1
|
Dai H, Huang Q, Li S, Du D, Yu W, Guo J, Zhao Z, Yu X, Ma F, Sun P. Effect of Dietary Benzoic Acid Supplementation on Growth Performance, Rumen Fermentation, and Rumen Microbiota in Weaned Holstein Dairy Calves. Animals (Basel) 2024; 14:2823. [PMID: 39409772 PMCID: PMC11476432 DOI: 10.3390/ani14192823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Supplementation with benzoic acid (BA) in animal feed can reduce feeds' acid-binding capacity, inhibit pathogenic bacterial growth, enhance nutrient digestion, and increase intestinal enzyme activities. This study aimed to investigate the effects of different doses of BA on the growth performance, rumen fermentation, and rumen microbiota of weaned Holstein dairy calves. Thirty-two Holstein calves at 60 days of age were randomly assigned into four groups (n = 8): a control group (fed with a basal diet without BA supplementation; CON group) and groups that were supplemented with 0.25% (LBA group), 0.50% (MBA group), and 0.75% (HBA group) BA to the basal diet (dry matter basis), respectively. The experiment lasted for 42 days, starting at 60 days of age and ending at 102 days of age, with weaning occurring at 67 days of age. Supplementation with BA linearly increased the average daily gain of the weaned dairy calves, which was significantly higher in the LBA, MBA, and HBA groups than that in the CON group. The average daily feed intake was quadratically increased with increasing BA supplementation, peaking in the MBA group. Supplementation with BA linearly decreased the feed-to-gain (F/G) ratio, but did not affect rumen fermentation parameters, except for the molar proportion of butyrate and iso-butyrate, which were linearly increased with the dose of BA supplementation. Compared with the CON group, the molar proportions of iso-butyrate in the LBA, MBA, and HBA groups and that of butyrate in the HBA group were significantly higher than those in the CON group. Supplementation with BA had no significant effect on the alpha and beta diversity of the rumen microbiota, but significantly increased the relative abundances of beneficial bacteria, such as Bifidobacterium, and reduced those of the harmful bacteria, such as unclassified_o__Gastranaerophilales and Oscillospiraceae_UCG-002, in the rumen. Functional prediction analysis using the MetaCyc database revealed significant variations in the pathways associated with glycolysis across groups, including the GLYCOLYSIS-TCA-GLYOX-BYPASS, GLYCOL-GLYOXDEG-PWY, and P105-PWY pathways. In conclusion, BA supplementation improved the composition and function of rumen microbiota, elevated the production of butyrate and iso-butyrate, and increased the growth performance of weaned Holstein dairy calves.
Collapse
Affiliation(s)
- Haonan Dai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Shujing Li
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Dewei Du
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Jia Guo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Ltd., Shijiazhuang 050200, China; (S.L.); (W.Y.); (Z.Z.)
| | - Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (Q.H.); (D.D.); (J.G.); (X.Y.); (F.M.)
| |
Collapse
|
2
|
Xu M, Zhang W, Kong F, Wang B, Pan J, Shi J, Liu Q, He P, Ma Y, Cheng Q, Zhang Z, Lei Z. Effect of oregano essential oil on intestinal immunoglobulin G in Holstein dairy bulls. Front Vet Sci 2024; 11:1382396. [PMID: 39139606 PMCID: PMC11319842 DOI: 10.3389/fvets.2024.1382396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Immunoglobulin G (IgG) is important in mediating humoral immunity and in the maintenance of immune homeostasis in the intestinal mucosa. Oregano essential oil (OEO) is a natural herbal extract that possesses antimicrobial, antioxidant, anti-inflammatory, and immunomodulatory properties. As the effects of OEO on intestinal mucosal immunity in Holstein dairy bulls remained unclear, we investigated the effect of dietary supplementation of OEO on IgG levels and IgG+ cells residing in the intestinal tract in Holstein dairy bulls. Methods Twelve Holstein bulls in good health of approximately 10 months of age were selected for the experiment and randomly equally divided into two groups. The control (CK) group was fed a basal ration, and in the OEO group, the basal ration was supplemented with OEO (20 g/head/day). After 300 days of feeding, tissue samples of the jejunum, ileum, and colon of the bulls in each group were collected for histopathological analysis, immunohistochemistry, and enzyme-linked immunosorbent assays, respectively. Results The jejunum, ileum, and colon of bulls in the CK group had obvious pathological damage, whereas the structure of each intestinal segment was clear and intact. In the OEO group, pathological damage was significantly reduced. IgG+ plasma cells were diffusely distributed in the lamina propria of the jejunum, ileum, and colon in the CK and OEO groups, with no significant difference between the groups. OEO supplementation significantly reduced the number of IgG+ plasma cells in each intestinal segment, with the highest decrease rate being noted for the ileum (22.87%), followed by the colon (19.45%) and jejunum (8.52%). ELISA test results and immunohistochemical results were mutually verified. The change in IgG content was consistent with the trend of change in the number of IgG+ plasma cells. Discussion Our findings suggest that OEO supplementation does not alter the diffuse spatial distribution of IgG+ plasma cells in the intestines of Holstein dairy bulls, but lowers immunoglobulin levels to normal levels, significantly reduces intestinal damage, and may enhance mucosal immune defence barrier function by inhibiting inflammatory reactions.
Collapse
Affiliation(s)
- Meiling Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fanyun Kong
- Jingchuan County Animal Husbandry and Veterinary Center, Pingliang, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiyan Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Pengjia He
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yue Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Qiang Cheng
- Jing Chuan Xu Kang Food Co., Ltd., Pingliang, Zhangye, China
| | - Zhao Zhang
- Gansu Huarui Agriculture Co., Ltd., Zhangye, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Tang X, Zeng Y, Xiong K, Zhong J. Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health. Front Vet Sci 2024; 11:1429233. [PMID: 39132437 PMCID: PMC11310147 DOI: 10.3389/fvets.2024.1429233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
The application of Bacillus spp. as probiotics in the swine industry, particularly for piglet production, has garnered significant attention in recent years. This review aimed to summarized the role and mechanisms of Bacillus spp. in promoting growth and maintaining gut health in piglets. Bacillus spp. can enhance intestinal barrier function by promoting the proliferation and repair of intestinal epithelial cells and increasing mucosal barrier integrity, thereby reducing the risk of pathogenic microbial invasion. Additionally, Bacillus spp. can activate the intestinal immune system of piglets, thereby enhancing the body's resistance to diseases. Moreover, Bacillus spp. can optimize the gut microbial community structure, enhance the activity of beneficial bacteria such as Lactobacillus, and inhibit the growth of harmful bacteria such as Escherichia coli, ultimately promoting piglet growth performance and improving feed efficiency. Bacillus spp. has advantages as well as challenges as an animal probiotic, and safety evaluation should be conducted when using the newly isolated Bacillus spp. This review provides a scientific basis for the application of Bacillus spp. in modern piglet production, highlighting their potential in improving the efficiency of livestock production and animal welfare.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Yan Zeng
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Jinfeng Zhong
- Hunan Polytechnic of Environment and Biology, College of Biotechnology, Hengyang, China
| |
Collapse
|
4
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Li JL. Essential oils improve nursery pigs' performance and appetite via modulation of intestinal health and microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:174-188. [PMID: 38357573 PMCID: PMC10864218 DOI: 10.1016/j.aninu.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/22/2023] [Accepted: 10/12/2023] [Indexed: 02/16/2024]
Abstract
Optimal intestinal health and functionality are essential for animal health and performance, and simultaneously intestinal nutrient transporters and intestinal peptides are also involved in appetite and feed intake control mechanisms. Given the potential of essential oil (EO) in improving animal performance and improving feed palatability, we hypothesized that dietary supplementation of cinnamaldehyde and carvacrol could improve performance and appetite of nursery pigs by modulating intestinal health and microbiota. Cinnamaldehyde (100 mg/kg), carvacrol (100 mg/kg), and their mixtures (including 50 mg/kg cinnamaldehyde and 50 mg/kg carvacrol) were supplemented into the diets of 240 nursery pigs for 42 d, and data related to performance were measured. Thereafter, the influence of EO on intestinal health, appetite and gut microbiota and their correlations were explored. EO supplementation increased (P < 0.05) the body weight, average daily gain (ADG) and average daily feed intake (ADFI) of piglets, and reduced (P < 0.05) diarrhea rates in nursery pigs. Furthermore, EO increased (P < 0.05) the intestinal absorption area and the abundance of tight junction proteins, and decreased (P < 0.05) intestinal permeability and local inflammation. In terms of intestinal development and the mucus barrier, EO promoted intestinal development and increased (P < 0.05) the number of goblet cells. Additionally, we found that piglets in the EO-supplemented group had upregulated (P < 0.05) levels of transporters and digestive enzymes in the intestine, which were significantly associated with daily gain and feed utilization. In addition, EO supplementation somewhat improved appetite in nursery pigs, increased the diversity of the gut microbiome and the abundance of beneficial bacteria, and there was a correlation between altered bacterial structure and appetite-related hormones. These findings indicate that EO is effective in promoting growth performance and nutrient absorption as well as in regulating appetite by improving intestinal health and bacterial structure.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
5
|
Pu J, Chen D, Tian G, He J, Zheng P, Huang Z, Mao X, Yu J, Luo Y, Luo J, Yan H, Wu A, Yu B. All-trans retinoic acid alleviates transmissible gastroenteritis virus-induced intestinal inflammation and barrier dysfunction in weaned piglets. J Anim Sci Biotechnol 2024; 15:22. [PMID: 38331814 PMCID: PMC10854194 DOI: 10.1186/s40104-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/17/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1β, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.
Collapse
Affiliation(s)
- Junning Pu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, People's Republic of China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, 611130, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Wang X, Jian H, Zhao W, Li J, Zou X, Dong X. Effects of dietary Bacillus coagulans on the productive performance, egg quality, serum parameters, and intestinal morphology of laying hens during the late laying period. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2022.2163931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoming Wang
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huafeng Jian
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiankui Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Lodh S, Das PK, Mukherjee J, Naskar S, Banerjee D, Ghosh PR, Munsi S, Patra AK. Effect of dietary oregano essential oil and milk replacer on physiological status and immunological responses of pre- and post-weaned Ghoongroo piglets. Anim Biotechnol 2023; 34:2793-2804. [PMID: 36062916 DOI: 10.1080/10495398.2022.2118131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Ghoongroo pigs have good adaptability in a low input production system with high prolificacy. The present study was conducted on pre-and post-weaned Ghoongroo piglets from 2-3 days to 12 weeks of age to evaluate the effect of a milk replacer and oregano essential oil (EO) on growth, physiological and immunological responses. Thirty six piglets were randomly divided into three groups. The control group (n = 12) was allowed to suck mother's milk. Second group piglets were provided milk replacer (MR) and piglets of the third group were provided milk replacer along with oregano EO at 500 mg/kg diet. After weaning, piglets were provided standard concentrate diets. The results showed that the body weight in MR and MR + EO groups were significantly higher compared with the control. The MR + EO group had better intestinal microbiota, greater nonspecific innate immunity with the phagocytosis efficacy of neutrophils, lower cortisol concentration and more stable thyroid hormones than the other groups. The better haematological status supported the rapid organ development and improved intestinal health status in both the experimental groups. In conclusion, milk replacer, especially with the inclusion of oregano EO, can lower weaning stress, enhance nonspecific immunity and improve growth and health status of piglets.
Collapse
Affiliation(s)
- Sweta Lodh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Shyamal Naskar
- Indian Council of Agricultural Research - Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Suparna Munsi
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| |
Collapse
|
8
|
Hou J, Lian L, Lu L, Gu T, Zeng T, Chen L, Xu W, Li G, Wu H, Tian Y. Effects of Dietary Bacillus coagulans and Tributyrin on Growth Performance, Serum Antioxidants, Intestinal Morphology, and Cecal Microbiota of Growing Yellow-Feathered Broilers. Animals (Basel) 2023; 13:3534. [PMID: 38003151 PMCID: PMC10668748 DOI: 10.3390/ani13223534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the impact of Bacillus coagulans (BC) and tributyrin (TB) supplementation on the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota of yellow-feathered broilers. Using a 2 × 2 factorial design, 480 broilers were randomly assigned to four experimental diets, comprising two levels of BC (0 and 1 g/kg) and two levels of TB (0 and 1 g/kg), over a 36-day period. A significant interaction was observed between BC and TB, impacting the average daily feed intake (ADFI) of broilers aged between 26 and 40 days (p < 0.01). BC and TB also displayed a significant interaction in relation to serum malondialdehyde levels and total antioxidant capacity (p < 0.05). Additionally, there was a significant interaction between BC and TB concerning the duodenal villus-to-crypt ratio, crypt depth, and jejunal villus-to-crypt ratio (p < 0.05). The addition of BC and TB significantly enhanced the richness and diversity of cecal microbiota, with a notable interactive effect observed for the abundance of Faecalibacterium, Ruminococcus_torques_group, and Phascolarctobacterium. In conclusion, supplementation with BC and TB can effectively improve the growth performance, serum antioxidant capacity, intestinal morphology, and cecal microbiota composition of yellow-feathered broilers, indicating the presence of an interactive effect.
Collapse
Affiliation(s)
- Jinwang Hou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lina Lian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Wenwu Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Guoqin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| | - Hongzhi Wu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.H.); (L.L.); (L.L.); (T.G.); (T.Z.); (L.C.); (W.X.); (G.L.)
| |
Collapse
|
9
|
Zhang Y, Tian X, Dong Y, Li R, Shen M, Yi D, Wu T, Wang L, Zhao D, Hou Y. Bacillus coagulans prevents the decline in average daily feed intake in young piglets infected with enterotoxigenic Escherichia coli K88 by reducing intestinal injury and regulating the gut microbiota. Front Cell Infect Microbiol 2023; 13:1284166. [PMID: 38035331 PMCID: PMC10686232 DOI: 10.3389/fcimb.2023.1284166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC), an important intestinal pathogen, poses a significant threat to the intestinal health of piglets. Bacillus coagulans (BC), a potential feed additive, can improve the intestinal function of piglets. However, the effects of BC on growth performance and intestinal function in ETEC-infected piglets are still unclear. In this study, 24 7-day-old piglets were randomly assigned to three treatment groups: control group (fed a basal diet), ETEC group (fed a basal diet and challenged with ETEC K88) and BC+ETEC group (fed a basal diet, orally administered BC, challenged with ETEC K88). During Days 1-6 of the trial, piglets in the BC+ETEC group were orally administered BC (1×108CFU/kg). On Day 5 of the trial, piglets in the ETEC and BC+ETEC groups were orally administered ETEC K88 (5×109CFU/piglet). Blood, intestinal tissue, and content samples were collected from the piglets on Day 7 of the trial. Results The average daily feed intake in the ETEC group was significantly reduced compared to that of the control group. Further research revealed that ETEC infection significantly damaged the structure of the small intestine. Compared to the control group, the villus height and surface area of the jejunum, the ratio of villus height to crypt depth in the duodenum and jejunum, and the activities of catalase and total superoxide dismutase in the jejunum were significantly reduced. Additionally, the levels of myeloperoxidase in the jejunum, malondialdehyde in the plasma and jejunum, and intestinal epithelial apoptosis were significantly increased in the ETEC group. However, BC supplementation had significantly mitigated these negative effects in the BC+ETEC group by Day 7 of the trial. Moreover, BC supplementation improved the gut microbiota imbalance by reversing the decreased numbers of Enterococcus, Clostridium and Lactobacillus in jejunum and Escherichia coli, Bifidobacterium and Lactobacillus in the colon, as well as the increased number of Escherichia coli in the jejunum induced by ETEC K88. Conclusions Overall, BC supplementation reduced the decline in average daily feed intake in ETEC K88-infected piglets by attenuating intestinal epithelial apoptosis and oxidative stress and regulating the gut microbiota. This suggests that BC may be used to prevent intestinal infections caused by ETEC in piglets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Engineering Research Center of Feed Protein Resources on Agricultural By-products, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Zheng W, Zhao Z, Yang Y, Ding L, Yao W. The synbiotic mixture of lactulose and Bacillus coagulans protects intestinal barrier dysfunction and apoptosis in weaned piglets challenged with lipopolysaccharide. J Anim Sci Biotechnol 2023; 14:80. [PMID: 37301956 DOI: 10.1186/s40104-023-00882-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Lactulose as an effective prebiotic protects intestinal mucosal injury. Bacillus coagulans is widely used in feed additives because of its ability to promote intestinal health. Our previous study suggests that the combination of lactulose and Bacillus coagulans may be a good candidate as alternative for antibiotic growth promoters. However, the in vivo effects of lactulose and Bacillus coagulans on growth and intestinal health under immune challenge in piglets remains unclear. The objective of this study is to explore the protective effects of synbiotic containing lactulose and Bacillus coagulans on the intestinal mucosal injury and barrier dysfunction under immune challenge in weaned piglets. METHODS Twenty four weaned piglets were assigned to 4 groups. Piglets in the CON-saline and LPS-LPS group were fed the basal diet, while others were fed either with chlortetracycline (CTC) or synbiotic mixture of lactulose and Bacillus coagulans for 32 d before injection of saline or lipopolysaccharide (LPS). Piglets were sacrificed 4 h after LPS injection to collect samples to determine intestinal morphology, integrity and barrier functions as well as relative genes and proteins. RESULTS Our data showed that no differences were observed in the growth performance of the four test groups. LPS injection induced higher serum diamine oxidase activities, D-lactic acid levels, and endotoxin status, lower villus height and ratio of villus height to crypt depth, greater mRNA and lower protein expression related tight junction in both jejunum and ileum. In addition, a higher apoptosis index, and protein expression of Bax and caspase-3 were also observed in the LPS challenge group. Interestingly, dietary synbiotic mixture with lactulose and Bacillus coagulans protected against LPS-induced intestinal damage, barrier dysfunction and higher apoptosis as well as CTC. CONCLUSIONS Our data suggest that dietary supplementation of synbiotic mixture with lactulose and Bacillus coagulans showed resilience to LPS-induced intestinal morphological damage, barrier dysfunction and aggressive apoptosis in piglets as well as the protective effects of CTC. These results indicate that synbiotic mixture of lactulose and Bacillus coagulans showed beneficial effects on performance and resilience to acute immune stress in weaned piglets.
Collapse
Affiliation(s)
- Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zuyan Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yunnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liren Ding
- National Experimental Teaching Center for Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
11
|
Zhao BC, Wang TH, Chen J, Qiu BH, Xu YR, Zhang Q, Li JJ, Wang CJ, Nie QF, Li JL. Effects of dietary supplementation with a carvacrol-cinnamaldehyde-thymol blend on growth performance and intestinal health of nursery pigs. Porcine Health Manag 2023; 9:24. [PMID: 37221604 DOI: 10.1186/s40813-023-00317-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Stress, herd transfer, and food changes experienced by nursery and fattening pigs can lead to reduced performance, reduced digestion and absorption, and impaired intestinal health. Given the role of essential oils in relieving stress and improving animal welfare, we hypothesized that essential oils may improve pig performance via promoting gut health and gut homeostasis laid by EOs supplementation during nursery continuously impacts performance in fattening pigs. RESULTS A total of 100 piglets (Landrace × Large White; weighted 8.08 ± 0.34 kg, weaned at d 28) were randomly selected and divided into 2 treatments: (1) basal diet (Con); (2) basal diet supplement with 0.1% complex essential oils (CEO). The experiment period was 42 days. Then weaned piglets' growth performance and indications of intestinal health were assessed. Compared to the Con group, dietary supplemented CEO enhanced BW at 14 d (P < 0.05), and increased ADG during 1 ~ 14 d and 1 ~ 42 d (P < 0.05). Furthermore, CEO group had lower FCR during 1 ~ 42 d (P < 0.05). The CEO group also showed higher VH and VH:CD in duodenum and ileum (P < 0.05). Additionally, dietary CEO supplementation improved gut barrier function, as manifested by increased the mRNA expression of tight-junction protein and decreased serum DAO, ET and D-LA levels (P < 0.05). Finally, CEO supplementation alleviated gut inflammation, increased the activity of digestive enzymes. Importantly, piglets supplemented with CEOs during nursery also had better performance during fattening, suggesting that the establishment of intestinal health will also continuously affect subsequent digestion and absorption capacity. In short, dietary supplemented CEO improved performance and gut health via modulating increased intestine absorptive area, barrier integrity, digestive enzyme activity, and attenuating intestine inflammation. Meanwhile, essential oil supplementation during the nursery period also had a favorable effect on the performance of growing pigs. CONCLUSIONS Therefore, the strategy of adding CEO to pig diets as a growth promoter and enhancing intestinal health is feasible.
Collapse
Affiliation(s)
- Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Tian-Hao Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Bai-Hao Qiu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qing Zhang
- Weiyuan Animal Pharmaceutical Co., Ltd., Shijiangzhuang, 052165, P. R. China
| | - Jian-Jie Li
- Weiyuan Animal Pharmaceutical Co., Ltd., Shijiangzhuang, 052165, P. R. China
| | - Chun-Jiang Wang
- Weiyuan Animal Pharmaceutical Co., Ltd., Shijiangzhuang, 052165, P. R. China
| | - Qiu-Feng Nie
- Weiyuan Animal Pharmaceutical Co., Ltd., Shijiangzhuang, 052165, P. R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, P. R. China.
| |
Collapse
|
12
|
Huang Y, He C, Hu Z, Chu X, Zhou S, Hu X, Deng J, Xiao D, Tao T, Yang H, Chen AF, Yin Y, Yang X. The beneficial effects of alpha-tocopherol on intestinal function and the expression of tight junction proteins in differentiated segments of the intestine in piglets. Food Sci Nutr 2023; 11:677-687. [PMID: 36789053 PMCID: PMC9922147 DOI: 10.1002/fsn3.3103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022] Open
Abstract
Alpha (α)-tocopherol is a major component of dietary vitamin E. Despite being one of the most widely used food supplements in both animals and humans, its role in intestinal functions remains unknown. We were able to examine and accurately demonstrate its permeability effect in vitro and its differentiated effect on tight junction expression in different segments of the intestine in vivo using cultured intestinal porcine epithelial cell line (IPEC-J2) and piglets. A cultured IPEC-J2 demonstrated that α-tocopherol upregulated the expression of tight junction proteins and improved their integrity, with a maximum effect at concentrations ranging from 20 to 40 μmol/L. In vivo data from weaned pigs fed different doses of α-tocopherol for 2 weeks revealed that α-tocopherol effectively increases the expression of tight junction proteins in all sections of the intestinal mucosa, with the highest effect on the duodenum at an optimum dose of 20-50 mg/kg. In contrast, α-tocopherol did not affect intestinal inflammation. These findings suggest that α-tocopherol maintains intestinal integrity and increases the expression of tight junction proteins both in vitro and in vivo.
Collapse
Affiliation(s)
- Yanjun Huang
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Caimei He
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Zheng Hu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Xuetong Chu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Sichun Zhou
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Xin Hu
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Jun Deng
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Di Xiao
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Ting Tao
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Huansheng Yang
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| | - Alex F. Chen
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
| | - Yulong Yin
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| | - Xiaoping Yang
- Key Laboratory for Study and Discovery of Small Targeted Molecules of Hunan ProvinceDepartment of Pharmacy, School of MedicineHunan Normal UniversityChangshaChina
- Research Center for Healthy Breeding of Livestock and PoultryHunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agro‐ecological Processes in Subtropical RegionInstitute of Subtropical Agriculture, The Chinese Academy of SciencesChangshaChina
| |
Collapse
|
13
|
Zhang Q, Li J, Wang G, Wang L, Zhang Z, Fang Z, Lin Y, Xu S, Feng B, Zhuo Y, Hua L, Jiang X, Zhao X, Wu D, Che L. The replacement of bacitracin methylene disalicylate with Bacillus subtilis PB6 in the diet of male Cherry Valley Ducks reduces the feed conversion ratio by improving intestinal health and modulating gut microbiota. Poult Sci 2022; 101:102155. [PMID: 36155883 PMCID: PMC9519614 DOI: 10.1016/j.psj.2022.102155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/31/2022] [Accepted: 08/21/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we compared the impacts of Bacillus subtilis PB6 (BS) and bacitracin methylene disalicylate (BMD) on the growth performance, intestinal morphology, expression of tight connection protein, and cecal microbiota community of male ducks through a 42-d trial. Three-hundred and sixty male Cherry Valley meat-type ducklings (1-day-old) were distributed into 3 groups of 6 replicates: CON group (control, basal diet), BMD group (basal diet + 45 mg/kg BMD, active ingredient dose in the feed), and BS group (basal diet + 2 × 107 CFU/kg BS in the feed). Results showed that supplementing the diet with BS reduced the average daily feed intake (ADFI) during d 15 to 42 and d 1 to 42 compared with the CON group (P = 0.032). It also reduced feed conversion ratio (FCR) during d 15 to 42 and d 1 to 42 (P < 0.05) relative to the other groups. The ileal villus height (VH) and villus height /crypt depth ratio (V/C) were increased (P < 0.05) in both the BS and BMD groups, and the jejunal VH and V/C ratio were increased in the BS group (P < 0.05). Relative to the CON, BS supplementation was associated with numerical augmentation of goblet cells in the jejunal mucosa and upregulation of jejunal zonula occludens (ZO-1) and ileal mucin2 (P < 0.05) mRNA levels. Analysis showed a negative correlation between FCR (d 0-42) and VH, V/C, and the number of goblet cells in the jejunum (P < 0.05). Additionally, BMD or BS supplementation altered the alpha diversity of colonic microbiota (P < 0.05). Correlation analysis revealed that Butyricimonas, Enterobacteriaceae, Clostridiaceae, and Tannerellaceae were positively associated with the acetic acid and butyrate concentrations (P < 0.05). Taken together, the supplementation of BS in the diet of male ducks was conducive to reducing FCR by meliorating intestinal morphology, upregulating ZO-1 and mucin2 mRNA levels, regulating the abundance of microbiota, and metabolites, and having a greater effect than BMD supplementation.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Guixiang Wang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lizhi Wang
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | | | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Li J, Zhang Q, Zhuo Y, Fang Z, Che L, Xu S, Feng B, Lin Y, Jiang X, Zhao X, Wu D. Effects of Multi-Strain Probiotics and Perilla frutescens Seed Extract Supplementation Alone or Combined on Growth Performance, Antioxidant Indices, and Intestinal Health of Weaned Piglets. Animals (Basel) 2022; 12:ani12172246. [PMID: 36077966 PMCID: PMC9454523 DOI: 10.3390/ani12172246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Weaning piglets face stressors from changes in feed and environment, which affects their growth. To resolve this problem, we explored the separate effects of multi-strain probiotics and Perilla frutescens seed extract and their combined effect on weaning piglets. We found multi-strain probiotics or Perilla frutescens seed extract both improved the gain to feed ratio and antioxidant capacity. In addition, multi-strain probiotics improved jejunal villus height and the villus height/crypt depth ratio. Perilla frutescens seed extract improved ileal villus height. The interactive effects were observed in jejunal villus height and the villus height/crypt depth ratio, ileal villus height, and the gene expression of IL-1β and mucin2 in the intestinal mucosa. This study shows that using either multi-strain probiotics or Perilla frutescens seed extract alone is more effective than their combined use in weaning piglets. Abstract This study examined the effects of multi-strain probiotics (BL) and Perilla frutescens seed extract (PSE), alone or in combination, on weaning piglets. In total, 96 weaning piglets were allocated into four treatments: CON group (the basal diet), PSE group (basal diet + 1g/kg PSE), BL group (basal diet + 2 g/kg BL), and BL+PSE group (basal diet +1 g/kg PSE + 2 g/kg BL) according to a 2 × 2 factorial arrangement. The supplementation of BL or PSE improved the gain to feed ratio. Dietary BL reduced diarrhea occurrence and Escherichia coli, but increased Lactobacillus counts in the ileal digesta. Dietary PSE tended to increase Lactobacillus counts in the ileal digesta. Interactive effects were found in terms of ileal villus height, the gene expression of IL-1β, and malondialdehyde in the ileal mucosa. Dietary BL lowered malondialdehyde in the spleen, liver, and jejunal mucosa but increased the total antioxidant capacity (T-AOC) in the liver and ileum mucosa. The supplementation of PSE improved superoxide dismutase in serum and T-AOC in the liver, and reduced MDA in liver, spleen, and jejunum mucosa. Taken together, BL or PSE showed positive effects, improving growth and intestinal morphology and enhancing antioxidant capacity. However, their interaction showed no beneficial effects on the antioxidant indices and the intestinal morphology of weaned piglets.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| | - Qianqian Zhang
- Department of Animal Resource and Science, Dankook University, Cheonan 31116, Korea
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, China
- Correspondence: (J.L.); (D.W.); Tel.: +86-134-1935-4223 (J.L.); +86-28-8629-0922 (D.W.)
| |
Collapse
|
15
|
Jia L, Wu J, Lei Y, Kong F, Zhang R, Sun J, Wang L, Li Z, Shi J, Wang Y, Wei Y, Zhang K, Lei Z. Oregano Essential Oils Mediated Intestinal Microbiota and Metabolites and Improved Growth Performance and Intestinal Barrier Function in Sheep. Front Immunol 2022; 13:908015. [PMID: 35903106 PMCID: PMC9314563 DOI: 10.3389/fimmu.2022.908015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
With the increased demand for safe and sustainable alternatives to growth promoting antibiotics in the livestock industry, oregano essential oils (OEO) and Lactobacillus reuteri (LR) have been examined as alternatives to antibiotics for growth promotion and to improve animal health and performance. However, the mechanism underlying the OEO and LR mediation of sheep growth remains unknown. In this study, 16S rRNA gene sequencing and untargeted metabolomics were used to determine the role of the gut microbiota in the growth improvements observed. The potential modulating roles of intestinal microbial metabolites of OEO and LR to intestinal health were systematically explored as well. It was observed that both OEO and LR had greater average daily gain (ADG) and lower F/G ratio. Furthermore, OEO also appeared to have produced a greater amylase enzyme activity and mucin gene expression in the jejunal mucosa. It was also observed that OEO reduced serum IL-2 and TNF-β as well as mRNA levels of NF-κB p65, toll-like receptor-4 (TLR-4), and IL-6 in the jejunal mucosa. Moreover, dietary OEO supplementation increased the abundances of Ruminococcus, Bifidobacterium and Enterococcus, while the relative abundances of Succiniclasticum, Marvinbryantia and Streptococcus were enriched in LR group. Spearman’s correlation analysis revealed that the abundances of Bifidobacterium, Ruminococcus and Enterococcus were positively correlated with the mRNA expression of mucins. Moreover, the relative abundance of Enterococcus was positively correlated with amylase activity. Metabolomics analysis indicated that OEO and LR increased the levels of indole acetaldehyde and indole-3-acetic acid through the tryptophan metabolism pathway. It was observed that LR also decreased the inflammatory metabolites including tryptamine and 5-hydroxyindole-3-acetic acid. Collectively, these results suggested that OEO exerted a beneficial effect on growth performance and the mucosal barrier, affected tryptophan metabolism and improved the intestinal microbiota of sheep.
Collapse
Affiliation(s)
- Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fanyun Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianxiang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liao Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yubing Wei
- The Animal Husbandry and Veterinary Station in Pingshan Lake Mongolian Township of Ganzhou District, Zhangye, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Zhaomin Lei,
| |
Collapse
|
16
|
Sun T, Miao H, Zhang C, Wang Y, Liu S, Jiao P, Li W, Li Y, Huang Z. Effect of dietary Bacillus coagulans on the performance and intestinal microbiota of weaned piglets. Animal 2022; 16:100561. [PMID: 35716416 DOI: 10.1016/j.animal.2022.100561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
The performance of weaned piglets suffers from severe limitations resulting from diarrhoea. Therefore, this trial was performed to investigate the effects of Bacillus coagulans as an alternative to antibiotics on piglet growth performance and intestinal health. Ninety (initial BW = 7.70 ± 0.17 kg, weaning age of 26 days) healthy weaned piglets with similar BWs were selected and randomised into three treatment groups. Pigs in the negative control (NC) group were fed a basal diet, pigs in the positive control (PC) group were fed the basal diet plus antibiotics, and pigs in the test group (BC) were fed the basal diet plus Bacillus coagulans at 600 g/t; the trial lasted for 28 days. The results showed that the ratios of feed to gain (F:G) of both the BC and PC groups from 1 to 21 days were significantly lower (P < 0.05), and the average daily weight gain (ADG) of the BC group from 22 to 28 days was significantly higher (P < 0.05) than that of the NC group in terms of growth performance. The diarrhoea index was lowest in the PC group, followed by the BC group, and highest in the NC group. The BC group had a lower diarrhoea index at the later stage. We performed 16S rRNA sequencing to measure the intestinal bacteria and found that the BC group had a higher intestinal bacteria diversity than the NC and PC groups (P < 0.05). From days 1 to 21, the main differential species were Ruminococcaceae_UCG-014 and Faecalibacterium (P < 0.05); from days 22 to 28, the main differential species were Prevotella_9, unclassified_f__Lachnospiraceae, Anaerovibrio, and Ruminococcaceae_UCG-002 (P < 0.05). The correlation analysis between growth performance and species revealed specific gut microorganisms responsible for variation in F:G, ADG, and diarrhoea index, such as Prevotellaceae, Clostridium_sensu_stricto_1, Ruminococcaceae, Phascolarctobacterium, and Anaerovibrio. In conclusion, Bacillus coagulans changed the microbial composition in the faeces of weaned piglets, which had positive effects on growth performance and the diarrhoea index. Therefore, our study provided new insight into the future application of Bacillus coagulans as an additive.
Collapse
Affiliation(s)
- Tiehu Sun
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Huabiao Miao
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Chengbo Zhang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yongsheng Wang
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Shuai Liu
- New Hope Liuhe Group Co., Ltd., Qingdao 266000, China
| | - Peng Jiao
- COFCO Feed Co., Ltd., Beijing 10020, China
| | - Wei Li
- COFCO Feed Co., Ltd., Beijing 10020, China
| | - Yong Li
- COFCO Feed Co., Ltd., Beijing 10020, China.
| | - Zunxi Huang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
17
|
Thuekeaw S, Angkanaporn K, Nuengjamnong C. Microencapsulated basil oil (Ocimum basilicum Linn.) enhances growth performance, intestinal morphology, and antioxidant capacity of broiler chickens in the tropics. Anim Biosci 2022; 35:752-762. [PMID: 34991219 PMCID: PMC9065782 DOI: 10.5713/ab.21.0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Microencapsulation is a technique to improve stability, bioavailability, and controlled release of active ingredients at a target site. This experiment aimed to investigate the effects of microencapsulated basil oil (MBO) on growth performance, apparent ileal digestibility (AID), jejunal histomorphology, bacterial population as well as antioxidant capacity of broiler chickens in a tropical climate. METHODS A total of 288 one-day-old female broilers (Ross 308) were randomly allocated into 4 groups (6 replicates of 12 birds), based on a completely randomized design. Dietary treatments were as follows: i) basal diet (NC), ii) basal diet with avilamycin at 10 ppm (PC), iii) basal diet with free basil oil (FBO) at 500 ppm, and iv) basal diet with MBO at 500 ppm, respectively. RESULTS Dietary supplementation of MBO improved average daily gain, and feed conversion ratio of broilers throughout the 42-d trial period (p<0.05), whereas MBO did not affect average daily feed intake compared with NC group. The broilers fed MBO diet exhibited a greater AID of crude protein and gross energy compared with those in other groups (p<0.05). Lactobacillus spp. and Escherichia coli populations were not affected by feeding dietary treatments. Both FBO and MBO had positive effects on jejunal villus height (VH), villus height to crypt depth ratio (VH:CD) and villus surface area of broilers compared to NC and PC groups (p<0.05). Superoxide dismutase level in the duodenal mucosa of MBO group was significantly increased (p<0.01), whereas malondialdehyde level was significantly decreased (p<0.01). CONCLUSION Microencapsulation could be considered as a promising driver of the basil oil efficiency, consequently MBO at 500 ppm could be potentially used as a feed additive for improvement of intestinal integrity and nutrient utilization, leading to better performance of broiler chickens.
Collapse
Affiliation(s)
- Sureerat Thuekeaw
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Kris Angkanaporn
- Department of Veterinary Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
| | - Chackrit Nuengjamnong
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330,
Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok 10330,
Thailand
| |
Collapse
|
18
|
Zheng H, Cao H, Zhang D, Huang J, Li J, Wang S, Lu J, Li X, Yang G, Shi X. Cordyceps militaris Modulates Intestinal Barrier Function and Gut Microbiota in a Pig Model. Front Microbiol 2022; 13:810230. [PMID: 35369439 PMCID: PMC8969440 DOI: 10.3389/fmicb.2022.810230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of Cordyceps militaris (CM) on intestinal barrier function and gut microbiota in a pig model. A total of 160 pigs were randomly allocated to either a control group (fed the basal diet) or a CM group (fed the basal diet supplemented with 300 mg/kg CM). CM improved intestinal morphology and increased the numbers of goblet cells and intraepithelial lymphocytes. CM also elevated the expression of zona occluden-1, claudin-1, mucin-2 and secretory immunoglobulin A. Furthermore, the mucosal levels of pro-inflammatory cytokines were downregulated while the levels of anti-inflammatory cytokines were upregulated in the CM group. Mechanistically, CM downregulated the expression of key proteins of the TLR4/MyD88/NF-κB signaling pathway. Moreover, CM altered the colonic microbial composition and increased the concentrations of acetate and butyrate. In conclusion, CM can modulate the intestinal barrier function and gut microbiota, which may provide a new strategy for improving intestinal health.
Collapse
|
19
|
Luo Y, Lan C, Xie K, Li H, Devillard E, He J, Liu L, Cai J, Tian G, Wu A, Ren Z, Chen D, Yu B, Huang Z, Zheng P, Mao X, Yu J, Luo J, Yan H, Wang Q, Wang H, Tang J. Active or Autoclaved Akkermansia muciniphila Relieves TNF-α-Induced Inflammation in Intestinal Epithelial Cells Through Distinct Pathways. Front Immunol 2022; 12:788638. [PMID: 34975882 PMCID: PMC8716699 DOI: 10.3389/fimmu.2021.788638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Intestinal inflammation is a major threat to the health and growth of young animals such as piglets. As a next-generation probiotics, limited studies have shown that Akkermansia muciniphila could alleviate inflammation of intestinal epithelial cells (IECs). In this study, a TNF-α-induced inflammatory model of IPEC-J2 cells, the intestinal porcine enterocytes, was built to evaluate the effects of active or inactive A. muciniphila on the inflammation of IECs. The viability of IPEC-J2 cells was the highest when treated with active (108 copies/mL) or inactive (109 copies/mL) A. muciniphila for 7.5 h (P < 0.01). Treated with 20 ng/mL of TNF-α and followed by a treatment of A. muciniphila, the mRNA level of proinflammatory cytokines (IL-8, IL-1β, IL-6 and TNF-α) was remarkably reduced (P < 0.05) along with the increased mRNA level of tight junction proteins (ZO-1 and Occludin, P < 0.05). Flow cytometry analysis showed that active or inactive A. muciniphila significantly suppressed the rate of the early and total apoptotic of the inflammatory IPEC-J2 cells (P < 0.05). According to results of transcriptome sequencing, active and inactive A. muciniphila may decline cell apoptosis by down-regulating the expression of key genes in calcium signaling pathway, or up-regulating the expression of key genes in cell cycle signaling pathway. And the bacterium may alleviate the inflammation of IECs by down-regulating the expression of PI3K upstream receptor genes. Our results indicate that A. muciniphila may be a promising NGP targeting intestinal inflammation.
Collapse
Affiliation(s)
- Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Cong Lan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Kunhong Xie
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Estelle Devillard
- Center of Research for Nutrition and Health, Adisseo France SAS, Commentry, France
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Li Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingyi Cai
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Aimin Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Province Key Laboratory of Animal Disease and Human Health, Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangbing Mao
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Junqiu Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quyuan Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huifen Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jiayong Tang
- Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory for Animal Disease-Resistance Nutrition and Feed of Ministry of Agriculture of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
20
|
Ma J, Long S, Wang J, Gao J, Piao X. Microencapsulated essential oils combined with organic acids improves immune antioxidant capacity and intestinal barrier function as well as modulates the hindgut microbial community in piglets. J Anim Sci Biotechnol 2022; 13:16. [PMID: 35144681 PMCID: PMC8832826 DOI: 10.1186/s40104-021-00670-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The objective of this experiment was to evaluate the effect of a combination of microencapsulated essential oils and organic acids (MOA) on growth performance, immuno-antioxidant status, intestinal barrier function and microbial structure of the hindgut in piglets. A total of 120 piglets (Duroc × [Landrace × Yorkshire]; weighted 7.66 ± 1.79 kg, weaned at d 28) were randomly selected and allocated to 3 treatments with 4 replicates per group and 10 piglets per replicate according to the initial body weight and gender. The dietary treatments were as follows: 1) basal diet (Ctrl); 2) Ctrl + chlortetracycline (75 mg/kg) (AGP); 3) Ctrl+ MOA (1500 mg/kg). The experiment period was lasted for 21 d. RESULTS Compared to the Ctrl group, dietary supplemented MOA alleviated (P < 0.05) the diarrhea rate from d 12 to 21, enhanced (P < 0.05) the concentration of serum interlukin-10 and glutathione peroxidase in piglets on d 11 after weaning and serum superoxide dismutase in 21-day piglets. The MOA group also improved (P < 0.05) the apparent digestibility of dry matter (DM), organic matter (OM) and gross energy (GE), up-regulated (P < 0.05) the mRNA expression level of occludin, claudin-1 and mucin-2 in ileum and increased (P < 0.05) the contents of propionic and butyric acids in the cecum of piglets. The MOA group modulated the cecal and colonic microbial community structure and increased (P < 0.05) the abundance of Faecalibacterium and Muribaculaceae in cecum and Streptococcus and Weissella in colon. Additionally, AGP group decreased (P < 0.05) apparent digestibility of DM, OM and GE as well as down-regulated (P < 0.05) relative gene expression level of claudin-1 in duodenum and jejunum, ZO-1 and mucin-1 in jejunum of piglets. CONCLUSION In summary, dietary supplemented MOA alleviated diarrhea and improved nutrient apparent digestibility in piglets via enhancing immuno-antioxidant properties, increasing digestive enzyme activity, up-regulating the expression of intestinal barrier-related genes, and modifying the microbial community structure of the cecum and colon. Therefore, dietary supplementation with MOA as an alternative to antibiotics was feasible to improve intestinal health of piglets in practical production.
Collapse
Affiliation(s)
- Jiayu Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenfei Long
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jian Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
21
|
All-Trans Retinoic Acid Attenuates Transmissible Gastroenteritis Virus-Induced Apoptosis in IPEC-J2 Cells via Inhibiting ROS-Mediated P38MAPK Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11020345. [PMID: 35204227 PMCID: PMC8868330 DOI: 10.3390/antiox11020345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/06/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) can cause diarrhea, dehydration, and high mortality in piglets, which is closely related to intestinal epithelial cell apoptosis caused by TGEV infection. All-trans retinoic acid (ATRA) is the active metabolite of vitamin A, which has antioxidant and anti-apoptotic properties. However, it is unknown whether ATRA can attenuate TGEV-induced IPEC-J2 cells apoptosis. Therefore, we investigated the protective effects of ATRA on TGEV-induced apoptosis of IPEC-J2 cells and explored the potential molecular mechanism. Our results indicated that TGEV infection caused IPEC-J2 cells damage and apoptosis. However, ATRA treatment attenuated TGEV-induced IPEC-J2 cells damage by upregulating the mRNA expressions of ZO-1, Occludin, and Mucin-1. ATRA treatment also attenuated TGEV-induced apoptosis in IPEC-J2 cells by downregulating the expression of Caspase-3, which is related to the inhibition of death receptor (Fas and Caspase-8) and mitochondrial (Bax, Bcl-2, and Caspase-9) pathways. Moreover, ATRA treatment prevented TGEV-induced ROS and MDA production and the upregulation of P38MAPK phosphorylation level, which is related to the increase in the activities of antioxidant enzymes (SOD, CAT, and T-AOC) and the mRNA abundance of antioxidant-related genes (GPX1, GPX2, SOD1, CAT, GCLC, and GCLM). In addition, treatment of TGEV-infected IPEC-J2 cells with the ROS inhibitors (NAC) significantly reduced the protein levels of p-P38MAPK, Fas, Bax, and Cleaved-caspase-3 and the percentage of apoptotic cells. Our results indicated that ATRA attenuated TGEV-induced apoptosis in IPEC-J2 cells via improving the antioxidant capacity, thereby inhibiting the cell damage. the mechanism of which is associated with the inhibition of ROS-mediated P38MAPK signaling pathway.
Collapse
|
22
|
Pu J, Chen D, Tian G, He J, Huang Z, Zheng P, Mao X, Yu J, Luo J, Luo Y, Yan H, Yu B. All-Trans Retinoic Acid Attenuates Transmissible Gastroenteritis Virus-Induced Inflammation in IPEC-J2 Cells via Suppressing the RLRs/NF-κB Signaling Pathway. Front Immunol 2022; 13:734171. [PMID: 35173714 PMCID: PMC8841732 DOI: 10.3389/fimmu.2022.734171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/06/2022] [Indexed: 01/03/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV) infection can cause transmissible gastroenteritis (TGE), especially in suckling piglets, resulting in a significant economic loss for the global pig industry. The pathogenesis of TGEV infection is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) has anti-inflammatory activity and immunomodulatory properties, but it is unclear whether ATRA can attenuate the inflammatory response induced by TGEV. This study aimed to investigate the protective effect of ATRA on TGEV-induced inflammatory injury in intestinal porcine epithelial cells (IPEC-J2) and to explore the underlying molecular mechanism. The results showed that TGEV infection triggered inflammatory response and damaged epithelial barrier integrity in IPEC-J2 cells. However, ATRA attenuated TGEV-induced inflammatory response by inhibiting the release of pro-inflammatory cytokines, including IL-1β, IL-6, IL-8 and TNF-α. ATRA also significantly reversed the reduction of ZO-1 and Occludin protein levels induced by TGEV infection and maintained epithelial barrier integrity. Moreover, ATRA treatment significantly prevented the upregulation of IкBα and NF-κB p65 phosphorylation levels and the nuclear translocation of NF-кB p65 induced by TGEV. On the other hand, treatment of TGEV-infected IPEC-J2 cells with the NF-κB inhibitors (BAY11-7082) significantly decreased the levels of inflammatory cytokines. Furthermore, ATRA treatment significantly downregulated the mRNA abundance and protein levels of TLR3, TLR7, RIG-I and MDA5, and downregulated their downstream signaling molecules TRIF, TRAF6 and MAVS mRNA expressions in TGEV-infected IPEC-J2 cells. However, the knockdown of RIG-I and MDA5 but not TLR3 and TLR7 significantly reduced the NF-κB p65 phosphorylation level and inflammatory cytokines levels in TGEV-infected IPEC-J2 cells. Our results indicated that ATRA attenuated TGEV-induced IPEC-J2 cells damage via suppressing inflammatory response, the mechanism of which is associated with the inhibition of TGEV-mediated activation of the RLRs/NF-κB signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education/Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
23
|
Tang Q, Yi H, Hong W, Wu Q, Yang X, Hu S, Xiong Y, Wang L, Jiang Z. Comparative Effects of L. plantarum CGMCC 1258 and L. reuteri LR1 on Growth Performance, Antioxidant Function, and Intestinal Immunity in Weaned Pigs. Front Vet Sci 2021; 8:728849. [PMID: 34859082 PMCID: PMC8632148 DOI: 10.3389/fvets.2021.728849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022] Open
Abstract
Lactobacillus plantarum CGMCC 1258 and Lactobacillus reuteri LR1 are two important strains of probiotics. However, their different advantages in the probiotic effect of weaned pigs are still poorly understood. Therefore, the study was to investigate the comparative effects of dietary supplementation of L. plantarum CGMCC 1258 and L. reuteri LR1 on growth performance, antioxidant function, and intestinal immunity in weaned pigs. Ninety barrows [initial body weight (BW) = 6.10 ± 0.1 kg] 21 days old were randomly divided into 3 treatments with 5 replicates, each replicate containing 6 pigs. Pigs in control (CON) were fed a basal diet, and the basal diets supplemented with 5 × 1010 CFU/kg L. plantarum CGMCC 1258 (LP) or L. reuteri LR1 (LR) for 42 days, respectively. The results showed that LP increased (p < 0.05) serum superoxide dismutase (SOD), and decreased (p < 0.05) serum malondialdehyde (MDA) and the expression and secretion of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) in intestinal mucosa, but has no significant effect on growth performance and diarrheal incidence. However, LR increased (p < 0.05) final BW and average daily gain (ADG), reduced (p < 0.05) 29–42-day diarrheal incidence, decreased (p < 0.05) the expression and secretion of IL-1β, IL-6, TNF-α, and IFN-γ, and increased (p < 0.05) the expression of transforming growth factor-β (TGF-β) in intestinal mucosa. In addition, the serum glutathione peroxidase (GSH-PX), mRNA relative expression of Na+-K+-2Cl– co-transporter 1 (NKCC1) and cystic fibrosis transmembrane conductance regulator (CFTR) and the content of toll-like relative (TLR2) and TLR4 in the jejunum, and secretory immunoglobulin (sIgA) content of ileal mucosa were higher (p < 0.05) than LP. Collectively, dietary L. plantarum CGMCC 1258 improved intestinal morphology, intestinal permeability, intestinal immunity, and antioxidant function in weaned pigs. Dietary L. reuteri LR1 showed better growth performance, a lower incidence of diarrhea, better intestinal morphology, and a higher extent of immune activation in weaned pigs.
Collapse
Affiliation(s)
- Qingsong Tang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,College of Animal Science, Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weibin Hong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiwen Wu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenglan Hu
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunxia Xiong
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
24
|
Zamojska D, Nowak A, Nowak I, Macierzyńska-Piotrowska E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals (Basel) 2021; 11:ani11123431. [PMID: 34944208 PMCID: PMC8697875 DOI: 10.3390/ani11123431] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breeders are searching for methods to protect farming animals against diseases caused by pathogenic bacteria. The easiest way to fight bacteria is to use antibiotics. Unfortunately, their abuse results in the presence of bacteria resistant to the most commonly used antibiotics in the environment. The restrictions on the use of antibiotics have forced the search for natural and safe ways to protect animals. It has been shown that the use of probiotics based on lactic acid bacteria may have a positive effect on the growth and use of feed by broilers, on the stabilization of the intestinal microbiota of chickens and pigs, and in the prevention of mastitis in dairy cows. The use of probiotics (live, nonpathogenic microorganisms) and postbiotics (inanimate bacteria, cell components or post-fermentation by-products) reduces the occurrence of pathogens in large-scale farms. Abstract Since 2006, the use of growth-promoting antibiotics has been banned throughout the European Union. To meet the expectations of livestock farmers, various studies have been carried out with the use of lactic acid bacteria. Scientists are trying to obtain the antimicrobial effect against the most common pathogens in large-scale farms. Supplementing the diet of broilers with probiotics (live, nonpathogenic microorganisms) stabilized the intestinal microbiota, which improved the results of body weight gain (BWG) and feed intake (FI). The positive effect of probiotics based on lactic acid bacteria has been shown to prevent the occurrence of diarrhea during piglet weaning. The antagonistic activity of postbiotics (inanimate bacteria, cell components, or post-fermentation by-products) from post-culture media after lactobacilli cultures has been proven on Staphylococcus aureus—the pathogen most often responsible for causing mastitis among dairy cows. The article aims to present the latest research examining the antagonistic effect of lactic acid bacteria on the most common pathogens in broilers, piglets, pigs, and cow farms.
Collapse
Affiliation(s)
- Daria Zamojska
- Polwet-Centrowet Sp. z o.o., M. Konopnickiej 21, 98-100 Lask, Poland;
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
- Correspondence: (D.Z.); (A.N.)
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland;
| | | |
Collapse
|
25
|
Yu C, Zhang J, Zhang H, Chen Y, Wang C, Zhang L, Ding L, Wang T, Yang Z. Influence of Trans-anethole on the nutrient digestibility and intestinal barrier function in broilers. Poult Sci 2021; 100:101489. [PMID: 34695630 PMCID: PMC8555437 DOI: 10.1016/j.psj.2021.101489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 01/19/2023] Open
Abstract
This experiment was undertaken to investigate the effects of dietary trans-anethole (TA) at 5 levels (0, 200, 400, 600, and 800 mg/kg of diet) on the growth performance, apparent nutrient digestibility and intestinal barrier function in broilers. Three hundred twenty 1-day-old Arbor Acres broilers were randomly divided into the 5 dietary treatments with 8 replicates each for 42 d. Dietary TA supplementation increased (P < 0.05) average daily feed intake (ADFI), but had no effects (P > 0.05) on average daily gain (ADG), feed/gain (F/G), and body weight (BW) of broilers throughout the entire experimental period. The apparent metabolizable energy (AME) and nitrogen-corrected apparent metabolizable energy (AMEn), the apparent total tract digestibility of dry matter (DM), crude protein (CP), organic matter (OM), and gross energy (GE) showed a quadratic increase (P < 0.05) with the increasing TA concentration in the diet. The apparent ileal digestibility of Lys, Met, Leu, Thr, Ala, Tyr, and Pro were higher (P < 0.05) in birds fed TA diets compared with control group. Dietary supplementation of 400 mg/kg of TA increased (P < 0.05) mRNA levels of jejunal and ileal Na+/glucose co-transporter (SGLT1) on d 21 and d 42, oligopeptide transporter 1 (PepT1) on d 42, and ileal mRNA expressions of occludin (OCLN), claudin-1 (CLDN-1), and mucin 2 (MUC2), villus height (VH), crypt depth (CD), and VH:CD on d 21, as well as jejunal zonula-occludens-1 (ZO-1) and ileal mucin 2 on d 42. Linear or quadratic responses of the jejunal CD and villus VH:CD ratio occurred (P < 0.01) with increasing dietary TA concentration on d 42. The inclusion of 400 mg/kg TA decreased (P < 0.05) cecal Escherichia coli population on d 21 and d 42, but increased (P < 0.05) Bifidobacterium population on d 21 and ileal Bifidobacterium on d 42. In conclusion, 400 mg/kg of TA is the optimum concentration for increasing nutrient utilization and intestinal barrier function of broilers.
Collapse
Affiliation(s)
- Caiyun Yu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Jingfei Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Hao Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Yanan Chen
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Chao Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Lili Zhang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Liren Ding
- College of Animal Sciences and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.
| | - Zaibin Yang
- College of Animal Sciences and Technology, Shandong Agricultural University, Tai'an, Shandong, 271018, P. R. China
| |
Collapse
|
26
|
Hofmann HH, Heusler K, Roth K, Pröll-Cornelissen MJ, Große-Brinkhaus C, Schellander K, Neuhoff C. Oregano essential oil showed limited effects on pigs' carcass quality and haematology whereas a transcriptome analysis revealed significant modulations in the jejunum and the ileum. J Anim Physiol Anim Nutr (Berl) 2021; 106:1017-1035. [PMID: 34617344 DOI: 10.1111/jpn.13639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022]
Abstract
Pig production depends on a health and performance balance. An approach to improve intestinal health is the oregano essential oil (OEO) supplementation within a conventional diet. Intestinal integrity regulating effects, for example gene expression, of some feed ingredients are important key factors for that balance. We hypothesized that OEO affects the expression of genes associated with pigs' intestinal integrity. In four trials, a total of 86 pigs have been used. From weaning, the 'treated' group (n = 42) was additionally fed an oregano flavour additive [1500 mg/kg (7.5% pure OEO)] within the basal diet. The 'control' group (n = 44) was kept under identical environmental conditions, except the OEO. At age of 6 months, pigs were slaughtered with an average weight of 111.1 ± 10.9 kg. In addition to automatically generated 'Fat-o-Meter' (AutoFOM) data, carcass quality factors have been measured manually. Valuable cuts of meat, such as ham and belly, were significantly reduced in the OEO group. Effects of OEO on pigs' haematologic parameters were very limited. For transcriptome analysis, the most interesting microarray expression results have been listed in a table (topTable). Selected genes were technically validated by qPCR. As a result, few significant differences in animal development and meat quality have been found between the OEO treated and the control group. Depending on OEO supplementation, we found 93 differently regulated genes in the jejunal tissue (70 up, 23 down) and 60 in the ileal tissue (48 up, 12 down). Just three genes (GRIN3B [glutamate ionotropic receptor NMDA type subunit 3B], TJP1/ZO-1 [tight junction protein ZO-1] and one uncharacterized gene) were affected by OEO both in jejunum and ileum. qPCR validation revealed AKT serine/threonine kinase 3 (AKT3), Interferon (IFN) -ε, -ω, tight junction protein (TJP1)/ZO-1 (ZO-1) to be upregulated in the jejunum and C-C motif chemokine ligand 21 (CCL21) was upregulated in the ileum of pigs that were supplemented with OEO. OEO supplementation had limited effects on pigs' performance traits. However, we were able to demonstrate that OEO alters the expression of genes associated with adaptive immune response in pigs' small intestine. These findings help to explain OEOs' beneficial impact on pigs' intestinal integrity.
Collapse
Affiliation(s)
- Haiko Hendrik Hofmann
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Katharina Heusler
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Katharina Roth
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | | | - Christine Große-Brinkhaus
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry/Animal Genetics Group, University of Bonn, Bonn, Germany
| |
Collapse
|
27
|
Wang B, Gong L, Zhou Y, Tang L, Zeng Z, Wang Q, Zou P, Yu D, Li W. Probiotic Paenibacillus polymyxa 10 and Lactobacillus plantarum 16 enhance growth performance of broilers by improving the intestinal health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:829-840. [PMID: 34466687 PMCID: PMC8384779 DOI: 10.1016/j.aninu.2021.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 01/13/2023]
Abstract
With the ever-growing strict prohibitions on antibiotic growth promoters (AGP) in animal production, in-feed probiotics are becoming attractive alternatives to antibiotics in the poultry industry. To investigate the effects of Paenibacillus polymyxa 10 and Lactobacillus plantarum 16 on the growth performance and intestinal health of broilers, 540 male Cobb 500 broilers of 1 d old were randomly divided into 3 groups with 6 replicates per group and 30 chicks per replicate. Broilers were fed with either a basal diet or basal diets supplemented with 1 × 108 colony-forming units (CFU)/kg P. polymyxa 10 (BSC10) or L. plantarum 16 (Lac16) for 42 d. Results showed that Lac16 treatment improved (P < 0.05) the growth performance (body weight and feed conversion) of broilers at the starter phase, while BSC10 treatment slightly improved (P > 0.05) the growth performance of the starter phase broilers. The increased villus height (P < 0.05) at d 14, 21 and 42 and villus height to crypt depth ratio (P < 0.05) at d 14 and 21 were observed in the ileum of the 2 probiotic groups. Besides, transmission electron microscopy results showed that the 2 probiotics enhanced the intestinal epithelial barrier. Both probiotic treatments up-regulated (P < 0.05) the mRNA expression of fatty acid binding protein 1 (FABP1) and sodium-dependent glucose transporters-1 (SGLT-1) in the ileal mucosa of broilers at d 21. In addition, BSC10 and Lac16 treatments significantly (P < 0.05) increased the relative abundance of short-chain fatty acids-producing bacteria, such as Butyricicoccus pullicaecorum, Faecalibacterium prausnitzii, Lachnospira and Coprococcu, and significantly (P < 0.05) decreased the relative abundance of enteric pathogens (Escherichia coli, Bacteroides fragilis and Shigella sonnei). Furthermore, the 2 probiotic treatments also increased the positive connection among the intestinal microbes and the carbohydrate metabolism-related pathways of the intestinal bacteria (P < 0.05), with decreasing (P < 0.05) nucleotides biosynthesis-related pathways of the intestinal bacteria. Overall, these results suggest that the 2 probiotics, especially Lac16, have a potential beneficial effect on the growth performance and intestinal health of starter phase broilers.
Collapse
Affiliation(s)
- Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Li Gong
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Li Tang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Peng Zou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science (Eastern of China) of the Ministry of Agriculture, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Institute of Animal Nutrition and Feed Sciences, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
28
|
Chen Z, Lv Y, Xu H, Deng L. Herbal Medicine, Gut Microbiota, and COVID-19. Front Pharmacol 2021; 12:646560. [PMID: 34305582 PMCID: PMC8293616 DOI: 10.3389/fphar.2021.646560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 19 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has grown to a worldwide pandemic with substantial mortality. The symptoms of COVID-19 range from mild flu-like symptoms, including cough and fever, to life threatening complications. There are still quite a number of patients with COVID-19 showed enteric symptoms including nausea, vomiting, and diarrhea. The gastrointestinal tract may be one of the target organs of SARS-CoV-2. Angiotensin converting enzyme 2 (ACE2) is the main receptor of SARS-CoV-2 virus, which is significantly expressed in intestinal cells. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Intestinal flora imbalance and endotoxemia may accelerate the progression of COVID-19. Many herbs have demonstrated properties relevant to the treatment of COVID-19, by supporting organs and systems of the body affected by the virus. Herbs can restore the structure of the intestinal flora, which may further modulate the immune function after SARS-CoV-2 infection. Regulation of intestinal flora by herbal medicine may be helpful for the treatment and recovery of the disease. Understanding the role of herbs that regulate intestinal flora in fighting respiratory virus infections and maintaining intestinal flora balance can provide new ideas for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Ziqi Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Medical College, Sun Yat-sen University, Guangzhou, China
| | - Yiwen Lv
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Chen X, Gu M, Li T, Sun Y. Metabolite reanalysis revealed potential biomarkers for COVID-19: a potential link with immune response. Future Microbiol 2021; 16:577-588. [PMID: 33973485 PMCID: PMC8112156 DOI: 10.2217/fmb-2021-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To understand the pathological progress of COVID-19 and to
explore the potential biomarkers. Background: The COVID-19 pandemic
is ongoing. There is metabolomics research about COVID-19 indicating the
rich information of metabolomics is worthy of further data mining.
Methods: We applied bioinformatics technology to reanalyze the
published metabolomics data of COVID-19. Results: Benzoate,
β-alanine and 4-chlorobenzoic acid were first reported to be used
as potential biomarkers to distinguish COVID-19 patients from healthy
individuals; taurochenodeoxycholic acid 3-sulfate, glucuronate
and N,N,N-trimethyl-alanylproline betaine TMAP are the top classifiers in
the receiver operating characteristic curve of COVID-severe and
COVID-nonsevere patients. Conclusion: These unique metabolites
suggest an underlying immunoregulatory treatment strategy for COVID-19.
Collapse
Affiliation(s)
- Xin Chen
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Princeton High School, Princeton, NJ 08540, USA
| | - Mingli Gu
- Department of Laboratory Diagnosis, Changhai Hospital, Navy Military Medical University, Shanghai, 200433, China
| | - Tengda Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yi Sun
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
30
|
Zhang B, Zhang H, Yu Y, Zhang R, Wu Y, Yue M, Yang C. Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult Sci 2021; 100:101168. [PMID: 33975039 PMCID: PMC8131733 DOI: 10.1016/j.psj.2021.101168] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the effects of Bacillus coagulans (B. coagulans) as an alternative to antibiotics on growth performance, antioxidant capacity, immunity function and gut health in broilers. A total of 480 one-day-old broilers were randomly divided into 3 treatments with 8 replicates comprising 20 broilers each. The experiment lasted 42 d. Treatments included: basal diet without antibiotics (NCO); basal diet supplemented with 75 mg/kg chlortetracycline (ANT); basal diet supplemented with 5 × 109 CFU/kg B. coagulans(BC). The B. coagulans enhanced body weight (BW) and average daily gain compared with the NCO group (P < 0.05). However, there were no significant differences in average daily feed intake and feed: gain ratio (F: G) among three groups (P > 0.05). The B. coagulans significantly increased catalase, superoxide dismutase, and glutathione peroxidase levels and reduced malondialdehyde levels (P < 0.05). The serum immunoglobulins (IgA, IgM, and IgY) were significantly higher in the BC group when compared to the NCO and ANT groups (P < 0.05). The B. coagulans also markedly reduced serum levels of proinflammatory factors (IL-1β, IL-6, and TNF-α) and enhanced anti-inflammatory factor (IL-10) concentrations compared with control group (P < 0.05). Moreover, compared with the control group, BC significantly inhibited serum xanthine oxidase activity (P < 0.05). The levels of acetic acid, propionic acid, butyrate, isobutyric acid and valerate in BC group were significantly increased on d 42 compared with the NCO and ANT groups (P < 0.05). Furthermore, BC significantly altered cecal microbiota by reducing Desulfovibrio and Parasutterella, and by increasing Alistipes and Odoribacter (P < 0.05, P < 0.05, P < 0.001, P < 0.01, respectively). In conclusion, dietary B. coagulans, when used as an alternative to antibiotics, improved body weight, average daily gain, antioxidant capacity, immunity function and gut health in broilers.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Haoran Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yang Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yanping Wu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Min Yue
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China.
| |
Collapse
|
31
|
Sun E, Zhang X, Zhao Y, Li J, Sun J, Mu Z, Wang R. Beverages containing Lactobacillus paracasei LC-37 improved functional dyspepsia through regulation of the intestinal microbiota and their metabolites. J Dairy Sci 2021; 104:6389-6398. [PMID: 33714585 DOI: 10.3168/jds.2020-19882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
Functional dyspepsia (FD) is a common disease of the digestive system and probiotics have been reported to be effective in the treatment of functional gastrointestinal diseases. The aim of this study was to determine the effect of the beverage containing Lactobacillus paracasei LC-37 (LC-37) and its ability to relieve symptoms of FD by a randomized clinical trial. Due to the mechanistic complexity underlying FD, intestinal microbiota and stool metabolomes were also evaluated. The results showed that FD was relieved in participants after treatment with the beverage containing LC-37 for 14 and 28 d. The clinical symptom scores were significantly decreased after these times (abdominal pain and belching were significantly decreased after 14 d and almost absent after 28 d of treatment). Probiotics, such as those containing the Lactobacillus, Lactococcus, and Weissella, significantly increased, and the abundance of harmful bacteria such as Lachnocliostridium significantly decreased. Furthermore, relevant beneficial intestinal metabolites such as pelargonic acid, benzoic acid, and short-chain fatty acids increased, and harmful intestinal metabolites such as hippuric acid decreased. Taken together, these findings suggested that the beverages containing LC-37 can increase the abundance of probiotics and decrease pathogenic bacteria, and thereby improve beneficial intestinal metabolites. Therefore, the beverages containing LC-37 may provide a natural alternative to combat FD.
Collapse
Affiliation(s)
- Erna Sun
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Xiaomei Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100083, China
| | - Yifan Zhao
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jinyu Li
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Jian Sun
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China
| | - Zhishen Mu
- Mengniu Hi-tech Dairy Product Beijing Co., Ltd., Beijing 101100, China.
| | - Ran Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
32
|
Benzoic Acid Combined with Essential Oils Can Be an Alternative to the Use of Antibiotic Growth Promoters for Piglets Challenged with E. coli F4. Animals (Basel) 2020; 10:ani10111978. [PMID: 33126524 PMCID: PMC7692506 DOI: 10.3390/ani10111978] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The use of antibiotics as growth promoters for swine must be minimized as it can promote resistance in microorganisms. Therefore, it is essential to search for alternative additives. This study aimed to investigate the effects of benzoic acid and a blend of essential oils (thymol, 2-methoxyphenol, eugenol, piperine, and curcumin) on the performance and intestinal health of weanling piglets challenged with Escherichia coli F4. The combination of benzoic acid and essential oils at 3 g/kg improved the piglets’ average daily gain and consequently their final body weight and it is an economically viable alternative to replace colistin. These results could have a great impact on society, contributing to the one heath concept and demonstrating the ability to replace antibiotics as growth promoters and thus minimize the chance of causing bacteria resistance. Abstract Benzoic acid (BA) and essential oils (EOs) (thymol, 2-methoxyphenol, eugenol, piperine, and curcumin) are being studied to minimize the impairment of gastrointestinal functions in weanling piglets. This study evaluates the effects of combining BA and EO on the performance and intestinal health of piglets challenged with E. coli F4 (1 mL, 106 CFU/mL). In total, 270 weaned piglets were used in a randomized block design with six treatments: positive control, with 40 mg/kg colistin (PC); negative control, without the growth promoter (NC); negative control +5 g/kg benzoic acid (BA); negative control +2 g/kg combination of BA+EO (BA+EO2); negative control +3 g/kg combination of BA+EO (BA+EO3); negative control +4 g/kg combination of BA+EO (BA+EO4). BA+EO3 presented a greater average daily gain (ADG) (p = 0.0013) and better feed-to-gain ratio (p = 0.0138), compared to NC, from 21 to 35 days age. For the total period, BA, BA+EO3, and BA+EO4 were similar to PC and superior to NC for ADG (p = 0.0002) and final body weight (BW) (p = 0.0002). No difference (p > 0.05) was verified for diarrhea, microbial population, production of volatile fatty acids, pH, weight of organs, cellular proliferation, and cholecystokinin count. NC and BA+EO4 resulted in a higher villus height in the jejunum (p = 0.0120) compared to BA+EO3. The use of BA or the combination of BA and EO at 3 g/kg provides improved performance, aside from being an economically viable alternative to replace colistin.
Collapse
|