1
|
Yu Y, Wang Y, Ge K, Chen J, Xie J, Zou Y, Liu S, Tan H, Zhao F. Comparison of two in vitro methods progressed in a computer-controlled simulated digestion system to determine amino acid digestibility of feed ingredients for yellow-feathered roosters. Poult Sci 2024; 104:104738. [PMID: 39754920 PMCID: PMC11758556 DOI: 10.1016/j.psj.2024.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025] Open
Abstract
This experiment compared amino acid (AA) digestibility assessed by 2 in vitro methods using a computer-controlled simulated digestion system and in vivo assay for corn, soybean meal, casein, corn gluten meal, cottonseed meal, rapeseed meal and a corn-soybean meal diet. In vitro method 1 simulated gizzard digestion at pH 2.0, followed by small intestinal digestion, and the subsequent clearance of the digested product from dialysis tubing. In vitro method 2 was similar to the first method, except that pH in gizzard digestion was 3.5 and there was an enzymatic inactivation stage before digested product clearance. Each in vitro method included 5 replicates per treatment, with 1 digestion tube per replicate. Cecectomized Chinese yellow-feathered roosters (average body weight of 2.73 kg) were assigned to 1 of the following treatments: corn, soybean meal, or a corn-soybean meal diet (n = 6 replicates of 3 roosters per treatment); or casein, corn gluten meal, cottonseed meal, or rapeseed meal (n = 5 replicates of 3 roosters per treatment) in a completely randomized design to assess digestibility of AA. The relative deviation was within 5% comparing methods 1, 2 and in vivo method for 87.5% and 92.0% of all AA digestibility measured of 7 samples, respectively. Significant linear relationships were observed between in vitro methods 1 and 2 for the digestibility of 14 AAs (except for Cys) and total amino acid (TAA) (r ≥ 0.778; P < 0.05). Significant linear relationships were found between in vitro method 1 and in vivo results for 9 AAs (except for His, Ile, Asp, Cys, Glu and Ser) and TAA (r ≥ 0.866; P < 0.05). Similarly, significant linear relationships between in vitro method 2 and in vivo findings were observed for 11 AAs (except for His, Lys, Cys and Glu) and TAA (r ≥ 0.776; P < 0.05). The linear regression of in vivo assay on in vitro method 1 or 2 overlapped with Y = X for 7 AA and TAA or 10 AA and TAA, respectively. Our findings suggest in vitro method 2 is superior to method 1 for estimating AA digestibility of yellow-feathered roosters, this indicates that gizzard pH or inactivation of enzymes modulates the effectiveness of in vitro digestibility assays.
Collapse
Affiliation(s)
- Yao Yu
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Wang
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kaijing Ge
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiang Chen
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Xie
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Zou
- Wen's Foodstuffs Group Co. Ltd., Yunfu 527400, China
| | - Songbai Liu
- Wen's Foodstuffs Group Co. Ltd., Yunfu 527400, China
| | - Huize Tan
- Wen's Foodstuffs Group Co. Ltd., Yunfu 527400, China
| | - Feng Zhao
- The State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
2
|
Mehri M, Ghazaghi M, Rokouei M. A Critical Perspective on Statistical Issues in Estimating Nutrient Bioavailability in Animal Bioassays. J Nutr 2024; 154:3544-3553. [PMID: 39426462 DOI: 10.1016/j.tjnut.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Assessing nutrients' relative bioavailability value (RBV) in poultry nutrition has been a prominent subject in the scientific literature for several decades. This method of nutritional evaluation is commonly used to appraise emerging sources of trace minerals and amino acid chelates. References outlining the method for estimating RBV have been available since the 1970s. However, a simplified approach to RBV estimation using the slope-ratio method without preceding statistical considerations to ensure validity and meet fundamental requirements may yield misleading conclusions. Using the slope-ratio method, which involves dividing the regression slope of the test ingredient by that of the reference, can cause uncertainties regarding statistical significance if the model's probability is reported without confidence intervals (CIs) for the RBV estimates. Despite longstanding criticism regarding the misinterpretation and improper use of statistical tests and CIs, these issues persist in estimating RBV using the slope-ratio method. An additional concern is that the misuse of the slope-ratio method and the application of inappropriate statistical analyses can lead to the underestimation of the RBV of nutrients in poultry species. This means that improper application of these methods can cause inaccurately low RBV values, affecting the assessment of nutrient effectiveness. This review addresses the potential pitfalls in peer-reviewed articles within this field, with a particular focus on zinc bioavailability through a reevaluation of RBV data in broilers, laying hens, and honeybees.
Collapse
Affiliation(s)
- Mehran Mehri
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran.
| | - Mahmoud Ghazaghi
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| | - Mohammad Rokouei
- Department of Animal Sciences, Faculty of Agriculture, University of Zabol, Sistan, Iran
| |
Collapse
|
3
|
Cao KX, Deng ZC, Li SJ, Yi D, He X, Yang XJ, Guo YM, Sun LH. Poultry Nutrition: Achievement, Challenge, and Strategy. J Nutr 2024; 154:3554-3565. [PMID: 39424066 DOI: 10.1016/j.tjnut.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Poultry, a vital economic animal, provide a high-quality protein source for human nutrition. Over the past decade, the poultry industry has witnessed substantial achievements in breeding, precision feeding, and welfare farming. However, there are still many challenges restricting the sustainable development of the poultry industry. First, overly focused breeding strategies on production performance have been shown to induce metabolic diseases in poultry. Second, a lack of robust methods for assessing the nutritional requirements poses a challenge to the practical implementation of precision feeding. Third, antibiotic alternatives and feed safety management remain pressing concerns within the poultry industry. Lastly, environmental pollution and inadequate welfare management in farming have a negative effect on poultry health. Despite numerous proposed strategies and innovative approaches, each faces its own set of strengths and limitations. In this review, we aim to provide a comprehensive understanding of the poultry industry over the past decade, by examining its achievements, challenges, and strategies, to guide its future direction.
Collapse
Affiliation(s)
- Ke-Xin Cao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhang-Chao Deng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shi-Jun Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Xi He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiao-Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu-Ming Guo
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Lucke A, Liesegang A, Kümmerlen D, Czarniecki M, Wichert BA. Adaptation of an in-vitro digestion model with different zinc-supplementation strategies on nutrient degradation of piglets. Heliyon 2024; 10:e33300. [PMID: 39022019 PMCID: PMC11252939 DOI: 10.1016/j.heliyon.2024.e33300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
In-vitro studies are widely used in nutrition research. Two major challenges using in-vitro models in animal nutrition research are the individual adaptation of in-vitro digestion models to varying physiological conditions and small digesta output limiting sample material for further analysis. Since several years, the use of zinc in animal production has been legally reduced to control zinc emissions. Earlier, zinc doses around 3000 mg/kg diet were used to prevent post-weaning diarrhea and promote growth in weaning piglets. The first aim of this study was to adapt an in-vitro digestion system for piglets with increased sample output. The second aim was to study the effect of a titanium-bound zinc source at legal dietary inclusion levels on nutrient degradation in an in-vitro digestion model. The experiment was conducted in a 2x2 factorial design incubating 2 different feeds (1. control feed: a commercial piglet diet containing 75 mg zinc per kg diet and 2. treatment feed: control feed with 50 mg of a titanium-bound zinc oxide) in in-situ digestion bags in the Ankom Daisy® incubator with or without digestive enzymes (pepsin, pancreatic enzymes and bile salts). Residuals of incubated feed were analyzed for crude ash, crude protein and starch. The addition of pepsin, pancreatic enzymes and bile salts significantly increased organic matter, crude protein and starch degradation from the digested feed, therefore making the distinction of nutrient disappearance due to enzyme activity versus due to dissolution possible. In conclusion we established an in-vitro digestion model to evaluate the effect of addition of a new zinc source on the enzymatic digestion in piglets. However, addition of the new zinc source did not significantly improve nutrient degradation in the in-vitro digestion model.
Collapse
Affiliation(s)
- Annegret Lucke
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Annette Liesegang
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Dolf Kümmerlen
- Division of Swine Medicine, Department of Farm Animals, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | | | - Brigitta Annette Wichert
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
6
|
Hayat K, Ye Z, Lin H, Pan J. Beyond the Spectrum: Unleashing the Potential of Infrared Radiation in Poultry Industry Advancements. Animals (Basel) 2024; 14:1431. [PMID: 38791649 PMCID: PMC11117323 DOI: 10.3390/ani14101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The poultry industry is dynamically advancing production by focusing on nutrition, management practices, and technology to enhance productivity by improving feed conversion ratios, disease control, lighting management, and exploring antibiotic alternatives. Infrared (IR) radiation is utilized to improve the well-being of humans, animals, and poultry through various operations. IR radiation occurs via electromagnetic waves with wavelengths ranging from 760 to 10,000 nm. The biological applications of IR radiation are gaining significant attention and its utilization is expanding rapidly across multiple sectors. Various IR applications, such as IR heating, IR spectroscopy, IR thermography, IR beak trimming, and IR in computer vision, have proven to be beneficial in enhancing the well-being of humans, animals, and birds within mechanical systems. IR radiation offers a wide array of health benefits, including improved skin health, therapeutic effects, anticancer properties, wound healing capabilities, enhanced digestive and endothelial function, and improved mitochondrial function and gene expression. In the realm of poultry production, IR radiation has demonstrated numerous positive impacts, including enhanced growth performance, gut health, blood profiles, immunological response, food safety measures, economic advantages, the mitigation of hazardous gases, and improved heating systems. Despite the exceptional benefits of IR radiation, its applications in poultry production are still limited. This comprehensive review provides compelling evidence supporting the advantages of IR radiation and advocates for its wider adoption in poultry production practices.
Collapse
Affiliation(s)
- Khawar Hayat
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Zunzhong Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| | - Jinming Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
| |
Collapse
|
7
|
Seo K, Cho HW, Lee MY, Kim CH, Kim KH, Chun JL. Prediction of apparent total tract digestion of crude protein in adult dogs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:374-386. [PMID: 38628688 PMCID: PMC11016737 DOI: 10.5187/jast.2024.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
To predict the apparent total tract digestibility (ATTD) of crude protein (CP) in dogs we developed an in vitro system using an in vitro digestion method and a statistical analysis. The experimental diets used chicken meat powder as the protein source, with CP levels of 20% (22.01%, analyzed CP value as dry-based), 30% (31.35%, analyzed CP value as dry-based), and 40% (41.34%, analyzed CP value as dry-based). To simulate in vivo digestive processes a static in vitro digestion was performed in two steps; stomach and small intestine. To analyze ATTD the total fecal samples were collected in eight neutered beagle dogs during the experimental period. CP digestibility was calculated by measuring CP levels in dog food, in vitro undigested fraction, and dog feces. In result, CP digestibility at both in vivo and in vitro was increased with increasing dietary CP levels. To estimate in vivo digestibility the co-relation of in vivo ATTD and in vitro digestibility was investigated statistically and a regression equation was developed to predict the CP ATTD (% = 2.5405 × in vitro CP digestibility (%) + 151.8). The regression equation was evaluated its feasibility by using a commercial diet. The predicted CP digestibility which was calculated by the regression equation showed high index of similarity (100.16%) with that of in vivo in dogs. With that, it would be a feasible non-animal method to predict in vivo CP digestibility by using in vitro digestion method and the proposed linear regression equation in adult dogs.
Collapse
Affiliation(s)
- Kangmin Seo
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| | - Min Young Lee
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| | - Chan Ho Kim
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| | - Ju Lan Chun
- Animal Welfare Research Team, National
Institute of Animal Science, Rural Development Administration,
Wanju 55365, Korea
| |
Collapse
|
8
|
Melo-Duran D, González-Ortiz G, Villagomez-Estrada S, Bedford MR, Farré M, Pérez JF, Solà-Oriol D. Using in feed xylanase or stimbiotic to reduce the variability in corn nutritive value for broiler chickens. Poult Sci 2024; 103:103401. [PMID: 38183881 PMCID: PMC10809089 DOI: 10.1016/j.psj.2023.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/06/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
This study investigated the effects of xylanase and stimbiotic (fiber fermentation enhancer) on the response of broiler chickens fed different corn varieties and determine correlations between variables of interest. Four corn genetic varieties were selected based on their range in nutrient composition. Diets containing 600 g/kg of each corn were supplemented with 0 or 100 g/ton of xylanase or stimbiotic. A total of 1,152 one-day-old male broiler chicks (Ross 308) were divided into 12 treatments, each with 8 pens and 12 birds per pen, for a 21-day study. On d 21, performance parameters were measured, and the ileal energy and organic matter (OM) digestibility and cecal xylanase activity determined. Stimbiotic supplementation improved mFCR compared with all other treatments. There was a treatment by corn variety interaction for body weight (BW), BW gain and coefficient of variation (CV) of BW (P ≤ 0.05). Birds fed corn Variety 1 (highest neutral dietary fiber, protein and soluble arabinoxylan content) supplemented with stimbiotic had the highest BW, while Variety 2 control diet had the lowest. The BW CV in corn Variety 2 was the highest, which improved with stimbiotic supplementation. The BW CV in corn Variety 1 responded better to stimbiotic than xylanase. There were no treatment differences on BW CV in corn Varieties 3 and 4. The lowest OM digestibility was observed in birds fed corn Variety 1 with xylanase, and the highest value was associated with corn Variety 3 with xylanase (highest total arabinoxylan). Xylanase and stimbiotic supplementation increased the endogenous xylanase activity regardless of the corn variety (P ≤ 0.05). Positive correlations between corn fiber contents and phytic acid and the arabinose:xylose ratio were seen, while nonstarch polysaccharide content was negatively correlated with apparent metabolizable energy. In conclusion, corn variety influenced nutrient digestibility and broiler chicken growth. The response to supplementation with xylanase or stimbiotic varied based on the nutritional profile of corn with regards to improvements in digestibility and performance in broiler chickens.
Collapse
Affiliation(s)
- Diego Melo-Duran
- Animal Nutrition and Welfare Service (SNiBA), Animal and Food Science Department, Universidad Autonoma de Barcelona (UAB), 08193 Barcelona, Spain; Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | | | - Sandra Villagomez-Estrada
- Animal Nutrition and Welfare Service (SNiBA), Animal and Food Science Department, Universidad Autonoma de Barcelona (UAB), 08193 Barcelona, Spain; Faculty of Veterinary Medicine and Agronomy, Universidad UTE, Quito 17012764, Ecuador
| | | | - Mercè Farré
- Department of Mathematics, Area of Statistics and Operations Research, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - José F Pérez
- Animal Nutrition and Welfare Service (SNiBA), Animal and Food Science Department, Universidad Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - David Solà-Oriol
- Animal Nutrition and Welfare Service (SNiBA), Animal and Food Science Department, Universidad Autonoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
9
|
Noblet J, Tay-Zar AC, Wu SB, Srichana P, Cozannet P, Geraert PA, Choct M. Re-evaluation of recent research on metabolic utilization of energy in poultry: Recommendations for a net energy system for broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:62-72. [PMID: 38292030 PMCID: PMC10826140 DOI: 10.1016/j.aninu.2023.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 10/31/2023] [Indexed: 02/01/2024]
Abstract
Different energy systems have been proposed for energy evaluation of feeds for domestic animals. The oldest and most commonly used systems take into account the fecal energy loss to obtain digestible energy (DE), and fecal, urinary and fermentation gases energy losses to calculate metabolizable energy (ME). In the case of ruminants and pigs, the net energy (NE) system, which takes into account the heat increment associated with the metabolic utilization of ME, has progressively replaced the DE and ME systems over the last 50 years. For poultry, apparent ME (AME) is used exclusively and NE is not yet used widely. The present paper considers some important methodological points for measuring NE in poultry feeds and summarizes the available knowledge on NE systems for poultry. NE prediction equations based on a common analysis of three recent studies representing a total of 50 complete and balanced diets fed to broilers are proposed; these equations including the AME content and easily available chemical indicators have been validated on another set of 30 diets. The equations are applicable to both ingredients and complete diets. They rely primarily on an accurate and reliable AME value which then represents the first limiting predictor of NE value. Our analysis indicates that NE would be a better predictor of broiler performance than AME and that the hierarchy between feeds is dependent on the energy system with a higher energy value for fat and a lower energy value for protein in an NE system. Practical considerations for implementing such an NE system from the commonly used AME or AMEn (AME adjusted for zero nitrogen balance) systems are presented. In conclusion, there is sufficient information to allow the implementation of the NE concept in order to improve the accuracy of feed formulation in poultry.
Collapse
Affiliation(s)
| | - Aye-Cho Tay-Zar
- Charoen Pokphand Foods Public Company Limited (CPF), Bangkok, Thailand
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| | - Pairat Srichana
- Charoen Pokphand Foods Public Company Limited (CPF), Bangkok, Thailand
| | | | | | - Mingan Choct
- School of Environmental and Rural Science, University of New England, Armidale, Australia
| |
Collapse
|
10
|
Li K, Bai G, Teng C, Liu Z, Liu L, Yan H, Zhou J, Zhong R, Chen L, Zhang H. Prediction equations of the metabolizable energy in corn developed by chemical composition and enzymatic hydrolysate gross energy for roosters. Poult Sci 2024; 103:103249. [PMID: 38035475 PMCID: PMC10698668 DOI: 10.1016/j.psj.2023.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Two experiments were conducted to establish the prediction equations for AME and TME of corn based on chemical composition and enzymatic hydrolysate gross energy (EHGE) in roosters. In experiment 1, eighty 32-wk-old Hy-line Brown roosters with an average body weight of 2.55 ± 0.21 kg were randomly assigned to 10 diet treatments in a completely randomized design to determine AME and TME by the force-feeding method. Each treatment had 8 replicates with 1 bird per replicate. The 10 test diets used in the experiment were formulated with corn (including 96.10%) as the sole source of energy. In experiment 2, the EHGE of 14 corn samples was measured by the computer-controlled simulated digestion system (CCSDS) with 5 replicates of each sample. The average AME and TME values of corn were 14.58 and 16.46 MJ/kg DM, respectively. The EHGE of 14 corn samples ranged from 14.66 to 15.89 (the mean was 15.24) MJ/kg DM. The best-fit equations for corn based on chemical composition were AME (MJ/kg DM) = 14.5504 + 0.1166 × ether extract (EE) + 0.5058 × Ash - 0.0957 × neutral detergent fiber (NDF) (R2 = 0.8194, residual standard deviation (RSD) = 0.0860, P < 0.01) and TME (MJ/kg DM) = 16.0625 + 0.1314 × EE + 0.4725 × Ash - 0.0872 × NDF (R2 = 0.7867, RSD = 0.0860, P < 0.01). The best-fit equations for corn based on EHGE were AME (MJ/kg DM) = 7.8883 + 0.4568 × EHGE (R2 = 0.8587, RSD = 0.0693, P < 0.01) and TME (MJ/kg DM) = 10.0099 + 0.4228 × EHGE (R2 = 0.8720, RSD = 0.0608, P < 0.01). The differences between determined and predicted values from equations established based on EHGE were lower than those observed from chemical composition equations. These results indicated that EHGE measured with CCSDS could predict the AME and TME of corn for roosters with high accuracy.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guosong Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunran Teng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengqun Liu
- Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Honglin Yan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jianchuan Zhou
- Sichuan Tie Qi Li Shi Food Co. Ltd., Mianyang 621010, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Kosobucki P, Studziński W, Zuo S. The role of analytical chemistry in poultry science. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Due to the intensification of food production methods, an increase in the importance of analytical chemistry can be observed. Analytical chemistry is on the one hand a scientific activity that brings new elements to the methodology of analytical chemistry, e.g. theoretical fundamentals of analytical methods, and on the other hand, this field of chemistry cannot exist without practical applications. Currently, it is used in all aspects of our life, including food production of particular importance.
Collapse
Affiliation(s)
- Przemysław Kosobucki
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering , Bydgoszcz University of Science and Technology , 3 Seminaryjna Street, 85-326 Bydgoszcz , Poland
| | - Waldemar Studziński
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering , Bydgoszcz University of Science and Technology , 3 Seminaryjna Street, 85-326 Bydgoszcz , Poland
| | - Sanling Zuo
- Department of Oncology , Faculty of Health Sciences , Collegium Medicum Nicolaus Copernicus University , Łukasiewicza 1 , Bydgoszcz , Poland
| |
Collapse
|
12
|
Mantena U, Roy S, Datla R. Evaluation of a digital micro-mirror device based near-infrared spectrometer for rapid and accurate prediction of quality attributes in poultry feed. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Michels D, Verkempinck SH, Panozzo A, Vermeulen K, Hendrickx ME, Thijs L, Grauwet T. Importance of adapted digestion conditions to simulate in vitro lipid digestion of broilers in different life stages. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:151-158. [PMID: 36683878 PMCID: PMC9842858 DOI: 10.1016/j.aninu.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
In vitro digestion studies demonstrate large potential to gain more and quicker insights into the underlying mechanisms of feed additives, allowing the optimization of feed design. Unfortunately, current in vitro digestion models relevant for broiler chickens lack sufficient description in terms of protocols and standardisation used. Furthermore, no distinction is made between the different life phases of these animals (starter, grower, and finisher). Hence, our research aimed to establish adapted in vitro digestion conditions, corresponding to the 3 life phases in broilers, with specific focus on lipid digestion. The effect of 3 different bile salt concentrations of 2, 10, and 20 mM, and 3 different lipase activities of 5, 20, and 100 U/mL, on in vitro lipid digestion kinetics were evaluated using a full factorial design. These values were selected to represent starter, grower, and finisher birds, respectively. Our findings showed that the extent of lipid digestion was mainly influenced by lipase activity. The rate of lipid digestion was affected by an interplay between bile salt concentration and lipase activity, due to possible lipase inhibition at certain bile salt concentrations. Overall, this work resulted in 3 in vitro lipid digestion models representative for starter, grower, and finisher birds. In conclusion, this research showed the impact of adapted in vitro digestion conditions on lipid digestion kinetics and thus the need for these conditions relevant for each life phase of broilers.
Collapse
Affiliation(s)
- Daphne Michels
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
- Corresponding author.
| | - Sarah H.E. Verkempinck
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
| | - Agnese Panozzo
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Herentals, 2200, Belgium
| | - Karen Vermeulen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Herentals, 2200, Belgium
| | - Marc E. Hendrickx
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
| | - Liesbet Thijs
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Herentals, 2200, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology and Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (MS), KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|
14
|
Optimization of Compound Ratio of Exogenous Xylanase and Debranching Enzymes Supplemented in Corn-Based Broiler Diets Using In Vitro Simulated Gastrointestinal Digestion and Response Surface Methodology. Animals (Basel) 2022; 12:ani12192641. [PMID: 36230382 PMCID: PMC9558992 DOI: 10.3390/ani12192641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
This experiment aimed to explore the zymogram of endo-xylanase (EX) and debranching enzymes (arabinofuranosidase [EA] and ferulic acid esterase [EF]) supplemented in the corn−soybean meal-based diet of broilers. An in vitro simulated gastrointestinal digestion model was adopted. According to single-factor, completely random design, the optimal supplemental levels of individual carbohydrase were determined by reducing sugars (RS) and in vitro dry matter digestibility (IVDMD). Response surface method (RSM) was used to predict the proper compound ratio of three carbohydrases. Results showed that shifts were different for feedstuffs such as corn−soybean meal−distillers dried grains with solubles, corn hull, and wheat bran, revealing that the net increase of RS or IVDMD distinctly dropped when degrading corn and related by-products by EX (p < 0.05). There was a significant quadratic relationship between the above response metrics and addition levels of each enzyme (p < 0.05). The determined dosage was 54 U/g EX, 5.0 U/g EA, and 0.4 U/g of EF, respectively. The optimistic zymogram of carbohydrases in corn basal substrates was judged by the IVDMD screening (R2 = 0.9089, p < 0.001). Conclusively, the in vitro assay and RSM were convenient and rapid methods for the optimization of xylan-degrading zymogram, and also testified asthenic hydrolysis of corn arabinoxylan by EX, thus highlighting the synergistic combinations with debranching enzymes.
Collapse
|
15
|
Zhang Q, Wang B, Hu N, Bao N, Pan L, Zhao Y, Qin G. Relationship between dietary amino acid release kinetics and nitrogen deposition in growing pigs. ANIMAL NUTRITION 2022; 9:233-239. [PMID: 35600549 PMCID: PMC9092382 DOI: 10.1016/j.aninu.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
Abstract
Although the protein content of swine diets is formulated based on the ileal digestibility of protein and amino acids (AA) under current nutrition requirements, the nitrogen utilization efficiency of swine varies based on protein source, which may be related to AA release kinetics. In this experiment, a 2 × 2 factorial arrangement with casein (CAS)-enriched or corn gluten meal (CGM)-enriched protein sources at different digestible crude protein levels (normal [N], 13%; and low [L], 11%) were applied to 24 crossbred (Duroc × Landrace × Yorkshire) growing pigs (average body weight = 43.3 ± 3.5 kg) in 4 treatments (N.CAS, L.CAS, N.CGM, L.CGM, respectively) to investigate the effects of AA release kinetics on nitrogen deposition in growing pigs. Standardized ileal digestible AA in all diets were balanced by adding individual AA to meet the nutrient requirements. The AA release kinetics were detected in vitro by measuring the hydrolysis of various protein diets under pepsin and trypsin conditions. The results demonstrated that the time of AA release peak in the CGM diet was 12 h later than that in the CAS diet. The synchronization indices of dietary AA release in N.CAS, N.CGM, L.CAS, and L.CGM were 23.73%, 29.37%, 23.40%, and 26.07%, respectively. The N.CGM had the poorest AA release synchronism while the N.CAS had the greatest among the 4 diets. However, within the pigs, L.CAS and N.CGM showed the highest (81.08%) and lowest (73.54%) nitrogen biological values, respectively, despite the standard ileal digestible AA levels being equal for all diets. These results indicate that the release kinetics of dietary AA had great effect on nitrogen deposition. To optimize nitrogen deposition, AA release kinetics and composition should be taken into consideration when formulating diets for growing pigs.
Collapse
|
16
|
Abstract
A considerable part of food is wasted, causing investment capital loss as well as environmental pollution and health problems in humans. Indirect solar drying was applied to test the potential of drying and reusing this waste as a component of animal feed. The effect of weather changes on drying kinetics and the effective diffusion coefficient, dried feed nutritional composition, and microbiological analysis of the dried product were investigated. A convective laboratory dryer was used as a reference method. Weather conditions have a crucial effect on the use of solar drying; one sunny day with appropriate conditions can reduce the water activity of food waste to below 0.3 and moisture content to below 6%. Much better fitting of experimental and model drying curves was achieved considering sample shrinkage, applying a more complex solution of Fick’s second law combined with an optimization procedure. The studied food waste had a good combination of nutrients, such as protein, fat, and carbohydrates; however, the amount of protein in the dried food waste was found to be lower than that in regular feed, and therefore, adding a protein source is recommended. Autoclaving of fresh samples reduced the total microbial counts of dried samples by more than 50%.
Collapse
|
17
|
Noblet J, Wu SB, Choct M. Methodologies for energy evaluation of pig and poultry feeds: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:185-203. [PMID: 34977388 PMCID: PMC8685914 DOI: 10.1016/j.aninu.2021.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/27/2022]
Abstract
The cost of feed represents an important part of the total cost in swine and poultry production (>60%) with energy accounting for at least 70% of feed cost. The energy value of ingredients or compound feeds can be estimated as digestible (DE), metabolisable (ME) and net energy (NE) in pigs and ME and NE in poultry. The current paper reviews the different methods for evaluating DE, ME and NE of feeds for monogastric animals and their difficulties and limits, with a focus on NE. In pigs and poultry, energy digestibility depends on the chemical characteristics of the feed, but also on technology (pelleting, for instance) and animal factors such as their health and body weight. The ME value includes the energy losses in urine that are directly dependent on the proportion of dietary N excreted in urine resulting in the concept of ME adjusted for a zero N balance (MEn) in poultry. For poultry, the concept of true ME (TME, TMEn), which excludes the endogenous fecal and urinary energy losses from the excreta energy, was also developed. The measurement of dietary NE is more complex, and NE values of a given feed depend on the animal and environmental factors and also measurement and calculation methods. The combination of NE values of diets obtained under standardised conditions allows calculating NE prediction equations that are applicable to both ingredients and compound feeds. The abundance of energy concepts, especially for poultry, and the numerous feed and animal factors of variation related to energy digestibility or ME utilisation for NE suggest that attention must be paid to the experimental conditions for evaluating DE, ME or NE content. This also suggests the necessity of standardisations, one of them being, as implemented in pigs, an adjustment of ME values in poultry for an N retention representative of modern production conditions (MEs). In conclusion, this review illustrates that, in addition to numerous technical difficulties for evaluating energy in pigs and poultry, the absolute energy values depend on feed and animal factors, the environment, and the methods and concepts. Finally, as implemented in pigs, the use of NE values should be the objective of a more reliable energy system for poultry feeds.
Collapse
Affiliation(s)
- Jean Noblet
- INRAE, UMR 1348 PEGASE, 35590 St-Gilles, France
| | - Shu-Biao Wu
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Mingan Choct
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
18
|
Application of Apparent Metabolizable Energy versus Nitrogen-Corrected Apparent Metabolizable Energy in Poultry Feed Formulations: A Continuing Conundrum. Animals (Basel) 2021; 11:ani11082174. [PMID: 34438632 PMCID: PMC8388474 DOI: 10.3390/ani11082174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite some limitations, the metabolizable energy system has been extensively used for describing the available energy in ingredients and for formulating complete poultry feeds. Three methods, namely direct, difference (substitution), and regression, or modifications thereof, have been employed to measure the apparent metabolizable energy (AME) of feeds and ingredients for poultry. The AME of feed ingredients are often corrected for zero nitrogen (N) retention to estimate the N-corrected AME (AMEn). Although the need for N-retention corrections has been intensely debated and challenged ever since the advent of the AME system, no definitive conclusion has been reached and the majority of poultry diets today are formulated to meet the requirements for AMEn rather than AME. There is limited information on the effect of zero N-retention correction on the energy value of major protein sources. The aim of this investigation was to understand the consequences of correction to zero N retention to the energy values of samples of several protein sources differing in protein quality. Based on the data presented herein, correcting AME values to zero N retention for modern fast-growing broilers penalizes the energy value of all major protein sources and is of higher magnitude for ingredients with higher protein quality. Abstract In the present investigation, N retention, AME, and AMEn data from six energy evaluation assays, involving four protein sources (soybean meal, full-fat soybean, rapeseed meal and maize distiller’s dried grains with solubles [DDGS]), are reported. The correction for zero N retention, reduced the AME value of soybean meal samples from different origins from 9.9 to 17.8% with increasing N retention. The magnitude of AME penalization in full-fat soybean samples, imposed by zero N correction, increased from 1.90 to 9.64% with increasing N retention. The Δ AME (AME minus AMEn) in rapeseed meal samples increased from 0.70 to 1.09 MJ/kg as N-retention increased. In maize DDGS samples, the correction for zero N retention increased the magnitude of AME penalization from 5.44 to 8.21% with increasing N retention. For all protein sources, positive correlations (p < 0.001; r = 0.831 to 0.991) were observed between the N retention and Δ AME. The present data confirms that correcting AME values to zero N retention for modern broilers penalizes the energy value of protein sources and is of higher magnitude for ingredients with higher protein quality. Feed formulation based on uncorrected AME values could benefit least cost broiler feed formulations and merits further investigation.
Collapse
|