1
|
Fan Y, Zhu J, Ni Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Effect of Monascus-fermented Moringa oleifera on production performance, carcass characteristics, and meat quality attributes in broilers. Poult Sci 2024; 103:104306. [PMID: 39303353 PMCID: PMC11437757 DOI: 10.1016/j.psj.2024.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
This study investigated the production performance, carcass characteristics, and meat quality attributes of broilers fed with different doses of Monascus-fermented Moringa oleifera leaves. A total of 400 one-day-old unsexed Greenleg partridge broilers were randomly divided into 4 dietary which were fed a basal diet supplemented with 0, 5% Monascus-fermented Moringa oleifera leaves, 10% Monascus-fermented Moringa oleifera leaves, and 10% Moringa oleifera leaves, respectively. Each group had 5 replicates of twenty birds each. The whole trial lasted for 63 d. The results indicated that a high dose of Moringa oleifera leaves supplement in broiler diet reduced the production performance, carcass characteristics, and meat quality attributes (P < 0.05). While the addition of the same dose of Monascus-fermented Moringa oleifera leaves reversed this adverse effect, and the 5% Monascus-fermented Moringa oleifer leaves supplement was found to be more effective (P < 0.05). In addition, Monascus-fermented Moringa oleifera leaves improved the concentration of amino acids and polyunsaturated fatty acids in the meat, which could be beneficial for human health. We conclude that, a 5% Monascus-fermented Moringa oleifera leaves supplement in the diet is beneficial in terms of improved growth performance and the functional attributes of meat than sole Moringa oleifera leaves supplement.
Collapse
Affiliation(s)
- Yaotian Fan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuechun Ni
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Mandouh MI, Shaheed IB, Bionaz M, Elolimy AA, Mansour HA, Mohamed SA, El-Attrouny MM, Farid OAA, Mousa MR, Abdelatty AM. Dietary hydrolyzed soya lecithin affects feed intake, abundance of bacteria in the caecum, fatty acid composition and area of adipocytes in pre-mating primiparous V-line female rabbit. J Anim Physiol Anim Nutr (Berl) 2024; 108:557-565. [PMID: 38091274 DOI: 10.1111/jpn.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/08/2023] [Accepted: 11/18/2023] [Indexed: 05/08/2024]
Abstract
This study aimed at investigating the effect of hydrolyzed soya lecithin; also called lysolecithin or lysophosphatidylcholine, on growth performance, caecal microbiota and fat depots in pre-breeding primiparous rabbits does. For this, 60 V-Line primiparous rabbits does (5-6 months) were used in a 30-day experiment. Does were allotted into three iso-nitrogenous iso-caloric dietary treatments (n = 20/group) as follows: (1) CON received 0% soya lecithin, (2) LECL group was fed a basal diet supplemented with 0.5% soya lecithin and (3) LECH group was fed a basal diet supplemented with 1% soya lecithin. Growth performance indices were measured, caecum samples were collected for measurement of specific bacteria via qPCR, and several fat depots including periovarian fat were sampled for adipocyte morphometry and fatty acid profiling. Statistical analysis was performed using GLM procedures of SAS v9.4. Soya lecithin increased feed intake (p < 0.05). The abundance of caecal Bifidobacteria species, Ruminococcus species and phylum Butryvibrio-specific genes increased (p < 0.05) in rabbits receiving soya lecithin in their diet, soya lecithin increased the level of polyunsaturated fatty acids in subcutaneous and perirenal fat (p < 0.05) and increased the level of monounsaturated fatty acids in periovarian fat (p < 0.05); additionally, the adipocyte area increased in periovarian and perirenal fat (p < 0.05). In conclusion, soya lecithin at a dose of 0.5% increased feed intake and energy storage in adipocytes and improved the fatty acid profile of periovarian fat.
Collapse
Affiliation(s)
- M I Mandouh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - I B Shaheed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - M Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, USA
| | - A A Elolimy
- Animal Production Department, National Research Centre, Giza, Egypt
| | - H A Mansour
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shereen A Mohamed
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Qalyubia, Egypt
| | - Mahmoud M El-Attrouny
- Department of Animal Production, Faculty of Agriculture at Moshtohor, Benha University, Qalyubia, Egypt
| | - O A A Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - M R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - A M Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Modulation of Immunity, Antioxidant Status, Performance, Blood Hematology, and Intestinal Histomorphometry in Response to Dietary Inclusion of Origanum majorana in Domestic Pigeons’ Diet. Life (Basel) 2023; 13:life13030664. [PMID: 36983819 PMCID: PMC10051733 DOI: 10.3390/life13030664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
This experiment was conducted to evaluate the effect of adding Origanum majorana (OM) powder to domestic pigeon diets on growth performance, feeding and drinking behaviour, blood hematology, blood biochemical parameters, blood inflammatory and oxidative markers, carcass characteristics, the weights of lymphoid organs, and and intestinal cecal, and bursa of Fabricius histology. A random distribution of fifty-four unsexed pigeon squabs (30 days old, average body weight; 321 g ± 7.5) into three groups was done. The first group was fed the grower basal diet without adding OM powder, while OM powder was added at levels of 0.5 and 1% to the basal diets of the second and third groups, respectively. The changes in growth performance parameters and feeding and drinking behavior under OM powder’s effect were insignificant. However, the lymphoid organs (spleen and thymus) significantly increased in weight (p < 0.05) in the OM-fed groups. Moreover, blood examination showed positive responses to OM powder in terms of blood cell counts (RBCs andWBCs), and the values of hemoglobin, hematocrit, mean corpuscular volume, lymphocyte numbers, levels of globulin, and glutathione peroxidase enzyme were significantly increased. The numbers of heterophils, the ratio of heterophil to lymphocyte, malondialdehyde levels were reduced (p < 0.05). Histomorphometry examination revealed increases in intestinal villi height, cecal thickness, and bursal follicle area and number. These results indicated that adding OM powder to the pigeon diet may improve their immunity, increase their antioxidant status, and correct some hematological disorders.
Collapse
|
4
|
Elokil AA, Chen W, Mahrose K, Elattrouny MM, Abouelezz KFM, Ahmad HI, Liu HZ, Elolimy AA, Mandouh MI, Abdelatty AM, Li S. Early life microbiota transplantation from highly feed-efficient broiler improved weight gain by reshaping the gut microbiota in laying chicken. Front Microbiol 2022; 13:1022783. [PMID: 36466637 PMCID: PMC9715608 DOI: 10.3389/fmicb.2022.1022783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Starting phase of laying chicken life is the building stone for rearing and production stages. Since, fecal microbial transplantation (FMT) regulates the gut microbial diversity and affects the productive performance of the bird. The aim of this study is to evaluate the effect of FMT from feed-efficient broiler chicken could program the diversity of gut microbiota and growth of recipient native slow growing egg-laying chicks. For this, a total of 150 (one-day-old) Jing Hong chicks were randomly assigned into two groups, each group consisted of 5 replicates (n = 15 bird/ replicate). The control group (CON) and FMT recipient birds (FMT) fed on basal diet, the FMT group received an oral daily dose of FMT prepared from Cobb-500 chickens. The FMT performed from the 1d to 28d of age, through the experimental period, feed intake and body weight were recorded weekly. At the end of a 28-day trial, carcass traits were assessed and cecal samples were collected for microbiome assessment via 16S rRNA-based metagenomic analysis to characterize the diversity and functions of microbial communities. The data were statistically analyzed using R software. Body weight and body weight gain increased, and FCR decreased (p = 0.01) in FMT group. The relative abundance of Firmicutes and the Firmicutes/Bacteroidetes (F/B) ratio were increased due to FMT administration (p = 0.01). A higher relative abundance of Lactobacillus, Lactococcus, and Bifidobacterium were presented in the FMT group. Meanwhile, Enterococcus, Helicobacter, and Bacteroides were more abundant in the CON group (p < 0.01). Kyoto encyclopedia of genes and genomes (KEGG) pathways for microbial functions regarding amino acid metabolism, secondary metabolites biosynthesis, carbohydrate metabolism, energy metabolism, and enzyme families, cofactors, and vitamins were significantly annotated in the FMT group. Overall, FMT administration from the donor of highly feed-efficient broilers improved weight gain by reshaping a distinct gut microbiome, which may be related to the metabolism and health in the recipients laying chicks, providing new insight on the application of the FMT technique for early life programming of laying chickens.
Collapse
Affiliation(s)
- Abdelmotaleb A. Elokil
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Animal Production Department, Faculty of Agriculture, Moshtohor, Benha University, Mushthar, Egypt
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Key Laboratory of Poultry Genetics and Breeding, Ministry of Agriculture, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Khalid Mahrose
- Animal and Poultry Production Department, Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Mahmoud M. Elattrouny
- Animal Production Department, Faculty of Agriculture, Moshtohor, Benha University, Mushthar, Egypt
| | - Khaled F. M. Abouelezz
- Department of Poultry Production, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Hafiz Ishfaq Ahmad
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hua-Zhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ahmed A. Elolimy
- Department of Animal Production, National Research Centre, Giza, Egypt
| | - Mahmoud I. Mandouh
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Bioprospecting for Novel Probiotic Strains from Human Milk and Infants: Molecular, Biochemical, and Ultrastructural Evidence. BIOLOGY 2022; 11:biology11101405. [PMID: 36290309 PMCID: PMC9598434 DOI: 10.3390/biology11101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Demographic, genetic factors, and maternal lifestyle could modify and alter the microbial diversity of human milk and infants’ gut. We screened human breast milk and infant stool samples from Egyptian sources for possible novel probiotic strains. Forty-one isolates were submitted to the gene bank database, classified, and identified through physiological and biochemical tests. All samples revealed antibiotic resistance, antibacterial activity, and high probiotic features. Six of the isolates revealed less than 95% Average Nucleotide Identity with deposited sequences in the database. Isolate Lactobacillus delbrueckii ASO 100 exhibited the lowest identity ratio with promising probiotic and antibacterial features, enlightening the high probability of being a new probiotic species. Abstract Human milk comprises a diverse array of microbial communities with health-promoting effects, including colonization and development of the infant’s gut. In this study, we characterized the bacterial communities in the Egyptian mother–infant pairs during the first year of life under normal breastfeeding conditions. Out of one hundred isolates, forty-one were chosen for their potential probiotic properties. The selected isolates were profiled in terms of morphological and biochemical properties. The taxonomic evidence of these isolates was investigated based on 16S rRNA gene sequence and phylogenetic trees between the isolates’ sequence and the nearest sequences in the database. The taxonomic and biochemical evidence displayed that the isolates were encompassed in three genera: Lactobacillus, Enterococcus, and Lactococcus. The Lactobacillus was the most common genus in human milk and feces samples with a high incidence of its different species (Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Lactobacillus gasseri, and Lacticaseibacillus casei). Interestingly, BlastN and Jalview alignment results evidenced a low identity ratio of six isolates (less than 95%) with database sequences. This divergence was supported by the unique physiological, biochemical, and probiotic features of these isolates. The isolate L. delbrueckii, ASO 100 exhibited the lowest identity ratio with brilliant probiotic and antibacterial features suggesting the high probability of being a new species. Nine isolates were chosen and subjected to probiotic tests and ultrastructural analysis; these isolates exhibited antibiotic resistance and antibacterial activity with high probiotic characteristics, and high potentiality to be used as prophylactic and therapeutic agents in controlling intestinal pathogens.
Collapse
|
6
|
Chen B, Li D, Leng D, Kui H, Bai X, Wang T. Gut microbiota and meat quality. Front Microbiol 2022; 13:951726. [PMID: 36081790 PMCID: PMC9445620 DOI: 10.3389/fmicb.2022.951726] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sustainable meat production is important to providing safe and quality protein sources for humans worldwide. Intensive artificial selection and high energy input into the diet of many commercial animals for the last decade has significantly increased the daily gain of body weight and shortened the raising period, but unexpectedly decreased the meat quality. The gastrointestinal tract of animals harbors a diverse and complex microbial community that plays a vital role in the digestion and absorption of nutrients, immune system development, pathogen exclusion, and meat quality. Fatty acid composition and oxidative stress in adipose and muscle tissue influences meat quality in livestock and poultry. Recent studies showed that nutraceuticals are receiving increased attention, which could alter the intestinal microbiota and regulate the fat deposition and immunity of hosts to improve their meat quality. Understanding the microbiota composition, the functions of key bacteria, and the host-microbiota interaction is crucial for the development of knowledge-based strategies to improve both animal meat quality and host health. This paper reviews the microorganisms that affect the meat quality of livestock and poultry. A greater understanding of microbial changes that accompany beneficial dietary changes will lead to novel strategies to improve livestock and poultry meat product quality.
Collapse
Affiliation(s)
- Binlong Chen
- College of Animal Science, Xichang University, Xichang, China
| | - Diyan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- *Correspondence: Diyan Li,
| | - Dong Leng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hua Kui
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xue Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tao Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
- Tao Wang,
| |
Collapse
|
7
|
Chitosan and Nano-Chitosan for Management of Harpophora maydis: Approaches for Investigating Antifungal Activity, Pathogenicity, Maize-Resistant Lines, and Molecular Diagnosis of Plant Infection. J Fungi (Basel) 2022; 8:jof8050509. [PMID: 35628764 PMCID: PMC9144709 DOI: 10.3390/jof8050509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid spread of late wilt disease among maize cultivations has resulted in serious economic losses in many countries. Harpophora maydis is the main cause of this destructive vascular disease. Here we evaluate the fungicidal activity of chitosan and nano-chitosan against six aggressive isolates of H. maydis collected from different Egyptian governorates. Pathogenicity tests for these isolates show that the highest disease severity was found for the Giza isolate. The isolates were tested for their response to the fungicide Permis, chitosan, and nano-chitosan treatments in vitro and in vivo. Nano-chitosan treatments fully inhibited the radial growth of H. maydis isolates at concentrations of 5 and 10 mM, compared to the full control growth (9 cm in diameter). On the other hand, in vitro, in vivo, and molecular diagnosis results showed high antifungal activity of chitosan and nano-chitosan compared to the Permis fungicide. Chitosan at the nano and normal scales proved a potent ability to enhance plant resistance in response to H. maydis. Disease severity (DS%) was extremely decreased among the tested cultivars by using nano-chitosan; the highest percentage was obtained on Giza 178 cv, where the DS% was 21.7% compared to 42.3% for the control. Meanwhile, the lowest percentage was obtained on Giza 180 cv with DS% 31.2 and the control with 41.3%. The plants treated with nano-chitosan showed the highest growth parameters for all cultivars. Such natural treatments could reduce the impact on the environment as they are non-pollutant natural compounds, protect the plants by reducing fungal activity, and induce plant resistance.
Collapse
|
8
|
Riaz A, Khan MS, Saeed M, Kamboh AA, Khan RU, Farooq Z, Imran S, Farid MU. Importance of Azolla plant in poultry production. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2054752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asim Riaz
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Sajjad Khan
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Asghar Ali Kamboh
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Zahid Farooq
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Safdar Imran
- Institute of Dairy Science, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Usman Farid
- Department of Structures and Environmental Engineering, University of Agriculture, Peshawar, Faisalabad
| |
Collapse
|
9
|
Ashry NM, Alaidaroos BA, Mohamed SA, Badr OAM, El-Saadony MT, Esmael A. Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi J Biol Sci 2022; 29:1760-1769. [PMID: 35280578 PMCID: PMC8913418 DOI: 10.1016/j.sjbs.2021.10.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Drought stress adversely affects plant health and productivity. Recently, drought-resistant bacterial isolates are used to combat drought resistance in crops. In this in vitro study, 20 bacterial isolates were isolated from harsh soil; their drought tolerance was evaluated using four concentrations of polyethylene glycol (PEG) 6000. The two most efficient isolates (DS4 and DS9) were selected and identified using 16S rRNA genetic sequencing. They were registered in the NCBI database and deposited under accession numbers MW916285 and MW916307 for Bacillus cereus (DS4) and Bacillus albus (DS9), respectively. These isolates were screened for plant growth-promoting properties compared to non-stressed conditions. Biochemical parameters; Proline, salicylic acid, gibberellic acid (GA), indole acetic acid (IAA), antioxidant activity, and antioxidant enzymes were measured under the same conditions, and in vitro seed germination was tested under stress conditions and inoculation with selected isolates. The results showed that under the harsh conditions of PEG6000, DS4 produced the highest amount of IAA of 1.61 µg/ml, followed by DS9 with 0.9 µg/ml. The highest amount of GA (49.95 µg/ml) was produced by DS9. On the other hand, the highest amount of siderophore was produced from DS4 isolate followed by DS9. Additionally, DS4 isolate recorded the highest exopolysaccharide (EPS) content of 3.4 mg/ml under PEG (-1.2 MPa) followed by DS9. The antioxidant activity increased in PEG concentrations depending manner, and the activity of the antioxidant enzymes increased, as catalase (CAT) recorded the highest activity in DS4 with an amount of 1.095 mg/ml. additionally, an increase in biofilm formation was observed under drought conditions. The isolated mixture protected the plant from the harmful effects of drought and showed an increase in the measured variables. Under unstressed conditions, the highest rates of emulsification index (EI 24%) were obtained for DS4 and DS9, at 14.92 and 11.54, respectively, and decreased under stress. The highest values of germination, total seedling length, and vigor index were obtained upon inoculation with the combination of two strains, and were 100%, 4.10 cm, and 410, respectively. Therefore, two strains combination is an effective vaccine capable of developing and improving drought tolerance in dryland plants.
Collapse
Affiliation(s)
- Noha M Ashry
- Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Qalubia 13736, Egypt
| | - Bothaina A Alaidaroos
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Shereen A Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, 13511, Egypt
| |
Collapse
|
10
|
Eissa AE, Yusuf MS, Younis NA, Fekry M, Dessouki AA, Ismail GA, Ford H, Abdelatty AM. Effect of poultry offal silage with or without betaine supplementation on growth performance, intestinal morphometry, spleen histomorphology of Nile tilapia (Oreochromis niloticus) fingerlings. J Anim Physiol Anim Nutr (Berl) 2021; 106:1189-1195. [PMID: 34713529 DOI: 10.1111/jpn.13655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 01/05/2023]
Abstract
Fishmeal (FM) is the main protein source in fish feed. However, it is quite expensive due to its limited resources. Therefore, finding a dietary alternative to the FM to sustain fish production is crucial, and the current study was performed to assess the impact of poultry offal silage (POS) with or without betaine supplementation; as an effective and cheaper alternative to FM; on feed efficiency, growth performance, spleen morphology and intestinal morphometry of Nile tilapia (Oreochromis niloticus) fingerlings. Four dietary treatments were formulated: (1) FM based diet, (2) FM-B; FM diet +0.7% betaine, (3) POS diet and (4) POS-B; POS diet +0.7% betaine. Each dietary treatment consisted of three replicates (n = 10/replicate), and the experiment was continued for 16 weeks. By the end of the experiment, spleen and intestine specimens were collected from 15 fish (n = 5/replicate) for histopathological assessment. The results were statistically analysed using GLM procedures of SAS 9.4. Feed efficiency increased in both POS-B and FM-B groups (p = 0.01), while body weight and body weight gain showed only weak tendencies towards an increase (p = 0.10 and 0.12, respectively). The villi length was the highest in POS-B fed group (p < 0.01). In addition, melanomacrophage centres of the spleen increased in both betaine-supplemented groups (p < 0.01). From our findings, we conclude that betaine supplementation with poultry offal silage improved production performance and immune status of Nile tilapia fish.
Collapse
Affiliation(s)
- Alaa Eldin Eissa
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed S Yusuf
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Nehal A Younis
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Fekry
- Fish Farming and Technology Institute, Suez Canal University, Ismailia, Egypt
| | - Amina A Dessouki
- Pathology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gehad A Ismail
- Agriculture Research Centre, Animal Health Research Institute, Fish Diseases Research Department, Doki, Egypt
| | - H Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
| | - Alzahraa M Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Ebrahim N, Badr OAM, Yousef MM, Hassouna A, Sabry D, Farid AS, Mostafa O, Saihati HAA, Seleem Y, Abd El Aziz E, Khalil AH, Nawar A, Shoulah AA, Aljasir M, Mohamed AZ, El-Sherbiny M, Elsherbiny NM, Eladl MA, Forsyth NR, Salim RF. Functional Recellularization of Acellular Rat Liver Scaffold by Induced Pluripotent Stem Cells: Molecular Evidence for Wnt/B-Catenin Upregulation. Cells 2021; 10:cells10112819. [PMID: 34831042 PMCID: PMC8616374 DOI: 10.3390/cells10112819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Liver transplantation remains the only viable therapy for liver failure but has a severely restricted utility. Here, we aimed to decellularize rat livers to form acellular 3D bio-scaffolds suitable for seeding with induced pluripotent cells (iPSCs) as a tool to investigate the role of Wnt/β-catenin signaling in liver development and generation. METHODS Dissected rat livers were randomly divided into three groups: I (control); II (decellularized scaffolds) and III (recellularized scaffolds). Liver decellularization was established via an adapted perfusion procedure and assessed through the measurement of extracellular matrix (ECM) proteins and DNA content. Liver recellularization was assessed through histological examination and measurement of transcript levels of Wnt/β-catenin pathway, hepatogenesis, liver-specific microRNAs and growth factors essential for liver development. Adult rat liver decellularization was confirmed by the maintenance of ECM proteins and persistence of growth factors essential for liver regeneration. RESULTS iPSCs seeded rat decellularized livers displayed upregulated transcript expression of Wnt/β-catenin pathway-related, growth factors, and liver specification genes. Further, recellularized livers displayed restored liver-specific functions including albumin secretion and urea synthesis. CONCLUSION This establishes proof-of-principle for the generation of three-dimensional liver organ scaffolds as grafts and functional re-establishment.
Collapse
Affiliation(s)
- Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha 13511, Egypt; (N.E.); (M.M.Y.); (O.M.)
- Stem Cell Unit, Faculty of Medicine, Benha University, Banha 13511, Egypt
| | - Omnia A. M. Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Banha 13511, Egypt;
| | - Mohamed M. Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha 13511, Egypt; (N.E.); (M.M.Y.); (O.M.)
| | - Amira Hassouna
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, AUT University, Auckland 1010, New Zealand;
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt;
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Bader University in Cairo, Cairo 11562, Egypt
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Banha 13511, Egypt;
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Banha 13511, Egypt; (N.E.); (M.M.Y.); (O.M.)
| | - Hajir A. Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Hafar Al Batin 39524, Saudi Arabia;
| | - Yasmin Seleem
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Banha 13511, Egypt; (Y.S.); (E.A.E.A.)
| | - Eman Abd El Aziz
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Banha 13511, Egypt; (Y.S.); (E.A.E.A.)
| | - Ahmed Hassan Khalil
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, Benha University, Banha 13511, Egypt;
| | - Ahmed Nawar
- Department of General Surgery, Faculty of Medicine, Benha University, Banha 13511, Egypt; (A.N.); (A.A.S.)
| | - Ahmed A. Shoulah
- Department of General Surgery, Faculty of Medicine, Benha University, Banha 13511, Egypt; (A.N.); (A.A.S.)
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Amira Zaki Mohamed
- Department of Microbiology, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Nehal M. Elsherbiny
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 47512, Saudi Arabia
- Correspondence: or (N.M.E.); (M.A.E.); (R.F.S.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: or (N.M.E.); (M.A.E.); (R.F.S.)
| | - Nicholas Robert Forsyth
- Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Newcastle ST5 5BG, UK;
| | - Rabab F. Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Banha 13511, Egypt
- Correspondence: or (N.M.E.); (M.A.E.); (R.F.S.)
| |
Collapse
|