Y, Kopel P, Zurek L, Adam V, Smerkova K. Zinc phosphate-based nanoparticles as alternatives to zinc oxide in diet of weaned piglets. J Anim Sci Biotechnol 2020; 11:59. [PMID: 32528676 PMCID: PMC7282173 DOI: 10.1186/s40104-020-00458-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The high doses of zinc oxide (ZnO) administered orally to piglets for the prevention of diarrhea and increase of growth rate can contaminate pig farms and the surrounding environment. Therefore, there is a need to find a replacement of high doses of dietary ZnO with an equally effective alternative. In the present study, the effect of two formulations of zinc phosphate-based nanoparticles (ZnA and ZnC NPs) on growth performance, intestinal microbiota, antioxidant status, and intestinal and liver morphology was evaluated. A total of 100 weaned piglets were randomly divided into 10 equal groups with the base diet (control) or the base diet supplemented with ZnA, ZnC, or ZnO at concentrations 500, 1000, and 2000 mg Zn per kilogram of diet. Supplements were given to animals for 10 days. Fecal samples were collected on day 0, 5, 10 and 20. At the end of the treatment (day 10), three piglets from each group were sacrificed and analyzed. RESULTS Comparing to that of control, the significantly higher piglet weight gain was observed in all piglet groups fed with ZnA (P < 0.05). Differences in the total aerobic bacteria and coliform counts in piglet feces after NPs supplementation compared to that of control and ZnO groups were also found (P < 0.05). The majority of aerobic culturable bacteria from the feces represented Escherichia (28.57-47.62%), Enterococcus (3.85-35.71%), and Streptococcus (3.70-42.31%) spp. A total of 542 Escherichia coli isolates were screened for the virulence genes STa, STb, Stx2, F4, and F18. The substantial occurrence of E. coli virulence factors was found on day 5, mainly in fimbrillary antigen and thermostable toxins, except for piglets fed by ZnC. Zn treatment decreased Zn blood levels in piglets fed with ZnO and ZnA (500 mg/kg) and increased in ZnC (2000 mg/kg) compared to that of control (P < 0.05). The antioxidant status of piglets was affected only by ZnA. While some changes in the liver and the intestinal morphology of piglets with NPs were observed, none were serious as reflected by the normal health status and increased weigh gain performance. CONCLUSIONS Our results indicate that ZnA NPs have a positive effect on the piglet growth performance even at the lowest concentration. The prevalence of E. coli virulence factors was lowest in pigs supplemented with ZnC. Zinc phosphate-based nanoparticles may be an effective alternative to ZnO.
Collapse
Affiliation(s)
- Silvia Kociova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Daria Baholet
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lucie Bozdechova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Eva Vaclavkova
- Institute of Animal Science, Pratelstvi 815, CZ-104 00 Praha Uhrineves, Czech Republic
| | - Jaroslava Belkova
- Institute of Animal Science, Pratelstvi 815, CZ-104 00 Praha Uhrineves, Czech Republic
| | - Pavel Nevrkla
- Department of Animal Breeding, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Tomas Do
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Center for Zoonoses, University of Veterinary and Pharmaceutical Sciences, Brno, Palackeho 1946/1, CZ-612 42 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Kristyna Smerkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| |
Collapse
|
21
|
Silva Júnior CD, Martins CCS, Dias FTF, Sitanaka NY, Ferracioli LB, Moraes JE, Pizzolante CC, Budiño FEL, Pereira R, Tizioto P, Paula VRC, Coutinho LL, Ruiz US. The use of an alternative feed additive, containing benzoic acid, thymol, eugenol, and piperine, improved growth performance, nutrient and energy digestibility, and gut health in weaned piglets. J Anim Sci 2020; 98:skaa119. [PMID: 32280983 PMCID: PMC7229883 DOI: 10.1093/jas/skaa119] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/09/2020] [Indexed: 02/01/2023] Open
Abstract
This research evaluated a feed additive (benzoic acid, eugenol, thymol, and piperine), associated or not with colistin, in weaned piglets feeding. The parameters evaluated were growth performance, apparent total tract digestibility (ATTD) of nutrients, diarrhea incidence, intestinal morphology, relative weights of digestive organs, microbial diversity, and the percentages of operational taxonomic units of microorganisms in the cecum content of pigs. One-hundred and eight crossbred piglets (5.3 ± 0.5 kg) were used in a three-phase feeding program (21 to 35, 36 to 50, 51 to 65 d of age) and fed a control diet with no inclusion of growth promoter feed additive, a diet with 40 ppm of colistin, a diet with 0.3% of alternative additive, and a diet with 0.3% of alternative additive and 40 ppm of colistin. The diets were based on corn, soybean meal, dairy products, and spray-dried blood plasma and formulated to provide 3.40, 3.38, and 3.20 Mcal of ME/kg and 14.5, 13.3, and 10.9 g/kg of digestible lysine, in phases 1, 2, and 3, respectively. The piglets were housed three per pen, with nine replicates per diet, in a complete randomized block design based on initial BW. The data were submitted to ANOVA and means were separated by Tukey test (5%), using SAS. Pigs fed diets with the alternative feed additive had greater (P < 0.05) ADG (114.3 vs. 91.8 g) and ADFI (190.1 vs. 163.3 g) in phase 1 than pigs fed diets without the product. The alternative additive improved (P < 0.05) ATTD of crude protein (CP) in phase 1 (71.0% vs. 68.6%), gross energy in phases 1 (77.4% vs. 75.2%) and 3 (79.0% vs. 77.1%), and dry matter in phase 3 (79.1% vs. 77.1%). The antibiotic inclusion in the diets increased (P < 0.05) ATTD of CP in phase 1 (71.5% vs. 68.2%). The alternative feed additive tended (P = 0.06) to increase (46%) normal feces frequency, decreased (P < 0.05) goblet cells count (104.3 vs. 118.1) in the jejunum, and decreased (P < 0.05) small intestine (4.60% vs. 4.93%) and colon (1.41% vs. 1.65%) relative weights, compared with pigs not fed with the alternative additive. There was a tendency (P = 0.09) for a lower concentration of Escherichia-Shigella (1.46% vs. 3.5%) and lower (P < 0.05) percentage of Campylobacter (0.52% vs. 10.21%) in the cecum content of piglets fed diets containing essential oils and benzoic acid compared with pigs fed diets without the alternative feed additive. The alternative feed additive was effective in improving growth performance, diets digestibility, and gut health in piglets soon after weaning.
Collapse
Affiliation(s)
- Cláudio D Silva Júnior
- Faculty of Agricultural and Technological Sciences, São Paulo State University, Dracena, SP, Brazil
| | | | | | | | | | - José E Moraes
- Institute of Animal Science and Pastures, Nova Odessa, SP, Brazil
| | | | - Fábio E L Budiño
- Institute of Animal Science and Pastures, Nova Odessa, SP, Brazil
| | - Rafaela Pereira
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Polyana Tizioto
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
- NGS Soluções Genômicas, Piracicaba, SP, Brazil
| | - Vinicius R C Paula
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Luiz L Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Urbano S Ruiz
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
22
|
Lei XJ, Kim IH. Evaluation of coated zinc oxide in young pigs challenged with enterotoxigenic Escherichia coli K88. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Zheng L, Hu Y, He X, Zhao Y, Xu H. Isolation of swine-derived Lactobacillus plantarum and its synergistic antimicrobial and health-promoting properties with ZnO nanoparticles. J Appl Microbiol 2020; 128:1764-1775. [PMID: 32027448 DOI: 10.1111/jam.14605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
AIMS The purpose of this study was to isolate Lactobacillus from gastrointestinal tract of healthy postweaning piglets and investigate its synergistic antimicrobial and probiotic effects with ZnO nanoparticles (nZnO). METHODS AND RESULTS Of the 128 isolates, Lactobacillus plantarum BLPL03 was selected based on its excellent acid and bile salt tolerance properties. Lactobacillus plantarum BLPL03 was sensitive to β-lactams, macrolides, amphenicols and cephalosporins, whereas it displayed the steady resistance to aminoglycosides, tetracyclines, quinolones and peptide antibiotics. In vitro analysis of antibacterial activities showed that L. plantarum BLPL03 inhibited the four common food-borne pathogenic bacteria including Escherichia coli O157:H7 CMCC 44828, Salmonella Typhimurium ATCC 13311, Staphylococcus aureus CMCC 26003 and Listeria monocytogenes CMCC 54007 in synergy with nZnO. Furthermore, the quantitative polymerase chain reaction test demonstrated that the combined administration of L. plantarum BLPL03 fermentation liquor (LFL) and nZnO synergistically elevated the faecal number of Bifidobacterium by 73·19-fold, and reduced the two potential enteropathogenic bacteria Enterobacteriaceae and Clostridium perfringens in mice challenged with Salm. Typhimurium. Finally, dietary supplementation with low dose of nZnO (20 mg kg-1 ) when combined with LFL administration enhanced final body weight, fur appearance and average daily gain, and decreased feed conversion ratio and diarrhoea incidence in weaned piglets. The faecal Bifidobacterium and Lactobacillus of piglets were dramatically enhanced by 81·96- and 3·15-fold, respectively, after administration of a mixture of nZnO and LFL. Meanwhile, combination of nZnO with LFL resulted in low levels of Bacteroides, Enterococcus, and Enterobacteriaceae. CONCLUSIONS A combination of nZnO and LFL exhibits potential health-benefit properties for the control of gut microbial composition by their synergistic antimicrobial and probiotic effects. SIGNIFICANCE AND IMPACT OF THE STUDY This study may provide a potential nutritional strategy to improve performance and gut health of animals with gut microbiota disorders caused by pathogen infections and weanling, and so on.
Collapse
Affiliation(s)
- L Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, People's Republic of China
| | - X He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - Y Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| | - H Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
24
|
Shi H, Upadhaya SD, Kim IH. Comparative effects of low zinc oxide dose with or without probiotics relative to high zinc oxide dose on the performance, nutrient digestibility, blood metabolites, and noxious gases emission in weaned piglets. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2019-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The objective of this study was to assess the effects of low-dose zinc oxide (ZnO) supplemented with or without probiotic complex compared with pharmacological ZnO (3000 mg kg−1) on the performance, digestibility, blood metabolites, fecal Lactobacillus and enterobacteria counts of weaned piglets. One-hundred and twenty crossbred piglets were randomly allocated to three treatments based on their initial body weight (BW). Treatments consisted of corn–soybean-meal-based basal diet supplemented with 3000 mg kg−1 ZnO as positive control (ZH), basal diet supplemented with 300 mg kg−1 ZnO as negative control (ZL), and ZL + 0.1% probiotic complex (ZLP). At the end of the experiment, fecal samples were collected by direct rectal massage to determine nutrient digestibility, Lactobacillus and enterobacteria counts, and gas emission, whereas blood samples were taken via jugular venipuncture for determination of blood metabolites. The BW of piglets at week 6, and the average daily gain (ADG) at week 6 and during overall period were higher (P < 0.05) in pigs fed ZH diet compared with those fed ZL diet. The supplementation of ZLP increased the ADG during week 6 and overall making it comparable with ZH diet (P < 0.05). However, other parameters described above were comparable with ZH in pigs fed ZLP diet.
Collapse
Affiliation(s)
- Huan Shi
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - Santi Devi Upadhaya
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 31116, South Korea
| |
Collapse
|
25
|
Effects of nano zinc oxide as an alternative to pharmacological dose of zinc oxide on growth performance, diarrhea, immune responses, and intestinal microflora profile in weaned piglets. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114312] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
The Membrane Interactions of Nano-Silica and Its Potential Application in Animal Nutrition. Animals (Basel) 2019; 9:ani9121041. [PMID: 31795229 PMCID: PMC6940791 DOI: 10.3390/ani9121041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Silicon dioxide nanostructures, due to good biocompatibility, low toxicity and high synthetic availability, are promising materials for various biological and industrial applications. Interest in using silicon dioxide nanostructures arises not only from their special interactions with cell membranes, but also from an ease in manipulating their particle size, shape and porosity, allowing one to make a material with the desired physicochemical properties. Despite that, there is still little known about the possible use of silicon dioxide and other nanostructures in animal nutrition. The aim of the present paper was to describe the properties of silica nanostructures, demonstrating potential applications and achievable benefits of using nanostructures as a feed additive. Based on the literature, it seems that diet supplementation with nanoparticles leads to improved performance and immunity in animals, which might be, at least partially, related to changes in the composition of gut microbiota. These unique features make nanoparticles interesting candidates as feed additives used in animal nutrition. Abstract Nanoparticles are increasingly popular in numerous fields including electronics, optics and medicine (vaccines, tissue engineering, microsurgery, genomics and cancer therapies). The most widely used nanoparticles in biomedical applications are those designed by man. Scientists have obtained many types of silica nanoparticles with defined shape and chemical composition, but different properties and applications. Nanoparticles include particles with at least one dimension ranging from 1–100 nm. Silica nanoparticles (Sn), reaching values from several dozen to several hundred m2/g, have unique physicochemical properties due to their porous structure and well-developed specific surface. Currently, the use of Sn in animal nutrition, with a focus on gastrointestinal tract function, is of great interest.
Collapse
|
27
|
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10:57. [PMID: 31321032 PMCID: PMC6615095 DOI: 10.1186/s40104-019-0368-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal's body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor’ Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
28
|
Peng P, Chen J, Yao K, Yin Y, Long L, Fang R. The effects of dietary supplementation with porous zinc oxide on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. Anim Sci J 2019; 90:1220-1228. [PMID: 31273888 DOI: 10.1111/asj.13228] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 11/27/2022]
Abstract
The objective of this experiment was to evaluate the effects of dietary supplementation with porous zinc oxide (HiZox) on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. A total of 128 weaned piglets [(Landrace × Yorkshire) × Duroc] with an average body weight (BW) of (6.55 ± 0.25 kg; 21 d of age) were randomly assigned to four dietary treatments: (1) a corn-soybean basal diet; (2) basal diet + 3,000 mg/kg conventional ZnO; (3) basal diet + 200 mg/kg HiZox; (4) basal diet + 500 mg/kg HiZox. The experiments lasted for 28 days. Incremental HiZox in the diet increased ADG (linear p = 0.015; quadratic p = 0.043) and ADFI (linear p = 0.027; quadratic p = 0.038), and the diarrhea index decreased linearly and quadratically (p < 0.01) as HiZox supplemented increased. Furthermore, supplementation with HiZox increased the amounts of Lactobacillus spp. (p < 0.05) in the ileum and cecum in comparison with that of control treatment or 3,000 mg/kg ZnO treatment, while decreased the populations of Escherichia coli, Clostridium coccoides, and Clostridium. leptum subgroup (p < 0.05) in the ileum and cecum relative to those in control treatment. The addition of HiZox increased the villus height and villus-to-crypt ratio (VC) of duodenum, jejunum, and ileum (p < 0.05), while decreased the crypt depth of jejunum (p < 0.05) and tended to reduce the crypt depth of duodenum (p < 0.10) compared with the control treatment. Piglets fed with 500 mg/kg HiZox had lower serum D-lactate and diamine oxidase (DAO) than those fed with basal control diet or 3,000 mg/kg ZnO diet (p < 0.01). The results suggested that supplementation with HiZox modulated intestinal microbial composition and improved intestinal morphology, which may exert protective effects on the integrity of the mucosal barrier function of weaned piglets, was as efficacious as pharmaceutical doses of ZnO in enhancing growth performance, indicating that the HiZox may be a promising alternative to pharmaceutical doses of ZnO.
Collapse
Affiliation(s)
- Peng Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiashun Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Lina Long
- College of Life Science and Engineering, Foshan University, Foshan Guangdong, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
29
|
Bai MM, Liu HN, Xu K, Wen CY, Yu R, Deng JP, Yin YL. Use of coated nano zinc oxide as an additive to improve the zinc excretion and intestinal morphology of growing pigs1. J Anim Sci 2019; 97:1772-1783. [PMID: 30943291 DOI: 10.1093/jas/skz065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Two experiments were designed to explore the effects of coated zinc (Zn) oxide nanoparticles (NZO) on the diarrhea ratio, antioxidant capacity, intestinal morphology, and zinc excretion in growing pigs. In Exp.1, 270 growing pigs (21.88 ± 0.8 kg initial BW) were allocated to three treatments, each for 30 d: (i) control group (CG), basal diet containing Zn-free premix + 100 mg Zn/kg from ZnSO4; (ii) high Zn (HZN), basal diet containing Zn-free premix + 2,250 mg Zn/kg from ZnO; (iii) coated nano ZnO (CNZO), basal diet containing Zn-free premix + 100 mg Zn/kg from coated NZO. In Exp.2, 21 crossbred growing pigs (17.04 ± 0.01 kg initial BW) were allocated to three treatments, each for 28 d: (i) HZN, basal diet containing Zn-free premix + 2,250 mg Zn/kg from ZnO; (ii) low concentration of nano ZnO (LNZO), basal diet containing Zn-free premix + 100 mg Zn/kg from 5% coated NZO material; (iii) high concentration of nano ZnO (HNZO), basal diet containing Zn-free premix + 100 mg Zn/kg from 10% coated NZO material. In Exp. 1, compared with the CG diet, CNZO significantly reduced the diarrhea rate (P < 0.05) and increased the activities of glutathione peroxidase and superoxide dismutase (P < 0.05). Compared with HZN, CNZO decreased the activities of serum alanine aminotransferase, and alkaline phosphatase, as well as the fecal zinc concentration (P < 0.05). In Exp. 2, pigs fed LNZO or HNZO had an increased final BW, average daily weigh and diarrhea rate, and a decreased level of Zn in the plasma, liver, and feces on day 14 compared with the HZN group (P < 0.05). The villous height and villous height/crypt depth ratio of duodenum were higher (P < 0.05) in the HZN group than the HNZO group, whereas the higher villous height of jejunum was observed in the LNZO group compared with that in the HNZO group (P < 0.05). We found that CNZO (100 mg/kg Zn) could improve the antioxidant capacity and reduce fecal Zn emission. However, the diarrhea rate was not effectively suppressed when compared with the HNZO supplementation. Furthermore, coated NZO material of 5% concentration is more effective in improving the morphology of intestinal villus.
Collapse
Affiliation(s)
- Miaomiao M Bai
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongnan N Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, P.R. China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, P.R. China
| | - Chaoyue Y Wen
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Rong Yu
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Jingping P Deng
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yu L Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process; National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production; Key Laboratory of Agro-ecological Processes in Subtropical Region; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.,College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China.,Hunan Co-Innovation Center of Safety Animal Production, CICSAP, Changsha, Hunan, P.R. China
| |
Collapse
|
30
|
Ruddaraju LK, Pammi SVN, Pallela PNVK, Padavala VS, Kolapalli VRM. Antibiotic potentiation and anti-cancer competence through bio-mediated ZnO nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109756. [PMID: 31349415 DOI: 10.1016/j.msec.2019.109756] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 12/30/2022]
Abstract
Zinc Oxide (ZnO) is currently used in nano-cosmeceuticals and nano-pharmaceuticals topically due to their multifunctional efficiency irrespective of the synthetic method. Bio-reducers are cosmopolitically famed to attain stable, reliable, and toxic free synthesis. Thus, the objective of the current study is to prepare ZnO NPs in a greener approach using Annona squamosa (AS) leaf extract and to evaluate their antibiotic potentiation capacity and anticancer activity. The novel synthetic process of ZnO NPs was performed without using any chemicals (reducing or stabilizing agents) or high temperature processing under continuous stirring and refluxion in the presence of oxygen environment. AS have renowned phytochemicals with medicinal properties. Therefore, the mounting of secondary metabolites onto ZnO NPs during synthesis as reducing, stabilizing, capping agents may impart additional biomedical efficacy. The ZnO NPs were prepared with the assessment of stabilization (characteristic peak at 375 nm) from absorbance spectra. Further, SEM, TEM, XRD, FTIR, and Raman analysis of AS-ZnO NPs were performed to elucidate the size, shape, nature, chemical structure and composition. The characterization techniques revealed particles of 20-50 nm size, hexagonal shaped crystalline structure with diverse phytochemicals and functional groups. In addition, AS-ZnO NPs were investigated for antibacterial activity along with antibiotic potentiating capability through combinational assay. Furthermore, the anticancer potential of AS-ZnO NPs was evaluated against HeLa cell line along with assessment of biocompatibility on HEK-293 cell line using MTT assay. Based on the findings, our study exploits green-synthesized ZnO NPs as an effective strategy for potentiation of antibiotic activity and anticancer activity in a biocompatible perspective.
Collapse
Affiliation(s)
- Lakshmi Kalyani Ruddaraju
- Dept. of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram 534202, Andhra Pradesh, India
| | - S V N Pammi
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| | | | - Veerabhadra Swamy Padavala
- Dept. of Pharmaceutics, Shri Vishnu College of Pharmacy, Vishnupur, Bhimavaram 534202, Andhra Pradesh, India.
| | | |
Collapse
|
31
|
Zhang G, Xia T, Zhao J, Liu L, He P, Zhang S, Zhang L. Moderate tetrabasic zinc chloride supplementation improves growth performance and reduces diarrhea incidence in weaned pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:264-276. [PMID: 31208189 PMCID: PMC6946966 DOI: 10.5713/ajas.18.0914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 11/27/2022]
Abstract
Objective Two experiments were conducted to evaluate tetrabasic zinc chloride (TBZC) on the health of weaned pigs, and to determine the optimal supplemental concentrations and whether dietary TBZC could replace the pharmacological concentrations of dietary zinc oxide (ZnO) to improve growth performance and decrease Zn excretion in weaned pigs. Methods In Exp. 1, 180 weaned pigs (8.92 ± 1.05 kg BW) were randomly assigned to 1 of 5 treatments, including the basal diet containing 125 mg/kg zinc sulfate (ZnSO4), and the basal diet with 1,200, 1,800, 2,400, or 3,000 mg/kg TBZC supplementation. In Exp. 2, 240 weaned pigs (7.66 ± 1.09 kg BW) were randomly assigned to 1 of 5 treatments, including a negative control diet without Zn supplementation (NC), a positive control diet (2,250 mg/kg ZnO), and 3 experimental diets with different concentrations of TBZC supplementation (1,000, 1,250 and 1,500 mg/kg). Results In Exp. 1, the average daily gain (ADG), feed efficiency (G:F) and diarrhea incidence responded quadratically (p<0.01) as the TBZC supplemental concentrations increased, and pigs fed 1,200 and 1,800 mg/kg TBZC showed the best growth performance. Moreover, 1,800 mg/kg TBZC supplementation showed the greatest (p<0.01) total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) activities in liver of pigs. Histopathological examination revealed lesions in heart, liver, lung and kidney, and mild or severe histological lesions mainly occurred with the supplementation of 2,400 and 3,000 mg/kg TBZC. In Exp. 2, 1,000 and 1,250 mg/kg TBZC supplementation in diets significantly (p<0.01) increased ADG and G:F of weaned pigs, reduced Zn excretion in feces, and had no effect on diarrhea-reducing compared to 2,250 mg/kg ZnO supplementation. Conclusion TBZC is a potential alternative to ZnO. The recommended concentration of TBZC in weaned pig diets is 1,000 to 1,250 mg/kg.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Tian Xia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Ling Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Pingli He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Liying Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Abstract
Abstract
The use of metal nanoparticles as supplements of animal diets does not always bring unambiguous results. There are many reports in the literature about the multifaceted effects of this type of supplementation on the animal organism. Therefore, the aim of the paper is to present the current knowledge of the possible application of nanometal forms in animal nutrition and its potential benefits and threats. The positive effect of nanoparticles used as feed additives has most frequently been reflected in an increase in body weight, higher average daily gain, or improvement of the FCR value. In some cases, however, the effect of nanoparticle addition to diets was indiscernible. The potent antibacterial activity of nanoparticles, especially against Gram-negative bacteria and Gram-positive bacteria, is regarded as a positive effect. In turn, the probability of their toxicity is a potential risk in application thereof. Supplementation of diets with nanometals has been accompanied by pathological changes in animal tissues, primarily in the pancreas, kidney, liver, rumen, abomasum, small intestine, adrenal glands, and brain. Additionally, at the the cellular level, nanoparticles were found to induce toxicity, inflammatory excitation, and cell death. Oral administration of nanoparticles induced a risk of malfunction of the nervous system and even impairment of cognitive processes in animals. The increasing knowledge of the possible toxic effects of nanoparticles on the animal organism suggests caution in their use in animal production and necessitates further precise investigations in this area.
Collapse
|
33
|
Lei XJ, Kim IH. Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Silver and zinc nanoparticles in animal nutrition – a review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas2018-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The use of metal nanoparticles as supplements of animal diets does not always bring unambiguous results. There are many reports in the literature about the multifaceted effects of this type of supplementation on the animal organism. Therefore, the aim of the paper is to present the current knowledge of the possible application of nanometal forms in animal nutrition and its potential benefits and threats. The positive effect of nanoparticles used as feed additives has most frequently been reflected in an increase in body weight, higher average daily gain, or improvement of the FCR value. In some cases, however, the effect of nanoparticle addition to diets was indiscernible. The potent antibacterial activity of nanoparticles, especially against Gram-negative bacteria and Gram-positive bacteria, is regarded as a positive effect. In turn, the probability of their toxicity is a potential risk in application thereof. Supplementation of diets with nanometals has been accompanied by pathological changes in animal tissues, primarily in the pancreas, kidney, liver, rumen, abomasum, small intestine, adrenal glands, and brain. Additionally, at the the cellular level, nanoparticles were found to induce toxicity, inflammatory excitation, and cell death. Oral administration of nanoparticles induced a risk of malfunction of the nervous system and even impairment of cognitive processes in animals. The increasing knowledge of the possible toxic effects of nanoparticles on the animal organism suggests caution in their use in animal production and necessitates further precise investigations in this area.
Collapse
|
35
|
Hassan YI, Lahaye L, Gong MM, Peng J, Gong J, Liu S, Gay CG, Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet Res 2018; 49:71. [PMID: 30060767 PMCID: PMC6066918 DOI: 10.1186/s13567-018-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | | | - Max M. Gong
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Jian Peng
- College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Cyril G. Gay
- Office of National Programs, Animal Production and Protection, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
36
|
Use of protected zinc oxide in lower doses in weaned pigs in substitution for the conventional high dose zinc oxide. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Wang J, Wang A, Wang WX. Evaluation of nano-ZnOs as a novel Zn source for marine fish: importance of digestive physiology. Nanotoxicology 2017; 11:1026-1039. [PMID: 29050525 DOI: 10.1080/17435390.2017.1388865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Waterborne nanotoxicology of zinc oxide nanoparticles (nano-ZnOs) has been extensively studied over the past decade, whereas their potential dietary toxicity and applications were seldom investigated. In the present study, we systematically investigated both short-term bioavailability and chronic effects of nano-ZnOs to two marine fish (marine medaka Oryzias melastigma and red drum Sciaenops ocellatus). At normal supplementary level (80 mg Zn/kg), red drum (with a stomach) had similar assimilation efficiencies of nano-ZnOs and ZnCl2. Correspondingly, in vitro digestion experiments showed the continuous dissolution of nano-ZnOs in acid environment. In contrast, nano-ZnOs were more bioavailable than ZnCl2 to medaka (stomach-less) at 80 mg Zn/kg supplementary level. There results were further validated by using bulk-ZnOs. Chronic dietary exposure to nano-ZnOs (80 mg/kg) significantly enhanced the antioxidative defenses in medaka, with no negative effect on fish growth. Beneficial effects disappeared in the high dietary nano-ZnOs (300 mg/kg) treatment. For the first time, we provided direct evidence that nano-ZnOs was more bioavailable than ZnCl2 and bulk-ZnOs to stomach-less fish at normal dietary Zn inclusion level (<80 mg/kg), with potential benefits on antioxidative defenses. It is also necessary to pay attention to the dietary nano-ZnOs toxicity on stomach-less fish due to the presence of real 'nano-effects.'
Collapse
Affiliation(s)
- Jian Wang
- a Division of Life Science , Hong Kong University of Science and Technology (HKUST) , Kowloon , Hong Kong
| | - Aili Wang
- a Division of Life Science , Hong Kong University of Science and Technology (HKUST) , Kowloon , Hong Kong.,b Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen , China
| | - Wen-Xiong Wang
- a Division of Life Science , Hong Kong University of Science and Technology (HKUST) , Kowloon , Hong Kong.,b Marine Environmental Laboratory , HKUST Shenzhen Research Institute , Shenzhen , China
| |
Collapse
|