1
|
Hwang JH, Kim SE, Gupta MK, Lee H. Gnotobiotic Miniature Pig Interbreed Somatic Cell Nuclear Transfer for Xenotransplantation. Cell Reprogram 2016; 18:207-13. [PMID: 27459580 DOI: 10.1089/cell.2015.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transgenic animal producing technology has improved consistently over the last couple of decades. Among the available methods, somatic cell nuclear transfer (SCNT) technology was officially the most popular. However, SCNT has low efficiency and requires a highly skilled individual. Additionally, the allo-SCNT nuclear reprogramming mechanism is poorly understood in the gnotobiotic miniature pig, which is a candidate for xenotransplantation, making sampling in oocytes very difficult compared to commercial hybrid pigs. Therefore, interbreed SCNT (ibSCNT), which is a combination of miniature pig and commercial pig (Landrace based), was analyzed and was found to be similar to SCNT in terms of the rate of blastocyst formation (12.6% ± 2.9% vs. 15.5% ± 2.2%; p > 0.05). However, a significantly lower fusion rate was observed in the ibSCNT compared to normal SCNT with Landrace pig somatic cells (29.6% ± 0.8% vs. 65.0% ± 4.9%). Thus, the optimization of fusion parameters was necessary for efficient SCNT. Our results further revealed that ibSCNT by the whole-cell intracytoplasmic injection (WCICI) method had a significantly higher blastocyst forming efficiency than the electrofusion method (31.1 ± 8.5 vs. 15.5% ± 2.2%). The nuclear remodeling and the pattern of changes in acetylation at H3K9 residue were similar in both SCNT and ibSCNT embryos.
Collapse
Affiliation(s)
- Jeong Ho Hwang
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea.,3 Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology , Jeongeup, Republic of Korea
| | - Sang Eun Kim
- 2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| | - Mukesh Kumar Gupta
- 4 Department of Biotechnology and Medical Engineering, National Institute of Technology , Rourkela, India
| | - HoonTaek Lee
- 1 Bio-Organ Research Center, Konkuk University , Seoul, Republic of Korea.,2 Department of Animal Biotechnology, Konkuk University , Seoul, Republic of Korea
| |
Collapse
|
2
|
Kwon D, Koo OJ, Kim MJ, Jang G, Lee BC. Nuclear-mitochondrial incompatibility in interorder rhesus monkey-cow embryos derived from somatic cell nuclear transfer. Primates 2016; 57:471-8. [PMID: 27165688 DOI: 10.1007/s10329-016-0538-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 04/07/2016] [Indexed: 01/08/2023]
Abstract
Monkey interorder somatic cell nuclear transfer (iSCNT) using enucleated cow oocytes yielded poor blastocysts development and contradictory results among research groups. Determining the reason for this low blastocyst development is a prerequisite for optimizing iSCNT in rhesus monkeys. The aim of this study was to elucidate nuclear-mitochondrial incompatibility of rhesus monkey-cow iSCNT embryos and its relationship to low blastocyst development. Cytochrome b is a protein of complex III of the electron transport chain (ETC). According to meta-analysis of amino acid sequences, the homology of cytochrome b is 75 % between rhesus monkeys and cattle. To maintain the function of ETC after iSCNT, 4n iSCNT embryos were produced by fusion of non-enucleated cow oocytes and rhesus monkey somatic cells. The blastocyst development rate of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Formation of reactive oxygen species (ROS) is an indirect indicator of ETC activity of cells. The ROS levels of 4n iSCNT embryos was higher than that of 2n embryos (P < 0.01). Collectively, rhesus monkey iSCNT embryos reconstructed with cow oocytes have nuclear-mitochondrial incompatibility due to fundamental species differences between rhesus monkeys and cattle. Nuclear-mitochondrial incompatibility seems to correlate with low ETC activity and extremely low blastocyst development of rhesus monkey-cow iSCNT embryos.
Collapse
Affiliation(s)
- Daekee Kwon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Ok-Jae Koo
- Laboratory Animal Research Center, Samsung Biomedical Research Institute, Suwon, 440-746, Korea
| | - Min-Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea
| | - Goo Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea.,Emergency Center for Personalized Food-Medicine Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea. .,Institute of Green Bio Science Technology, Seoul National University, Pyeongchang, 232-916, Korea.
| |
Collapse
|
3
|
Jeon Y, Nam YH, Cheong SA, Kwak SS, Lee E, Hyun SH. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure. J Reprod Dev 2016; 62:345-50. [PMID: 27064112 PMCID: PMC5004789 DOI: 10.1262/jrd.2015-175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.
Collapse
Affiliation(s)
- Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology (VETEMBIO), College of Veterinary Medicine, Chungbuk National University, Cheongju 361-763, Chungbuk, Republic of Korea
| | | | | | | | | | | |
Collapse
|
4
|
Hwang I, Jeong YW, Kim JJ, Lee HJ, Kang M, Park KB, Park JH, Kim YW, Kim WT, Shin T, Hyun SH, Jeung EB, Hwang WS. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes. Reprod Fertil Dev 2014; 25:1142-8. [PMID: 23217630 DOI: 10.1071/rd12256] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/23/2012] [Indexed: 11/23/2022] Open
Abstract
Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (P<0.05). The use of domestic dog oocytes in the cloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.
Collapse
Affiliation(s)
- Insung Hwang
- Sooam Biotech Research Foundation, 64 Kyungin-ro, Guro-gu, Seoul 152-895, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Samiec M, Skrzyszowska M. Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod Biol 2014; 14:128-39. [PMID: 24856472 DOI: 10.1016/j.repbio.2013.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/23/2013] [Indexed: 11/26/2022]
Abstract
A novel method termed the biological transcomplementary activation (B-TCA) has been recently utilized for the stimulation of porcine oocytes reconstituted by somatic cell nuclear transfer (SCNT). The use of cytosolic components originating from fertilized (FE) rabbit zygotes as the stimuli for the B-TCA of SCNT-derived pig oocytes appeared to be a highly efficient strategy applied to promote the in vitro development of cloned embryos, leading to a significant improvement in the blastocyst yield (43.6%) compared to the yields achieved using the standard protocol of simultaneous fusion and electrical activation (SF-EA; [31.3%]) or the protocol of delayed electrical activation (D-EA) independent of extracellular Ca(2+) ions (0%). The FE rabbit zygote cytoplast-mediated B-TCA resulted in the increased blastocyst formation rate of porcine cloned embryos as compared to the B-TCA triggered by either cytoplasts isolated from pig parthenogenotes (PAs; [27.8%]) or rabbit PA-descended cytoplasts (0%). A considerably lower percentage of blastocysts containing apoptotic and/or necrotic (annexin V-eGFP-positive) cells were obtained from the SCNT-derived oocytes stimulated by the FE rabbit zygote cytoplast-based B-TCA (22.2%) compared to those stimulated using the SF-EA protocol (35.1%). In contrast to the B-TCA induced by FE rabbit zygote cytoplasts, apoptosis/necrosis incidence decreased totally among the cloned pig blastocysts that developed from reconstituted oocytes undergoing the porcine PA cytoplast-evoked B-TCA. In conclusion, the FE rabbit zygote cytoplast-mediated B-TCA turned out to be a relatively effective strategy for the in vitro production of porcine blastocyst clones of higher quality compared to those created using the standard SF-EA approach.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland.
| | - Maria Skrzyszowska
- Department of Biotechnology of Animal Reproduction, National Research Institute of Animal Production, Balice n. Cracow, Poland
| |
Collapse
|
6
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
7
|
Gupta MK, Das ZC, Heo YT, Joo JY, Chung HJ, Song H, Kim JH, Kim NH, Lee HT, Ko DH, Uhm SJ. Transgenic chicken, mice, cattle, and pig embryos by somatic cell nuclear transfer into pig oocytes. Cell Reprogram 2013; 15:322-8. [PMID: 23808879 DOI: 10.1089/cell.2012.0074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study explored the possibility of producing transgenic cloned embryos by interspecies somatic cell nuclear transfer (iSCNT) of cattle, mice, and chicken donor cells into enucleated pig oocytes. Enhanced green florescent protein (EGFP)-expressing donor cells were used for the nuclear transfer. Results showed that the occurrence of first cleavage did not differ significantly when pig, cattle, mice, or chicken cells were used as donor nuclei (p>0.05). However, the rate of blastocyst formation was significantly higher in pig (14.9±2.1%; p<0.05) SCNT embryos than in cattle (6.3±2.5%), mice (4.2±1.4%), or chicken (5.1±2.4%) iSCNT embryos. The iSCNT embryos also contained a significantly less number of cells per blastocyst than those of SCNT pig embryos (p<0.05). All (100%) iSCNT embryos expressed the EGFP gene, as evidenced by the green florescence under ultraviolet (UV) illumination. Microinjection of purified mitochondria from cattle somatic cells into pig oocytes did not have any adverse effect on their postfertilization in vitro development and embryo quality (p>0.05). Moreover, NCSU23 medium, which was designed for in vitro culture of pig embryos, was able to support the in vitro development of cattle, mice, and chicken iSCNT embryos up to the blastocyst stage. Taken together, these data suggest that enucleated pig oocytes may be used as a universal cytoplast for production of transgenic cattle, mice, and chicken embryos by iSCNT. Furthermore, xenogenic transfer of mitochondria to the recipient cytoplast may not be the cause for poor embryonic development of cattle-pig iSCNT embryos.
Collapse
Affiliation(s)
- Mukesh Kumar Gupta
- Department of Animal Science and Biotechnology, Sangji Youngseo College, Wonju 220-713, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
The development and expression of pluripotency genes in embryos derived from nuclear transfer and in vitro fertilization. ZYGOTE 2013; 22:540-8. [DOI: 10.1017/s0967199413000129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SummarySomatic cell nuclear transfer can be used to produce embryonic stem (ES) cells, cloned animals, and can even increase the population size of endangered animals. However, the application of this technique is limited by the low developmental rate of cloned embryos, a situation that may result from abnormal expression of some zygotic genes. In this study, sheep–sheep intra-species cloned embryos, goat–sheep inter-species cloned embryos, or sheep in vitro fertilized embryos were constructed and cultured in vitro and the developmental ability and expression of three pluripotency genes, SSEA-1, Nanog and Oct4, were examined. The results showed firstly that the developmental ability of in vitro fertilized embryos was significantly higher than that of cloned embryos. In addition, the percentage of intra-species cloned embryos that developed to morula or blastocyst stages was also significantly higher than that of the inter-species cloned embryos. Secondly, all three types of embryos expressed SSEA-1 at the 8-cell and morula stages. At the 8-cell stage, a higher percentage of in vitro fertilized embryos expressed SSEA-1 than occurred for cloned embryos. However, at the morula stage, all detected embryos could express SSEA-1. Thirdly, the three types of embryos expressed Oct4 mRNA at the morula and blastocyst stages, and embryos at the blastocyst stage expressed Nanog mRNA. The rate of expression of Oct4 and Nanog mRNA at these developmental stages was higher in in vitro fertilized embryos than in cloned embryos. These results indicated that, during early development, the failure to reactivate some pluripotency genes maybe is a reason for the low cloning efficiency found with cloned embryos.
Collapse
|
9
|
Chebrout M, Adenot PG, Reynaud K, Chastant-Maillard S. Reliability of Hoechst 33342 staining under wide-field microscopy for evaluation of the nuclear status of living dog oocytes. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:483-492. [PMID: 22494438 DOI: 10.1017/s1431927611012773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to the marked cytoplasmic opacity of canine oocytes, the diagnosis of their nuclear status is difficult. The objective of the present study was to evaluate the accuracy of Hoechst staining observed under epifluorescence wide-field microscopy [living oocyte observation (LivOO)] by comparison to a reference technique [DNA staining with ethidium homodimer-2 under confocal microscopy; fixed oocyte observation (FixOO)]. Four Hoechst 33342 concentrations (200 ng, 500 ng, 1 μg, 2 μg/mL) were tested and 1 μg/mL was the lowest one with the lowest proportion of oocytes in which DNA was missed. At this concentration, LivOO procedure did not affect the degeneration rate. On 379 oocytes observed individually with the two techniques successively, diagnosis of meiosis resumption by LivOO was exact in 87.3% of the cases, but the meiosis resumption rate was underestimated (23.5% versus 34.3% with FixOO; p < 0.001). Diagnosis for metaphase II was exact in 80% of the cases, but LivOO detected only 72.7% of the metaphase II oocytes present. Metaphase rates did not differ between LivOO and FixOO. This study contributes to a better interpretation of in vitro maturation results. The developmental potential of metaphase II canine oocytes sorted after Hoechst staining is to be evaluated.
Collapse
Affiliation(s)
- Martine Chebrout
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
10
|
Abstract
SummarySomatic cell nuclear transfer (SCNT) has emerged as an important tool for producing transgenic animals and deriving transgenic embryonic stem cells. The process of SCNT involves fusion of in vitro matured oocytes with somatic cells to make embryos that are transgenic when the nuclear donor somatic cells carry ‘foreign’ DNA and are clones when all the donor cells are genetically identical. However, in canines, it is difficult to obtain enough mature oocytes for successful SCNT due to the very low efficiency of in vitro oocyte maturation in this species that hinders canine transgenic cloning. One solution is to use oocytes from a different species or even a different genus, such as bovine oocytes, that can be matured easily in vitro. Accordingly, the aim of this study was: (1) to establish a canine fetal fibroblast line transfected with the green fluorescent protein (GFP) gene; and (2) to investigate in vitro embryonic development of canine cloned embryos derived from transgenic and non-transgenic cell lines using bovine in vitro matured oocytes. Canine fetal fibroblasts were transfected with constructs containing the GFP and puromycin resistance genes using FuGENE 6®. Viability levels of these cells were determined by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Interspecies SCNT (iSCNT) embryos from normal or transfected cells were produced and cultured in vitro. The MTT measurement of GFP-transfected fetal fibroblasts (mean OD = 0.25) was not significantly different from non-transfected fetal fibroblasts (mean OD = 0.35). There was no difference between transgenic iSCNT versus non-transgenic iSCNT embryos in terms of fusion rates (73.1% and 75.7%, respectively), cleavage rates (69.7% vs. 73.8%) and development to the 8–16-cell stage (40.1% vs. 42.7%). Embryos derived from the transfected cells completely expressed GFP at the 2-cell, 4-cell, and 8–16-cell stages without mosaicism. In summary, our results demonstrated that, following successful isolation of canine transgenic cells, iSCNT embryos developed to early pre-implantation stages in vitro, showing stable GFP expression. These canine–bovine iSCNT embryos can be used for further in vitro analysis of canine transgenic cells and will contribute to the production of various transgenic dogs for use as specific human disease models.
Collapse
|
11
|
Lagutina I, Fulka H, Brevini TAL, Antonini S, Brunetti D, Colleoni S, Gandolfi F, Lazzari G, Fulka J, Galli C. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction 2010; 140:273-85. [PMID: 20530093 DOI: 10.1530/rep-09-0578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine-pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16-25-cell stage for pig-bovine iSCNT embryos and at the four-cell stage for bovine-pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus-cytoplasm compatibility between these animal species.
Collapse
Affiliation(s)
- Irina Lagutina
- Laboratorio di Tecnologie della Riproduzione, Avantea srl, Via Porcellasco 7/f, Cremona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chastant-Maillard S, Chebrout M, Thoumire S, Saint-Dizier M, Chodkiewicz M, Reynaud K. Embryo biotechnology in the dog: a review. Reprod Fertil Dev 2010; 22:1049-56. [DOI: 10.1071/rd09270] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/03/2010] [Indexed: 12/12/2022] Open
Abstract
Canine embryos are a scarce biological material because of difficulties in collecting in vivo-produced embryos and the inability, to date, to produce canine embryos in vitro. The procedure for the transfer of in vivo-produced embryos has not been developed adequately, with only six attempts reported in the literature that have resulted in the birth of 45 puppies. In vitro, the fertilisation rate is particularly low (∼10%) and the incidence of polyspermy particularly high. So far, no puppy has been obtained from an in vitro-produced embryo. In contrast, cloning of somatic cells has been used successfully over the past 4 years, with the birth of 41 puppies reported in the literature, a yield that is comparable to that for other mammalian species. Over the same period, canine embryonic stem sells and transgenic cloned dogs have been obtained. Thus, the latest reproductive technologies are further advanced than in vitro embryo production. The lack of fundamental studies on the specific features of reproductive physiology and developmental biology in the canine is regrettable in view of the increasing role of dogs in our society and of the current demand for new biological models in biomedical technology.
Collapse
|
13
|
Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos. Theriogenology 2009; 72:549-59. [DOI: 10.1016/j.theriogenology.2009.04.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/14/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
|