1
|
Sheedy DB, Golder HM, Garcia SC, Liu Z, Moate P, Reddy P, Rochfort SJ, Pryce JE, Lean IJ. A large, multi-site lipidomic investigation of parity and aging in dairy cows. J Dairy Sci 2024:S0022-0302(24)01374-2. [PMID: 39647623 DOI: 10.3168/jds.2024-25578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/04/2024] [Indexed: 12/10/2024]
Abstract
Efforts to optimize the longevity of dairy cows are hindered by the increased risk of adverse health events, culling or dying on farm with increased parity. Lipidomics provides a platform to help identify important biomarkers and biological pathways associated with increased parity and associated aging. A large, multi-site (15 pasture-based, 15 TMR farms) cross-sectional study collected plasma samples from nonlactating, late pregnant, 'dry' cow (696 cows, ~27 d prepartum) and peak-milk cows (796 cows, ~58 DIM) in a disproportionate stratified (parity: 0, 1, 2, > 2 for dry cows; 1, 2, 3, > 3 for peak-milk cows) random sampling frame. A total of 185 lipid species, comprising the lipids classes of phospholipids, sphingomyelins (SM) and triacylglycerols, were quantified in a targeted, liquid chromatography-mass spectrometry (LC-MS) approach. Dry and peak-milk cohorts were analyzed separately throughout. Variation in lipid profiles was mostly attributed to farm of origin (36-41% of variation), with feeding system explaining 13-21% and parity 6-9%, according to ANOVA simultaneous component analysis (ASCA) modeling. Multiple linear regression (MLR) and orthogonal-partial least squares (O-PLS) investigated the association of the lipid profile with age (d), while discriminate analysis compared 1st parity with > 3 parity cows in O-PLS discriminate analysis (O-PLS-DA), random forest (RF) and support vector machine (SVM) models. Rankings of the most important lipid species for each model type were compared. Phospholipids with 40 carbon atoms and 6 double bond equivalents (40:6) were consistently decreased with increasing parity and age across both dry and peak-milk cohorts. These lipids most likely contained stearate (18:0) and docosahexaenoic acid (DHA, C22:6;n-3), an omega-3 fatty acid. Additionally, phospholipids with 40:5, 38:6, lysophosphatidylcholine (17:0), SM(35:1), and SM(35:2) were commonly identified lipids that decreased in concentration with parity and age. Docosahexaenoic acid has been associated with improved cattle health, reproduction, and milk production and quality. This study raises the hypothesis that reduced DHA levels in older cows may be a significant factor increasing susceptibility to adverse health events, reduced reproductive performance, and herd removal. Studies that supplement DHA or its precursors can test this hypothesis and may be important in optimizing longevity of cows.
Collapse
Affiliation(s)
- David B Sheedy
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia 2570; Scibus, Camden, New South Wales, Australia 2570.
| | - Helen M Golder
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia 2570; Scibus, Camden, New South Wales, Australia 2570
| | - Sergio C Garcia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia 2570
| | - Zhiqian Liu
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia 3083
| | - Peter Moate
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia 3083
| | - Priyanka Reddy
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia 3083; School of Applied Systems Biology, La Trobe, Bundoora, Victoria, Australia 3083
| | - Simone J Rochfort
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia 3083; School of Applied Systems Biology, La Trobe, Bundoora, Victoria, Australia 3083
| | - Jennie E Pryce
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia 3083; School of Applied Systems Biology, La Trobe, Bundoora, Victoria, Australia 3083
| | - Ian J Lean
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia 2570; Scibus, Camden, New South Wales, Australia 2570
| |
Collapse
|
2
|
Veshkini A, Hammon HM, Vogel L, Viala D, Delosière M, Tröscher A, Déjean S, Ceciliani F, Sauerwein H, Bonnet M. The skimmed milk proteome of dairy cows is affected by the stage of lactation and by supplementation with polyunsaturated fatty acids. Sci Rep 2024; 14:23990. [PMID: 39402117 PMCID: PMC11473731 DOI: 10.1038/s41598-024-74978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/17/2024] Open
Abstract
The impact of nutritional modification to increase functional polyunsaturated fatty acids (PUFA), such as n-3 and n-6 fatty acids (FA) or conjugated linoleic acid (CLA), on milk proteome profile during early lactation remains largely unknown. We used an untargeted proteomics approach to investigate the impact of lactation day and PUFA supplementation on the proteome signature in skimmed milk over the course of early lactation. Sixteen Holstein dairy cows received abomasal infusion of saturated FA (CTRL) or a mixture of essential FA and CLA (EFA + CLA group) from - 63 to + 63 days relative to parturition. Using quantitative proteomics, 479 unique proteins were identified in skimmed milk at days 1, 28, and 63 postpartum. The top discriminating proteins between transition milk (day 1) and mature milk (days 28 and 63), including members of complements (i.e. C2 and C5), growth factor (TGFB2), lipoproteins (i.e. APOE and APOD), and chaperones (i.e. ST13 and CLU), are associated with calves' immune system and gut development. The EFA + CLA supplementation moderately affected a few proteins associated with regulating mammary glands' lipogenesis through the (re)assembly of lipoprotein particles, possibly under the PPAR signaling pathway. Collectively, skimmed milk proteome is dynamically regulated initially by cow's metabolic and physiological changes and to a lesser extent by nutritional PUFA modifications.
Collapse
Affiliation(s)
- Arash Veshkini
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany.
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France.
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy.
| | - Harald M Hammon
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Laura Vogel
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Didier Viala
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | - Mylène Delosière
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| | | | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Lodi, Italy
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, 63122, Saint-Genès-Champanelle, France
| |
Collapse
|
3
|
Signor MH, de Freitas Dos Santos AL, de Vitt MG, Nora L, Lago RVP, Wolschick GJ, Correa NG, Klein B, Xavier ACH, Wagner R, Bissacotti BF, da Silva AS. Grape seed oil in the diet of primiparous Jersey cows before and after parturition: effects on performance, health, rumen environment, and milk quality. Trop Anim Health Prod 2024; 56:202. [PMID: 38992295 DOI: 10.1007/s11250-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
The objective of the study was to determine whether adding grape seed oil (GSO) to the diet of primiparous Jersey breeds during the transition period would improve animal health by measuring effects on the rumen environment, serum biochemistry, oxidative response, and the composition and quality of milk. We used 14 Jersey heifers, weighing an average of 430 kg and 240 days of gestation. The animals were divided into two groups and offered a basal diet, including GSO in the concentrate for the GSO group (dose of 25 mL per animal day) and the same dose of soybean oil (SO) for the control group. The animals were allocated and maintained in a compost barn system, receiving an anionic diet (pre-partum) and a diet for postpartum lactating animals. Dry matter intake (DMI), milk production, serum biochemistry, serum and milk oxidative stability, ruminal fluid and milk fatty acid profile, milk qualitative aspects, and ruminal parameters such as pH, bacterial activity, and protozoan count were evaluated. The addition of GSO had a positive effect on the health of the cows, especially on the oxidative stability of the cows, by increasing total thiols (P = 0.03), higher plasma ferric reducing capacity (FRAP) (P = 0.01), and total antioxidant capacity (TAC) (P = 0.01). In the oxidative stability of the milk produced by the treated animals, there was also an increase in TAC (P = 0.05) and FRAP (P = 0.03). Discreet changes were observed in the ruminal environment with a decreasing trend in pH (P = 0.04) but an increase in bacterial activity (P = 0.05) and protozoa counts (P = 0.07) in cows that consumed the additive. GSO consumption affected the fatty acid profile in milk, increasing saturated fatty acids (SFA) (P = 0.05) and reducing unsaturated fatty acids (UFA) (P = 0.03). The oil did not affect milk production or efficiency in the postpartum period. Based on this information, it is concluded that the addition of GSO positively affects the cow's antioxidant system.
Collapse
Affiliation(s)
- Mateus Henrique Signor
- Department of Animal Science , Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | | | - Maksuel Gatto de Vitt
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | - Luisa Nora
- Postgraduate Program in Animal Science, Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | | | - Gabriel Jean Wolschick
- Department of Animal Science , Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | - Natalia Gemelli Correa
- Department of Animal Science , Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | - Bruna Klein
- Department of Animal Science , Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil
| | | | - Roger Wagner
- Department of Food Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Aleksandro Schafer da Silva
- Department of Animal Science , Universidade Do Estado de Santa Catarina (UDESC), Chapecó, Brazil.
- Departament of Biochemistry and Molecular Biology, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
4
|
Song A, Li Y, Wang W, Hu Y, Xu J, Xu Z, Zhou L, Liu J. Revealing the effect of sea buckthorn oil, fish oil and structured lipid on intestinal microbiota, colonic short chain fatty acid composition and serum lipid profiles in vivo. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:41. [PMID: 38955923 PMCID: PMC11219638 DOI: 10.1007/s13659-024-00461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
In this study, the effects of sea buckthorn oil (SBO), fish oil (FO) and an enzymatically synthesized structured lipid (SL) on serum, short-chain fatty acids (SCFAs) and intestinal microbiota in Sprague-Dawley (SD) rats were investigated. The results demonstrated that FO, SBO, and SL effectively reduced the levels of high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in the serum of SD rats. SBO increased serum triglyceride levels, while FO elevated total cholesterol levels. Furthermore, all three dietary lipids decreased short-chain fatty acid production and enhanced intestinal microbiota diversity. FO increased the abundance of intestinal microbiota including Romboutsia, Lactobacillus, Escherichia-Shigella, and Lachnospiraceae_NK4A136_group. Conversely, all three dietary lipids reduced the abundance of Klebsiella and Blautia. These findings provide a foundation for understanding the functionality of SBO and FO as well as their potential application in synthesizing novel SLs to regulate intestinal microbiota.
Collapse
Affiliation(s)
- Ankang Song
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Yanbo Li
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China.
| | - Yueqi Hu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Junjie Xu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China
| | - Zhixin Xu
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, 830000, People's Republic of China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| | - Jikai Liu
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
5
|
Zhou ZQ, Wei M, Tan CL, Deng ZY, Li J. Low intake of ruminant trans fatty acids ameliorates the disordered lipid metabolism in C57BL/6J mice fed a high-fat diet. Food Funct 2024; 15:1539-1552. [PMID: 38234289 DOI: 10.1039/d3fo04947g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Currently, the health benefits of ruminant trans fatty acids (R-TFA) are still controversial. Our previous investigations indicated that R-TFA at higher dosages (1.3% and 4% E) caused disordered lipid metabolism in mice; however, through collecting R-TFA intake data in 9 provinces of China, it was suggested that, in 2021, the range of R-TFA intake for Chinese residents was about 0.053-0.307 g d-1. Based on the 2022 Nutritional Dietary Guidelines for Chinese Residents, the recommended daily energy supply from R-TFA was about 0.11%-0.15% E. However, the health effects of R-TFA at a lower dosage are still unknown; therefore, our current research aims to further explore the effects of R-TFA on health. Through in vivo experiments, it was shown that R-TFA (0.15% E) decreased body weight gain and serum cholesterol levels in C57BL/6J mice fed a high-fat diet, while it had no significant effect on mice fed a low-fat diet. Besides, hepatic histopathology analysis suggested that R-TFA (0.15% E) ameliorated the degree of hepatic steatosis and reduced intrahepatocyte lipid droplet accumulation in C57BL/6J mice fed a high-fat diet. Through lipidomics analysis, we further screened 8 potential lipid metabolites that participate in regulating the dysregulation of lipid metabolism. Finally, it was suggested that R-TFA (0.15% E) down-regulated the expression of genes related to inflammation and cholesterol synthesis while up-regulated the expression of genes related to cholesterol clearance, which might partially explain the salutary effect of R-TFA (0.15% E) in ameliorating the hepatic steatosis and improving disordered lipid metabolism in mice fed a high-fat diet. Our current research will provide a reference for the intake of R-TFA and, furthermore, give some insights into understanding the health effects of R-TFA.
Collapse
Affiliation(s)
- Ze-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Meng Wei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Chao-Li Tan
- Jiangxi Sunshine Dairy Co., Ltd, Nanchang, Jiangxi 330001, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
| | - Jing Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
- College of Food, Nanchang University, Nanchang 330047, China
- International Institute of Food Innovation, Nanchang University, Nanchang 330031, China
- National Center of Technology Innovation for Dairy, China
| |
Collapse
|
6
|
Hernández-Castellano LE, Giromini C, Tretola M, Puillet L, Herskin M, Castro N. Editorial: Selected keynote lectures of the 73rd annual meeting of the European Federation of Animal Science (Porto, Portugal). Animal 2023; 17 Suppl 2:100920. [PMID: 37597949 DOI: 10.1016/j.animal.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/21/2023] Open
Affiliation(s)
- L E Hernández-Castellano
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35412 Arucas, Spain.
| | - C Giromini
- Department of Veterinary and Animal Sciences (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 29600 Lodi, Italy; CRC, Innovation for Well-Being and Environment, Università degli Studi di Milano, 20122 Milano, Italy
| | - M Tretola
- Agroscope, Animal Biology Group, La Tioleyre 4, 1725 Posieux, Switzerland; Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy
| | - L Puillet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France
| | - M Herskin
- Department of Animal and Veterinary Sciences, Aarhus University, 8830 Tjele, Denmark
| | - N Castro
- IUSA-ONEHEALTH 4. Animal Production and Biotechnology, Institute of Animal Health and Food Safety, Universidad de Las Palmas de Gran Canaria, 35412 Arucas, Spain
| |
Collapse
|