1
|
Aminullah N, Mostamand A, Zahir A, Mahaq O, Azizi MN. Phytogenic feed additives as alternatives to antibiotics in poultry production: A review. Vet World 2025; 18:141-154. [PMID: 40041511 PMCID: PMC11873379 DOI: 10.14202/vetworld.2025.141-154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/19/2024] [Indexed: 03/06/2025] Open
Abstract
The overuse of antimicrobials in food-producing animals, particularly poultry, has led to growing concerns about multidrug microbial resistance, posing significant risks to both animal and human health. Subtherapeutic doses of antibiotics have traditionally been used to enhance growth and improve economic efficiency in poultry farming. However, these practices have facilitated the emergence of resistant microbial strains, threatening global health security and prompting a search for sustainable alternatives. This review highlights the significance of phytogenic as feed additives (PFAs) as promising substitutes for antibiotic as feed additives (AFAs) in poultry production. PFAs, derived from plant-based compounds, exhibit multiple beneficial properties, including antimicrobial, antioxidative, anti-inflammatory, and immune-modulatory effects. Moreover, they offer the potential to produce high-quality organic poultry products while reducing the likelihood of microbial resistance. Despite these advantages, inconsistent results among studies underscore the importance of standardized approaches to maximize their efficacy. This review aims to evaluate the current status of antibiotic use in poultry farming globally, explore the properties and mechanisms of PFAs, and assess their potential as viable alternatives to antibiotics. By consolidating available knowledge, this review provides insights into the benefits and challenges associated with PFAs, offering guidance for future research and practical applications in sustainable poultry production.
Collapse
Affiliation(s)
- Noor Aminullah
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Allauddin Mostamand
- Department of Animal Husbandry, Faculty of Animal Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Ahmadullah Zahir
- Department of Food Science and Technology, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| | - Obaidullah Mahaq
- Department of Animal Nutrition and Production, Faculty of Agriculture, Afghan International Islamic University, Kabul 1004, Afghanistan
| | - Mohammad Naeem Azizi
- Department of Pri-Clinic, Faculty of Veterinary Science, Afghanistan National Agricultural Sciences and Technology University, Kandahar 3801, Afghanistan
| |
Collapse
|
2
|
Peng C, Ghanbari M, May A, Abeel T. Effects of antibiotic growth promoter and its natural alternative on poultry cecum ecosystem: an integrated analysis of gut microbiota and host expression. Front Microbiol 2024; 15:1492270. [PMID: 39687871 PMCID: PMC11646981 DOI: 10.3389/fmicb.2024.1492270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024] Open
Abstract
Background In-feed antibiotic growth promoters (AGPs) have been a cornerstone in the livestock industry due to their role in enhancing growth and feed efficiency. However, concerns over antibiotic resistance have driven a shift away from AGPs toward natural alternatives. Despite the widespread use, the exact mechanisms of AGPs and alternatives are not fully understood. This necessitates holistic studies that investigate microbiota dynamics, host responses, and the interactions between these elements in the context of AGPs and alternative feed additives. Methods In this study, we conducted a multifaceted investigation of how Bacitracin, a common AGP, and a natural alternative impact both cecum microbiota and host expression in chickens. In addition to univariate and static differential abundance and expression analyses, we employed multivariate and time-course analyses to study this problem. To reveal host-microbe interactions, we assessed their overall correspondence and identified treatment-specific pairs of species and host expressed genes that showed significant correlations over time. Results Our analysis revealed that factors such as developmental age substantially impacted the cecum ecosystem more than feed additives. While feed additives significantly altered microbial compositions in the later stages, they did not significantly affect overall host gene expression. The differential expression indicated that with AGP administration, host transmembrane transporters and metallopeptidase activities were upregulated around day 21. Together with the modulated kininogen binding and phenylpyruvate tautomerase activity over time, this likely contributes to the growth-promoting effects of AGPs. The difference in responses between AGP and PFA supplementation suggests that these additives operate through distinct mechanisms. Conclusion We investigated the impact of a common AGP and its natural alternative on poultry cecum ecosystem through an integrated analysis of both the microbiota and host responses. We found that AGP appears to enhance host nutrient utilization and modulate immune responses. The insights we gained are critical for identifying and developing effective AGP alternatives to advance sustainable livestock farming practices.
Collapse
Affiliation(s)
- Chengyao Peng
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Mahdi Ghanbari
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Ali May
- dsm-firmenich, Science and Research, Delft, Netherlands
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
3
|
Balenović M, Janječić Z, Savić V, Kasap A, Popović M, Šimpraga B, Sokolović M, Bedeković D, Kiš G, Zglavnik T, Špoljarić D, Krstulović F, Listeš I, Zelenika TA. Immunostimulatory and Antibacterial Effects of Cannabis sativa L. Leaves on Broilers. Animals (Basel) 2024; 14:1159. [PMID: 38672306 PMCID: PMC11047609 DOI: 10.3390/ani14081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to evaluate the effect of dried Cannabis sativa L. leaves as a phytogenic mixture added to broiler feed on CD4+ and CD8+ T lymphocyte subpopulations, Newcastle disease virus (NDV) antibody titres, and the presence of E. coli in faecal samples. The study was conducted on 100 male Ross 308 broilers, divided into four groups of 25 broilers, for a 42-day research period. The groups were housed separately in boxes on a litter of softwood shavings and were fed starter mixture from day 1 to day 21 and finisher mixture from day 22 to day 42. Industrial hemp (C. sativa) was grown in the Crkvina area, Croatia (latitude: 45°18'46.8″ N; longitude: 15°31'30″ E). The hemp leaves were manually separated, sun-dried, and ground to a powder. The mixture offered to the control group did not contain cannabis leaves, whereas the three experimental groups received mixtures containing mixed cannabis leaves in a quantity of 10 g/kg, 20 g/kg, or 30 g/kg (E_10, E_20, and E_30, respectively). The mean NDV antibody level was uniform in all study groups until post-vaccination day 14 and increased comparably with time. The percentage of CD4+ and CD8+ lymphocytes in the peripheral blood subpopulation showed statistically significant differences (p < 0.001) in the E_20 group as compared with the control group and both the E_10 and E_30 groups throughout the study period. As the broiler age increased, the CD4+-to-CD8+ ratios also increased and were statistically significant (p < 0.0001) on day 42 in all experimental groups as compared to the control group. Comparing the control group with the experimental groups indicated that the bacterial count was lower in broiler groups having received feed with the addition of 20 g/kg and 30 g/kg C. sativa leaves. In conclusion, the C. sativa leaves were found to elicit a favourable immunomodulatory effect on cell-mediated and humoral immune responses in broilers via increased CD4+ and CD8+ lymphocyte subpopulations and higher CD4+:CD8+ cell ratios, thus indicating enhanced immune function capacity. In addition, C. sativa leaves may have complementary effects on the broiler post-vaccination immune response, increase broilers' resistance to infectious diseases, reduce the effect of stress associated with vaccination, and improve broiler health and welfare.
Collapse
Affiliation(s)
- Mirta Balenović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Zlatko Janječić
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Vladimir Savić
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Ante Kasap
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Maja Popović
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Marijana Sokolović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Dalibor Bedeković
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Goran Kiš
- Department of Animal Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Tihomir Zglavnik
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Daniel Špoljarić
- Department of Veterinary Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova ul. 55, 10000 Zagreb, Croatia
| | - Fani Krstulović
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| | - Irena Listeš
- Regional Veterinary Institute Split, Croatian Veterinary Institute, Poljička Cesta 33, 21000 Split, Croatia
| | - Tajana Amšel Zelenika
- Poultry Center, Croatian Veterinary Institute, Ul. Vjekoslava Heinzela 55, 10000 Zagreb, Croatia; (M.B.)
| |
Collapse
|
4
|
Ben Naser KM, Sherif BM, Othman SM, Asheg AA. Effect of clove buds powder supplementation on hematological profile, biochemical parameters, lymphoid organs, and cell-mediated immunity of broilers. Open Vet J 2023; 13:854-863. [PMID: 37614736 PMCID: PMC10443825 DOI: 10.5455/ovj.2023.v13.i7.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/14/2023] [Indexed: 08/25/2023] Open
Abstract
Background Phytogenic feed additives are products derived from plants used to improve the performance and health of animals. Nowadays, this type of phytogenic feed additive is widely used as an alternative to antibiotic growth promoters in poultry feed, and clove bud is one of the most effective medicinal herbs that has caught the attention of researchers. Aim This experiment was conducted to evaluate the effects of adding clove bud powder to the broiler chicken's feed on the hematological profile, biochemical parameters, lymphoid organs, and cell-mediated immunity. Method A total of 360 unsexed chicks (Ross 308) were allotted to three groups. All chicks were raised under the same normal management conditions from 1 day to 6 weeks of age. The first group was fed a basal diet and the other two groups were assigned to add 0.5% and 1.0% of clove bud powder to the basal diet. The studied traits were total leukocyte counts (TLC), differential leukocyte counts (DLC), blood cholesterol level, blood liver enzymes [aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase (ALP) enzymes], the weight of lymphoid organs (bursa of Fabricius and spleen), and cell-mediated immunity. Results Despite the significant and varied changes (p ≤ 0.05) that resulted from adding clove buds powder to the broiler feed in the second and third weeks, the results at the end of the experiment indicated that there was no negative effect of adding clove powder on the TLC and DLC, as well as the heterophils/lymphocytes ratio. In addition, feeding on a diet containing clove buds powder had no significant effect on the level of cholesterol and liver enzymes in the blood, except for (ALP), which showed a significant increase (p ≤ 0.01) in comparison to the control group. Moreover, the results showed in the second and fifth weeks a significant increase (p ≤ 0.05) in the relative weight of the spleen, but, in general, there were no significant effects at the end of the experiment on the relative weight of the lymphoid organs. Furthermore, the broiler chickens that consumed clove bud powder at a rate of 0.5% showed a highly significant (p ≤ 0.01) cellular immune response. Conclusion This study concluded that the addition of clove bud powder had no negative effect on leukocyte counts or differentiated leukocyte counts. The addition also raised the spleen weight and improved the level of blood alkane phosphatase activity and cellular immune response in broiler chickens during the growth stages.
Collapse
Affiliation(s)
- Khaled M. Ben Naser
- Department of Animal Production, Faculty of Agriculture, University of Tripoli, Tripoli, Libya
| | - Bashir M. Sherif
- Department of Animal Production, Faculty of Agriculture, University of Tripoli, Tripoli, Libya
| | - Siham M. Othman
- Department of Animal Production, Faculty of Agriculture, University of Tripoli, Tripoli, Libya
| | - Abdulatif A. Asheg
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, University of Tripoli, Tripoli, Libya
| |
Collapse
|
5
|
Stewart J, Pavic A. Advances in enteropathogen control throughout the meat chicken production chain. Compr Rev Food Sci Food Saf 2023; 22:2346-2407. [PMID: 37038302 DOI: 10.1111/1541-4337.13149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023]
Abstract
Enteropathogens, namely Salmonella and Campylobacter, are a concern in global public health and have been attributed in numerous risk assessments to a poultry source. During the last decade, a large body of research addressing this problem has been published. The literature reviewed contains review articles on certain aspects of poultry production chain; however, in the past decade there has not been a review on the entire chain-farm to fork-of poultry production. For this review, a pool of 514 articles were selected for relevance via a systematic screening process (from >7500 original search articles). These studies identified a diversity of management and intervention strategies for the elimination or reduction of enteropathogens in poultry production. Many studies were laboratory or limited field trials with implementation in true commercial operations being problematic. Entities considering using commercial antienteropathogen products and interventions are advised to perform an internal validation and fit-for-purpose trial as Salmonella and Campylobacter serovars and biovars may have regional diversity. Future research should focus on nonchemical application within the processing plant and how a combination of synergisticinterventions through the production chain may contribute to reducing the overall carcass burden of enteropathogens, coupled with increased consumer education on safe handling and cooking of poultry.
Collapse
Affiliation(s)
- Jack Stewart
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| | - Anthony Pavic
- Birling Laboratories Pty Ltd, Bringelly, New South Wales, Australia
| |
Collapse
|
6
|
Rafeeq M, Bilal RM, Batool F, Yameen K, Farag MR, Madkour M, Elnesr SS, El-Shall NA, Dhama K, Alagawany M. Application of herbs and their derivatives in broiler chickens: a review. WORLD POULTRY SCI J 2023. [DOI: 10.1080/00439339.2022.2151395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Majid Rafeeq
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiza Batool
- Faculty of Agriculture, Department of Forestry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif Yameen
- Department of Poultry, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Giza, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfna, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
7
|
Wu Y, Long XM, Liu GF, Bai X, Sun ZL, Liu ZY. The multicomponent residue depletion of Gelsemium elegans in pig tissues, urine, and plasma. Front Vet Sci 2023; 9:1111782. [PMID: 36713860 PMCID: PMC9880259 DOI: 10.3389/fvets.2022.1111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Gelsemium elegans (G. elegans) as a traditional medicinal plant used in livestock production. The use of G. elegans in veterinary clinics may pose safety risks to human health. Objectives The aim of this study was to investigate tissue residue depletion in pigs fed G. elegans powder. Methods A precise quantitation method and a simultaneous semi-quantitation method for multiple components independently of standards in pig tissues were developed for the first time. The two methods were validated in terms of specificity, LODs, LOQs, linearity, accuracy, precision, and matrix effects. They were then applied to a tissue residue depletion study after G. elegans powder at a dose of 2% per kg feed were fed to pigs. Results Compared with precise quantitation, the method validation results indicated that the semi-quantitation method was reliable and acceptable for multicomponent quantification independent of standards. Many G. elegans alkaloids are widely distributed in most tissues of pigs. Tissue residue depletion studies indicated that 14-hydroxygelsenicine, 11-hydroxygelsenicine, and gelsemoxonine could be used as potential residue markers, and pancreas, small intestine, and lung tissues could be considered as potential residue target tissues of G. elegans. In addition, both urine and plasma could be used to predict 14-hydroxygelsenicine and gelsemoxonine residues in the liver, pancreas, and small intestinal tissues of pigs. Conclusion The developed semi-quantification method can be applied to monitor the application and residue of G. elegans. The results provide scientific evidence for evaluating the safety of animal-derived food from G. elegans for consumers and will be helpful for its application and future development.
Collapse
Affiliation(s)
- Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Xue-Ming Long
- Hunan Provincial Institute of Veterinary Drugs and Feed Control, Changsha, Hunan, China
| | - Gao-Feng Liu
- Hunan Canzoho Biological Technology Co., Ltd., Liuyang, Hunan, China
| | - Xia Bai
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhi-Liang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,*Correspondence: Zhi-Liang Sun ✉
| | - Zhao-Ying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China,Zhao-Ying Liu ✉
| |
Collapse
|
8
|
Muniyappan M, Baek DH, Kim IH. Effects of dietary supplementation of quillaja saponin or fructooligosaccharide and a mixture of both on the growth performance, nutrient utilisation, faecal microbial and faecal noxious gas emissions in growing pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2093656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Madesh Muniyappan
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| | - Dong Heon Baek
- Department of Oral Microbiology and Immunology, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
9
|
Kimminau E, Karnezos T, Ko H, Fasina Y, Kim W. Phytogenic blend administered through water impacts Salmonella infection in broiler chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Islam R, Sultana N, Bhakta S, Haque Z, Hasan A, Siddique MP, Islam MR. Modulation of growth performance, gut morphometry, and cecal microbiota in broilers by clove (Syzygium aromaticum) and tulsi (Ocimum sanctum) supplementation. Poult Sci 2022; 102:102266. [PMID: 36370662 PMCID: PMC9660731 DOI: 10.1016/j.psj.2022.102266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In an epoch of the growing risk of antibiotic resistance, there is a dire need to establish an effective novel feeding practice for broiler nutrition as an alternative to antibiotics. Hence, the aim of the current study was to evaluate the impact of clove powder and tulsi extract on the growth performance, gut morphologic and morphometric indices, and cecal microbial status of broiler, as an alternative to antibiotic growth promoters (AGPs). Sixty day-old chicks of Cobb-500 strain were randomly divided into 4 groups, each having 15 birds. Chicks of the control group (T0) were fed commercial broiler feed with no additional supplementation. The treatment groups were offered commercial broiler feed and received clove powder and tulsi extract with drinking water at the rate of 0.5% + 2% (T1), 1% + 3% (T2), and 1.5% + 4% (T3), respectively. Results showed a nonlinear relationship with the dosage of clove and tulsi. All the growth parameters substantially (P < 0.05) improved in T2 while T1 and T3 showed no significant improvement compared to T0. The final body weight was significantly (P < 0.05) higher in T2. Giblet and offal weights showed no noticeable differences except in the intestine and heart where intestine weight markedly (P < 0.05) decreased in T3 and heart weight significantly (P < 0.05) increased in T1 and T2. Clove and tulsi supplementation substantially improved the villus height and villus surface area of the small intestine in T2 while the large intestine remained mostly unaffected by the treatment. Cecal microbial status significantly improved in all the treatment groups having increased (P < 0.05) Lactobacillus spp. count and decreased (P < 0.05) E. coli count compared to T0. Based on the aforementioned findings, it can be concluded that the combination of clove and tulsi can improve the growth performance and gut health of broilers which is largely dose-dependent and might be supplied as a potential alternative to AGPs.
Collapse
Affiliation(s)
- Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nasrin Sultana
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| | - Sonali Bhakta
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ziaul Haque
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Alamgir Hasan
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahbubul Pratik Siddique
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Rafiqul Islam
- Department of Anatomy and Histology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| |
Collapse
|
11
|
Phytogenic Blend Improves Intestinal Health and Reduces Obesity, Diabetes, Cholesterol and Cancers: A Path toward Customised Supplementation. Antibiotics (Basel) 2022; 11:antibiotics11101428. [PMID: 36290086 PMCID: PMC9598506 DOI: 10.3390/antibiotics11101428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Poultry production is among the most challenging industries for pathogen control. High animal density and abundance of faecal material demand strict biosecurity measures and continual vigilance in monitoring animal health parameters. Despite this vigilance, dealing with disease outbreaks is a part of farmers’ routines. Phytogenic feed additives comprised of herbs, spices, essential oils, and oleoresins have potent antimicrobial and anti-inflammatory actions. Related studies are gaining substantial interest in human and animal health worldwide. In this study, a commercial blend phytogenic feed additive was supplemented to layers in an industrial free-range production system with 20,000 birds in both control and treatment groups. At the end of the trial, the ileum tissue was sampled for RNAseq transcriptomic analysis to study the host reaction to the supplement. Phytogenic supplement significantly inhibited four cholesterol-related pathways and reduced the Arteriosclerosis disease category towards improved cardiovascular health. The supplemented birds exhibited reduced disease susceptibility for 26 cancer categories with p-values in the range from 5.23 × 10−4 to 1.02 × 10−25. Major metabolic shifts in Lipid metabolism in combination with Carbohydrate metabolism have resulted in a decrease in the Obesity category, altering the ratio of fat and carbohydrate metabolism toward lower fat storage.
Collapse
|
12
|
Ibrahim D, Eldemery F, Metwally AS, Abd-Allah EM, Mohamed DT, Ismail TA, Hamed TA, Al Sadik GM, Neamat-Allah ANF, Abd El-Hamid MI. Dietary Eugenol Nanoemulsion Potentiated Performance of Broiler Chickens: Orchestration of Digestive Enzymes, Intestinal Barrier Functions and Cytokines Related Gene Expression With a Consequence of Attenuating the Severity of E. coli O78 Infection. Front Vet Sci 2022; 9:847580. [PMID: 35812892 PMCID: PMC9260043 DOI: 10.3389/fvets.2022.847580] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recently, the use of essential oils (EOs) or their bioactive compounds encapsulated by nanoparticles as alternative supplements for in-feed antimicrobials is gaining attention, especially in organic poultry production. Focusing on eugenol, its incorporation into the nanoformulation is a novel strategy to improve its stability and bioavailability and thus augment its growth-boosting and antimicrobial activities. Therefore, we explored eugenol nanoemulsion activities in modulating growth, digestive and gut barrier functions, immunity, cecal microbiota, and broilers response to avian pathogenic E. coli challenge (APEC) O78. A total of 1,000 one-day-old broiler chicks were allocated into five groups; negative control (NC, fed basal diet), positive control (PC), and 100, 250, and 400 mg/kg eugenol nanoemulsion supplemented groups. All groups except NC were challenged with APEC O78 at 14 days of age. The results showed that birds fed eugenol nanoemulsion displayed higher BWG, FI, and survivability and most improved FCR over the whole rearing period. Birds fed 400 mg/kg of eugenol nanoemulsion sustained a higher growth rate (24% vs. PC) after infection. Likely, the expression of digestive enzymes' genes (AMY2A, CCK, CELA1, and PNLIP) was more prominently upregulated and unaffected by APEC O78 challenge in the group fed eugenol nanoemulsion at the level of 400 mg/kg. Enhanced gut barrier integrity was sustained post-challenge in the group supplemented with higher levels of eugenol nanoemulsion as evidenced by the overexpression of cathelicidins-2, β-defensin-1, MUC-2, JAM-2, occludin, CLDN-1, and FABP-2 genes. A distinct modulatory effect of dietary eugenol nanoemulsion was observed on cytokine genes (IL-1β, TNF-α, IL-6, IL-8, and IL-10) expression with a prominent reduction in the excessive inflammatory reactions post-challenge. Supplementing eugenol nanoemulsion increased the relative cecal abundance of Lactobacillus species and reduced Enterobacteriaceae and Bacteriods counts. Notably, a prominent reduction in APEC O78 loads with downregulation of papC, iroN, iutA, and iss virulence genes and detrimental modifications in E. coli morphological features were noticed in the 400 mg/kg eugenol nanoemulsion group at the 3rd-week post-challenge. Collectively, we recommend the use of eugenol nanoemulsion as a prospective targeted delivery approach for achieving maximum broilers growth and protection against APEC O78 infection.
Collapse
Affiliation(s)
- Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Doaa Ibrahim
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Sh. Metwally
- Department of Pharmacology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Ehab M. Abd-Allah
- Veterinary Educational Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Dalia T. Mohamed
- Department of Pathology and Clinical Pathology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Tamer Ahmed Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Thoria A. Hamed
- Department of Biochemistry, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Gehan M. Al Sadik
- Department of Bacteriology, Zagazig Branch, Agriculture Research Center, Animal Health Research Institute, Zagazig, Egypt
| | - Ahmed N. F. Neamat-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Marwa I. Abd El-Hamid
| |
Collapse
|
13
|
Ayalew H, Zhang H, Wang J, Wu S, Qiu K, Qi G, Tekeste A, Wassie T, Chanie D. Potential Feed Additives as Antibiotic Alternatives in Broiler Production. Front Vet Sci 2022; 9:916473. [PMID: 35782570 PMCID: PMC9247512 DOI: 10.3389/fvets.2022.916473] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 02/03/2023] Open
Abstract
This article aimed to describe the current use scenario, alternative feed additives, modes of action and ameliorative effects in broiler production. Alternative feed additives have promising importance in broiler production due to the ban on the use of certain antibiotics. The most used antibiotic alternatives in broiler production are phytogenics, organic acids, prebiotics, probiotics, enzymes, and their derivatives. Antibiotic alternatives have been reported to increase feed intake, stimulate digestion, improve feed efficiency, increase growth performance, and reduce the incidence of diseases by modulating the intestinal microbiota and immune system, inhibiting pathogens, and improving intestinal integrity. Simply, the gut microbiota is the target to raise the health benefits and growth-promoting effects of feed additives on broilers. Therefore, naturally available feed additives are promising antibiotic alternatives for broilers. Then, summarizing the category, mode of action, and ameliorative effects of potential antibiotic alternatives on broiler production may provide more informed decisions for broiler nutritionists, researchers, feed manufacturers, and producers.
Collapse
Affiliation(s)
- Habtamu Ayalew
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Haijun Zhang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Haijun Zhang
| | - Jing Wang
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shugeng Wu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guanghai Qi
- Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture and Rural Affairs Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ayalsew Tekeste
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Teketay Wassie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Demissie Chanie
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
14
|
Ahsan U, Adabi S, Sayın Özdemir Ö, Sevim Ö, Tatlı O, Kuter E, Cengiz Ö. Growth performance, carcass yield and characteristics, meat quality, serum biochemistry, jejunal histomorphometry, oxidative stability of liver and breast muscle, and immune response of broiler chickens fed natural antioxidant alone or in combination with <i>Bacillus licheniformis</i>. Arch Anim Breed 2022; 65:183-197. [PMID: 35572010 PMCID: PMC9097257 DOI: 10.5194/aab-65-183-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract. In this study, oxidative stability of liver and breast
meat, and immune response were evaluated in broiler chickens fed
supplemental phytogenic feed additive (PFA) alone or in combination with
Bacillus licheniformis. Three experimental groups – control, PFA (60 mg kg−1), and PFA (60 mg kg−1) + 0.5 mg kg−1 B. licheniformis (1.6 × 1012 cfu g−1),
each consisting of 5 replicates – were established with 20 one-day-old chickens
per replicate (300 birds in total). Growth performance, carcass yield and
characteristics, and meat quality remained unaffected. However, supplemental
PFA and PFA + B. licheniformis improved the serum biochemistry and jejunal
histomorphometry of broiler chickens (P<0.05). PFA and PFA + B. licheniformis
groups had lower thiobarbituric acid reacting substances (TBARS) in liver, and freeze–thaw breast meat after 30, 60,
and 90 d of storage (P<0.05). PFA and PFA + B. licheniformis supplementation
lowered the carbonyl group in fresh and stored breast meat (P<0.05). Antibody titer against infectious bursal disease virus was higher in
the PFA + B. licheniformis group than the control group (P<0.05). It can be concluded
that PFA or PFA + B. licheniformis in broiler diets improves the health, oxidative
stability of liver and breast meat, and immune response of broiler chickens.
Collapse
Affiliation(s)
- Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food,
Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal
Campus, Burdur 15030, Turkey
- Centre for Agriculture, Livestock and Food Research, Burdur Mehmet
Akif Ersoy University, İstiklal Campus, Burdur 15030, Turkey
| | | | - Özge Sayın Özdemir
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Ömer Sevim
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Onur Tatlı
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| | - Eren Kuter
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Burdur Mehmet Akif Ersoy University, İstiklal
Campus, Burdur 15030,
Turkey
| | - Özcan Cengiz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of
Veterinary Medicine, Aydın Adnan Menderes University, Işıklı,
Aydın 09016, Turkey
| |
Collapse
|
15
|
The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals (Basel) 2022; 12:ani12070892. [PMID: 35405880 PMCID: PMC8997120 DOI: 10.3390/ani12070892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The use of nutraceuticals and phytonutrients in poultry nutrition has been extensively explored over the past decade. The interest in these substances is linked to the search for natural compounds that can be effectively used to prevent and treat some of the main diseases of the chicken. The serious problem of antibiotic resistance and the consequent legislative constraints on their use required the search for alternatives. The purpose of this review is to describe the current status of the effects of some substances, such as probiotics and prebiotics, organic acids, vitamins and phytogenic feed additives, focusing specifically on studies concerning the prevention and treatment of four main gastrointestinal diseases in chicken: salmonellosis, necrotic enteritis (caused by Clostridium perfringens), campylobacteriosis, and coccidiosis. A brief description of these diseases and the effects of the main bioactive principles of the nutraceutical or phytonutrient groups will be provided. Although there are conflicting results, some works show very promising effects, with a reduction in the bacterial or protozoan load following treatment. Further studies are needed to verify the real effectiveness of these compounds and make them applicable in the field. Abstract In poultry, severe gastrointestinal diseases are caused by bacteria and coccidia, with important economic losses in the poultry industry and requirement of treatments which, for years, were based on the use of antibiotics and chemotherapies. Furthermore, Salmonella spp., Clostridium perfringens, and Campylobacter jejuni can cause serious foodborne diseases in people, resulting from consumption of poultry meat, eggs, and derived products. With the spread of antibiotic resistance, which affects both animals and humans, the restriction of antibiotic use in livestock production and the identification of a list of “critically important antimicrobials” became necessary. For this reason, researchers focused on natural compounds and effective alternatives to prevent gastrointestinal disease in poultry. This review summarizes the results of several studies published in the last decade, describing the use of different nutraceutical or phytonutrients in poultry industry. The results of the use of these products are not always encouraging. While some of the alternatives have proven to be very promising, further studies will be needed to verify the efficacy and practical applicability of other compounds.
Collapse
|
16
|
Ghiasvand AR, Khatibjoo A, Mohammadi Y, Akbari Gharaei M, Shirzadi H. Effect of fennel essential oil on performance, serum biochemistry, immunity, ileum morphology and microbial population, and meat quality of broiler chickens fed corn or wheat-based diet. Br Poult Sci 2021; 62:562-572. [PMID: 33530744 DOI: 10.1080/00071668.2021.1883551] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The effect of Foeniculi aetheroleum essential oil (EO) on growth performance, nutrient utilisation, serum biochemistry, immune response, ileum morphology, microbial population and meat quality of broiler chickens fed a corn- or wheat-based diet were determined.2. A total of 360 broiler chickens were arranged in a 2 × 2 factorial assay in a completely randomised design with six replicates and 15 birds per experimental unit. Birds were fed corn- or wheat-based diets supplemented with (200 mg/kg) or without fennel EO.3. Birds fed wheat-based diets had lower BWG and FCR during grower period and lower FI during finisher period as compared to those fed corn-based diet (P < 0.05) whereas addition of fennel EO decreased chickens BWG during finisher period and EPEF, both in wheat or in corn-based diets. Dietary treatments had no effect on serum glucose, triglyceride, cholesterol, LDL-cholesterol, AST, ALT, ALP, and MDA concentrations (P < 0.05).4. Antibody titres against avian influenza and sheep red blood cell antibody titres, crude protein and crude fat utilisation, villus height, crypt depth and epithelium thickness were not influenced by dietary treatments (P > 0.05). Inclusion of Fennel EO to the corn-based diet resulted in greater villus width and villus surface area while it reduced lamina propria thickness (P < 0.05). Fennel EO reduced ileal E. coli and Lactobacillus spp. populations (P < 0.05). Dietary treatments had no significant effect on meat pH, cooking loss, drip loss, crude protein, crude fat content and cholesterol concentration of breast and thigh meat, total phenolic and MDA concentrations, and breast meat sensory parameters (P > 0.05).5. These results showed that addition of fennel EO to wheat-based diets had a negative effect on chicken growth performance variables and decreased gut E. coli populations. However, immunity, meat quality and nutrient utilisation were not affected by dietary treatments.
Collapse
Affiliation(s)
- A R Ghiasvand
- Department of Animal Science, Ilam University, Ilam, Iran
| | - A Khatibjoo
- Department of Animal Science, Ilam University, Ilam, Iran
| | - Y Mohammadi
- Department of Animal Science, Ilam University, Ilam, Iran
| | | | - H Shirzadi
- Department of Animal Science, Ilam University, Ilam, Iran
| |
Collapse
|
17
|
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals (Basel) 2020; 10:ani10112150. [PMID: 33227911 PMCID: PMC7699210 DOI: 10.3390/ani10112150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Antimicrobial growth promoters (AGPs) are banned in Europe but still used in many countries including Asia. However, their indiscriminate use resulted in antibiotic-resistant bacterial strains that possibly transfer the resistant genes to the microorganisms pertinent to human health. Hence, it is essential to find alternatives that can improve the production performance in broiler chickens. In this scenario, phytobiotics or phytogenic feed additives (PFAs) are widely investigated to evaluate their influence on improving gut health, increasing digestibility, and thereby the growth performance. The present study is a continuity of our experiments on dietary inclusion of Piper betle and Persicaria odorata leaf meal and the first of its kind to evaluate the comparative efficacy of phytobiotics (Piper betle and Persicaria odorata leaf meal), with halquinol and tetracycline in broiler chickens. The current experiment findings indicated that, in comparison with the control group, either of the dietary treatments positively modulated the gut morphology, improved ileal digestibility, maintained the intestinal population of Lactobacillus and reduced the pathogenic bacteria such as Staphylococcus aureus, Salmonella, Escherichia coli, and Clostridium spp., thus improved the growth performance in broiler chickens. Abstract The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Punjab, Pakistan
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Arifah Abdul Kadir
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Skoto 2346, Nigeria
| |
Collapse
|
18
|
El-Shall NA, Shewita RS, Abd El-Hack ME, AlKahtane A, Alarifi S, Alkahtani S, Abdel-Daim MM, Sedeik ME. Effect of essential oils on the immune response to some viral vaccines in broiler chickens, with special reference to Newcastle disease virus. Poult Sci 2020; 99:2944-2954. [PMID: 32475429 PMCID: PMC7141634 DOI: 10.1016/j.psj.2020.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/24/2020] [Accepted: 03/05/2020] [Indexed: 12/01/2022] Open
Abstract
This trial assessed the efficacy of a commercial essential oil (EO) product on the immune response to vaccination against Newcastle disease (ND) and subsequent challenge with virulent ND virus genotype VII (vNDv genotype VII) by using the following experimental groups of broiler chickens (Each group had 21 birds with 3 replicates in each, n = 7): NC (negative control), PC (positive control), VC (vaccinated), and VTC (vaccinated and treated with EOs). Moreover, in a trial to study the effect of EOs on vNDv genotype VII in vivo as a preventive or therapeutic measure, 2 additional ND-vaccinated groups were used (PRV: medicated 1 D before vNDv challenge for 5 D; and TTT: medicated 2 D after vNDv challenge for 5 D). In addition, the immune-modulatory effect of EOs on the avian influenza (AI), infectious bronchitis (IB), and infectious bursal disease (IBD) vaccines was assessed through the serological response. The use of EOs along with administration of ND vaccines (VTC) revealed a lower mortality rate (42.86%), clinical signs, and postmortem lesion score (11) than ND vaccines alone (VC) (52.28% mortality and score 15), in addition to lower hemagglutination inhibition (P < 0.05) (6.5 ± 0.46) and viral shedding (10 log 2.28 ± 0.24) titres 1 wk after challenge in comparison with VC (8.63 ± 0.65 and 10 log 3.29 ± 0.72, respectively). Nevertheless, the EOs mixture (VTC) (1952 ± 28.82) did not significantly (P > 0.05) improve growth performance compared with the nontreated birds (NC and VC) (1970 ± 19.56 and 1904 ± 38.66). EOs showed an antiviral effect on vNDv in vivo (in chickens) as a preventive measure (PRV) as well as some therapeutic effect (TTT) through decreasing the viral shedding titres (loNC0), mortality rate, and severity of clinical signs and postmortem lesions, in addition to serum malondialdhyde level. Regarding the other viruses, the EOs mixture did not improve the immune response to the AI and IB vaccines but significantly (P < 0.05) increased the ELISA antibody titre for IBD virus at the 28th D of age (2,108 ± 341.05). The studied EOs mixture showed an immune-stimulating response to ND and IBD vaccines, antiviral effect against ND virus, especially if administered before the challenge; however, it did not have a growth-promoting effect.
Collapse
Affiliation(s)
- Nahed A El-Shall
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Elbehira 22758, Egypt.
| | - Ramadan S Shewita
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Elbehira 22758, Egypt
| | - Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Abdullah AlKahtane
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mahmoud E Sedeik
- Department of Poultry and Fish diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, Elbehira 22758, Egypt
| |
Collapse
|
19
|
Abo Ghanima MM, Bin-Jumah M, Abdel-Moneim AME, Khafaga AF, Abd El-Hack ME, Allam AA, El-Kasrawy NI. Impacts of Strain Variation on Response to Heat Stress and Boldo Extract Supplementation to Broiler Chickens. Animals (Basel) 2019; 10:ani10010024. [PMID: 31877662 PMCID: PMC7023343 DOI: 10.3390/ani10010024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 10/26/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
Simple Summary One of the common approaches to alleviating heat-stress in poultry is nutritional manipulation using herbal extracts or their derivatives to maintain the health, welfare, and performance of birds. The present study investigated the protective effect of boldo leaf extract against the harmful effects of cyclic heat stress in two broiler strains (Arbor Acres; AA and Avian-48; AV). Administration of boldo in drinking water was able to restore growth and health traits to nearly normal values. Generally, AA chicks were better able to withstand heat stress and were also more likely to utilize boldo extract than AV chicks. The use of boldo leaf extract in poultry production can assist in mitigating the effect of heat stress, improving the antioxidant defense system, and increasing productivity and profitability. Abstract There is increasing interest in the use of natural antioxidant supplements in poultry diets as protection against the adverse effects of heat stress. The potential protective effect of boldo (Peumus boldus molina) leaf extract, which have antioxidant activity, were investigated against the harmful effects of heat stress in two broiler strains. Arbor Acres (AA) and Avian-48 (AV) chicks were divided into thermoneutral (TN) and heat stress (HS) groups and treated with 1 g boldo leaf extract/4 L drinking water during the heat stress period. HS reduced growth performance in both strains. The phagocytic index, phagocytic activity, and eosinophil and lymphocytes counts were significantly elevated in TN and HS AV birds but not altered in AA birds. Boldo extract treatment partially eliminated the previous negative impacts of heat stress. AA chicks were better able to withstand HS than AV chicks. Serum concentrations of total lipids and cholesterol were reduced in HS birds of both strains. Malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were elevated but restored with the administration of boldo leaf extract in HS birds of both strains. Economic parameters were negatively affected by HS but restored to values close to those of the control group in boldo-treated HS birds. In conclusion, the administration of boldo leaf extract in drinking water was effective in neutralizing the harmful effects of heat stress on growth performance, blood indices, and economic parameters and improved the antioxidant defense system in heat-stressed birds.
Collapse
Affiliation(s)
- Mahmoud M. Abo Ghanima
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (M.M.A.G.)
| | - May Bin-Jumah
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, BO. Box 24428, Saudi Arabia;
| | | | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| | - Ahmed A. Allam
- Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef, 65211 Egypt;
| | - Nagwa I. El-Kasrawy
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; (M.M.A.G.)
| |
Collapse
|
20
|
Taha AE, Hassan SS, Shewita RS, El-Seidy AA, Abd El-Hack ME, Hussein ESOS, Saadeldin IM, Swelum AA, El-Edel MA. Effects of supplementing broiler diets with coriander seed powder on growth performance, blood haematology, ileum microflora and economic efficiency. J Anim Physiol Anim Nutr (Berl) 2019; 103:1474-1483. [PMID: 31368211 DOI: 10.1111/jpn.13165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022]
Abstract
A total of 480 one-day-old Arbor Acres broiler chicks were randomly assigned to four dietary groups, each including six replicates (n = 20/replicate). Broilers in the first group (G1) were fed a basal diet without any additives (control). Broilers in groups 2, 3 and 4 (G2, G3 and G4) were fed a basal diet supplemented with 0.1%, 0.2% and 0.4% coriander (Coriandrum sativum L.) seed powder (CSP) respectively. Feeding trials lasted for 42 days, and after that growth, carcass traits, haematological parameters, gut microbiota and economic efficiency (EE) were evaluated. Final body weight (FBW), total weight gain (TWG), total feed intake (TFI) and red blood cell (RBC) counts of broilers in the G4 and G3 treatment groups were significantly higher (p < .05) compared with broilers in the G1 treatment group. The feed conversion ratio (FCR) was better (p < .05) in the G4 treatment group (1.72) than in the G1 treatment group (1.84). Broilers in CSP treatment groups had significantly higher haemoglobin (Hb) concentrations, packed cell volume (PCV) and platelet counts, and had lower (p < .05) Escherichia coli and Clostridium perfringens counts compared with broilers in the G1 treatment group. Dressing, liver, pancreas, bursa and thymus percentages were higher (p < .05) in broilers in the G4 (70.30, 3.18, 0.31, 0.10 and 0.32% respectively) treatment group, compared with broilers in the control (G1) group (66.57, 2.37, 0.23, 0.04 and 0.21% respectively). Broilers in treatment groups G4 and G3 had lower percentages of abdominal fat and lower total bacterial counts (p < .05) than broilers in treatment groups G2 and G1. The highest economic efficiency (EE) was found in treatment group G4, and EE in this group was 13.06% greater than in the control (G1) group.
Collapse
Affiliation(s)
- Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed, Egypt
| | - Saber S Hassan
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| | - Ramadan S Shewita
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Alexandria University, Rasheed, Egypt
| | - Ahmed A El-Seidy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhur University, Damanhur, Egypt
| | | | - El-Sayed O S Hussein
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed A El-Edel
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
21
|
Paraskeuas VV, Mountzouris KC. Modulation of broiler gut microbiota and gene expression of Toll-like receptors and tight junction proteins by diet type and inclusion of phytogenics. Poult Sci 2019; 98:2220-2230. [PMID: 30597072 DOI: 10.3382/ps/pey588] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
This study evaluated the effect of reduced dietary energy (ME) and crude protein (CP) levels along with inclusion of a phytogenic feed additive (PFA) on gut microbiota composition and gene expression of Toll-like receptor(s) (TLR), tight junction proteins, and inflammatory cytokines expressed in secondary lymphoid organs. Depending on dietary ME and CP level down regulation and the inclusion or not of PFA at 125 mg/kg diet, 450 one-day-old male broilers were allocated in the following 6 treatments for 42 D according to a 3 × 2 factorial design: A: diet formulated optimally to meet broiler nutrient requirements; APh: A+PFA; B: suboptimal in ME and CP levels by 3%; BPh: B+PFA; C: suboptimal in ME and CP levels by 6%; CPh: C+PFA. Diet type and PFA supplementation were shown to affect mostly the mucosa-associated microbiota compared to the luminal ones. Ileal mucosa-associated total bacteria (PD= 0.005), Lactobacillus spp. (PD= 0.003), and Clostridium cluster XIVa (PD= 0.009) were affected by diet type with broilers fed diet B having lower levels compared to broilers fed diets A or C. Moreover, diet type affected cecal mucosa-associated Lactobacillus spp. (PD= 0.002) with broilers fed diet C having lower levels compared to broilers fed diets A or B. Supplementation with PFA resulted in higher levels of cecal mucosa-associated Bacteroides (PP= 0.031), Clostridium cluster IV (PP= 0.007), and Clostridium cluster XIVa (PP= 0.039). Diet type affected TLR2 (PD= 0.046) and claudin 5 (PD= 0.027) in cecal epithelium. Lower TLR2 (PP= 0.021) and higher zonula occludens 2 (PP= 0.031) relative gene expressions were seen in ileal epithelium following PFA supplementation. Moreover, in cecal epithelium, PFA supplementation resulted in lower TLR2 (PP < 0.001) and higher zonula occludens 2 (PP= 0.009), claudin 5 (PP= 0.005) and occludin (PP= 0.039) relative gene expressions. There were no significant diet type and PFA effects on cytokines in secondary lymphoid organs, except for a dietary effect on transforming growth factor beta 4 (PD= 0.023) in cecal tonsils. In conclusion, PFA inclusion beneficially modulated elements of gut microbiota, Toll-like signaling molecules and gut tight junction genes.
Collapse
Affiliation(s)
- Vasileios V Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Konstantinos C Mountzouris
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| |
Collapse
|
22
|
Ahsan U, Kuter E, Raza I, Köksal BH, Cengiz Ö, Yıldız M, Kızanlık PK, Kaya M, Tatlı O, Sevim Ö. Dietary Supplementation of Different Levels of Phytogenic Feed Additive in Broiler Diets: The Dynamics of Growth Performance, Caecal Microbiota, and Intestinal Morphometry. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2018. [DOI: 10.1590/1806-9061-2017-0698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- U Ahsan
- Adnan Menderes University, Turkey
| | - E Kuter
- Adnan Menderes University, Turkey
| | - I Raza
- Adnan Menderes University, Turkey
| | | | - Ö Cengiz
- Adnan Menderes University, Turkey
| | - M Yıldız
- Çanakkale Onsekiz Mart University, Turkey
| | | | - M Kaya
- Adnan Menderes University, Turkey
| | - O Tatlı
- Adnan Menderes University, Turkey
| | - Ö Sevim
- Adnan Menderes University, Turkey
| |
Collapse
|
23
|
Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:170-178. [PMID: 30140756 PMCID: PMC6103476 DOI: 10.1016/j.aninu.2018.03.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 01/12/2023]
Abstract
Antibiotics are used to fight bacterial infections. However, a selective pressure gave rise to bacteria resistant to antibiotics. This leaves scientists worried about the danger to human and animal health. Some strategies can be borrowed to reduce the use of antibiotics in chicken farms. Much research has been carried out to look for natural agents with similar beneficial effects of growth promoters. The aim of these alternatives is to maintain a low mortality rate, a good level of animal yield while preserving environment and consumer health. Among these, the most popular are probiotics, prebiotics, enzymes, organic acids, immunostimulants, bacteriocins, bacteriophages, phytogenic feed additives, phytoncides, nanoparticles and essential oils.
Collapse
Affiliation(s)
- Youcef Mehdi
- Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, 2425 rue de l'Agriculture, local 4145 (Qc), Québec G1V 0A6, Canada
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| | - Marie-Pierre Létourneau-Montminy
- Université Laval, Faculté des sciences de l'agriculture et de l'alimentation, 2425 rue de l'Agriculture, local 4145 (Qc), Québec G1V 0A6, Canada
| | - Marie-Lou Gaucher
- Université de Montréal, Faculté de Médecine Vétérinaire, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Younes Chorfi
- Université de Montréal, Faculté de Médecine Vétérinaire, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2, Canada
| | - Gayatri Suresh
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Tarek Rouissi
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Satinder Kaur Brar
- Institut National de Recherche Scientifique, 490 de la Couronne (Qc), Québec G1K 9A9, Canada
| | - Caroline Côté
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du Collège, Shawinigan, Québec G9N 6V8, Canada
| | - Stéphane Godbout
- Institut de Recherche et de Développement en Agroenvironnement, 2700 rue Einstein-Québec, Québec G1P 3W8, Canada
| |
Collapse
|
24
|
Hassan H, Samy A, Youssef AW, Mohamed M. Using Different Feed Additives as Alternative to Antibiotic Growth Promoter to Improve Growth Performance and Carcass Traits of Broilers. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijps.2018.255.261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Gopi S, Amalraj A, Varma K, Jude S, Reddy PB, Divya C, Haponiuk JT, Thomas S. Turmeric nanofiber-encapsulated natural product formulation act as a phytogenic feed additive—A study in broilers on growth performance, biochemical indices of blood, and E. coli in cecum. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1354206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Cochin, Kerala, India
| | | | - Karthik Varma
- R&D Centre, Aurea Biolabs Pvt Ltd, Cochin, Kerala, India
| | - Shintu Jude
- R&D Centre, Aurea Biolabs Pvt Ltd, Cochin, Kerala, India
| | - Prakash B. Reddy
- Department of Clinical Research, Agile Pharma Services, Bangalore, Karnataka, India
| | - Chandradhara Divya
- Department of Clinical Research, Agile Pharma Services, Bangalore, Karnataka, India
| | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
26
|
Shokraneh M, Ghalamkari G, Toghyani M, Landy N. Influence of drinking water containing Aloe vera ( Aloe barbadensis Miller) gel on growth performance, intestinal microflora, and humoral immune responses of broilers. Vet World 2016; 9:1197-1203. [PMID: 27956768 PMCID: PMC5146297 DOI: 10.14202/vetworld.2016.1197-1203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
Aim: The risk of bacteria resistance to specific antibiotics possibly by continuous subtherapeutical administration of antibiotic growth promoters (AGPs) in poultry feed led to a ban on the use of AGP in poultry production. As a result of this ban, alternative substances for poultry growth promotion and disease prevention are being investigated, among which phytogenic and herbal products have received increased attention as natural additives because they have been accepted by consumers as natural additives. The effect of water supplementation of Aloe vera (AV) as an AGP substitute on performance, intestinal microflora, and immune responses of broilers. Materials and Methods: The five experimental treatments were allocated to four replicates. The following treatments were applied (1) a basal broiler diet (C) and normal drinking water, (2) 0.5% AV gel in drinking water, (3) 0.75% AV gel in drinking water, (4) 1% AV gel in drinking water, and (5) diet C supplemented with flavophospholipol at 4.5 mg/kg and drinking normal water. Vaccines against influenza disease and sheep red blood cell (SRBC) were administrated to immunological stimuli. The populations of Lactobacilli spp. and coliforms were enumerated in ileum. Results: Body weight of broilers supplemented with different levels of AV increased compared with control group (p<0.05). Birds supplemented with antibiotic had the best feed-to-gain ratio (F:G) in different periods. Supplementation of 0.5% and 0.75% AV improved F: G entire experimental period compared with control group (p<0.05). Coliform bacteria were reduced in broilers supplemented with different levels of AV or antibiotic (p<0.05). The Lactobacilli spp. population in birds supplemented with 0.75%, 1% AV or antibiotic significantly was higher than other groups (p<0.05). Supplementation with 1% AV led to greater antibody titers against SRBC compared with other groups (p<0.05). Conclusion: These findings demonstrated a possibility of supplementing broiler drinking water with 1% AV gel as an alternative for AGP substitution.
Collapse
Affiliation(s)
- Meisam Shokraneh
- Young Researchers and Elite Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139999, Iran
| | - Gholamreza Ghalamkari
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139999, Iran
| | - Majid Toghyani
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139999, Iran
| | - Nasir Landy
- Young Researchers and Elite Club, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 8155139999, Iran
| |
Collapse
|
27
|
Anonye BO. General Commentary on: Alternatives to Antibiotic Growth Promoters in Animals. Front Vet Sci 2016; 3:74. [PMID: 27656646 PMCID: PMC5023970 DOI: 10.3389/fvets.2016.00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/23/2016] [Indexed: 12/03/2022] Open
Affiliation(s)
- Blessing O Anonye
- Microbiology and Infection Unit, Division of Biomedical Sciences, Warwick Medical School, University of Warwick , Coventry , UK
| |
Collapse
|
28
|
Bobko M, Haščík P, Mellen M, Bobková A, Tkáčová J, Czako P, Pavelkova A, Trembecká L. Effect of different phytogenic additives on oxidation stability of chicken meat. POTRAVINARSTVO 2016. [DOI: 10.5219/567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the study was to evaluate the oxidative stability (TBARS method) of breast and thigh muscle after application of feed mixtures enriched by phytogenic additives. The experiment started with 150 pieces one-day-old chicks of Cobb 500 hybrid combination. They were divided into one control (C) and two experimental groups (1st EG and 2nd EG). Each group included 50 chicks. In experimental groups, feed additives were applied as followed: 100 mg.kg-1 Agolin Poultry (in the 1st EG) and 500 mg.kg-1 Agolin Tannin Plus (in the 2nd EG). Experimental broiler chickens were fed during 42 days by ad libitum. Chicken meat samples of breast and thigh muscle were analysed in the 1st day, 1st, 2nd, 3rd, 4th, 5th and 6th month of storage in frozen storage at -18 °C. We recorded positive influence on chicken meat oxidative stability in all experimental groups with application of phytogenic feed additives. Obtained results showed that applied phytogenic additives had positive influence on oxidative stability of breast and thigh muscles. At the end of frozen storage (in 6th month), we found higher malondialdehyde (MDA) values and lower oxidative stability (p <0.05) of breast muscle in control group (0.167 mg.kg-1) compared to experimental groups (from 0.150 mg.kg-1 in 1. EG to 0.155 mg.kg-1 in 2. EG). In the thigh muscle, we found similar tendency of oxidative changes as in the breast muscle. At the end of frozen storage (in the 6th month), MDA average values of thigh muscle were higher (p <0.05) in control group (0.181 mg.kg-1) compared to experimental groups (1. EG 0.164 mg.kg-1 and 2. EG 0.169 mg.kg-1). Significant differences (p <0.05) between the control and experimental groups were found from the 5th month of storage in thigh and breast muscle. Obtained results indicate positive influence of phytogenic additives applied in chicken nutrition, namely on stabilization of fatty substance to degradation processes.
Collapse
|