1
|
Mo YY, Han YX, Xu SN, Jiang HL, Wu HX, Cai JM, Li L, Bu YH, Xiao F, Liang HD, Wen Y, Liu YZ, Yin YL, Zhou HD. Adipose Tissue Plasticity: A Comprehensive Definition and Multidimensional Insight. Biomolecules 2024; 14:1223. [PMID: 39456156 PMCID: PMC11505740 DOI: 10.3390/biom14101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue is composed of adipocytes, stromal vascular fraction, nerves, surrounding immune cells, and the extracellular matrix. Under various physiological or pathological conditions, adipose tissue shifts cellular composition, lipid storage, and organelle dynamics to respond to the stress; this remodeling is called "adipose tissue plasticity". Adipose tissue plasticity includes changes in the size, species, number, lipid storage capacity, and differentiation function of adipocytes, as well as alterations in the distribution and cellular composition of adipose tissue. This plasticity has a major role in growth, obesity, organismal protection, and internal environmental homeostasis. Moreover, certain thresholds exist for this plasticity with significant individualized differences. Here, we comprehensively elaborate on the specific connotation of adipose tissue plasticity and the relationship between this plasticity and the development of many diseases. Meanwhile, we summarize possible strategies for treating obesity in response to adipose tissue plasticity, intending to provide new insights into the dynamic changes in adipose tissue and contribute new ideas to relevant clinical problems.
Collapse
Affiliation(s)
- Yu-Yao Mo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Xin Han
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Shi-Na Xu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hong-Li Jiang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Jun-Min Cai
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yan-Hong Bu
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha 410012, China;
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Han-Dan Liang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Ying Wen
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| | - Yu-Ze Liu
- Pediatric Cardiac Surgery Centre, Fuwai Hospital, National Centre for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Yu-Long Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.-Y.M.); (Y.-X.H.); (S.-N.X.); (H.-L.J.); (H.-X.W.); (J.-M.C.); (L.L.); (F.X.); (H.-D.L.); (Y.W.)
| |
Collapse
|
2
|
Maylem ERS, Schütz LF, Spicer LJ. The role of asprosin in regulating ovarian granulosa- and theca-cell steroidogenesis: a review with comparisons to other adipokines. Reprod Fertil Dev 2024; 36:RD24027. [PMID: 39074236 DOI: 10.1071/rd24027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024] Open
Abstract
Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.
Collapse
Affiliation(s)
- Excel Rio S Maylem
- Philippine Carabao Center, National Headquarters and Gene Pool, Science City of Munoz, Nueva Ecija, Philippines
| | - Luis Fernando Schütz
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Thaqi G, Berisha B, Pfaffl MW. Expression dynamics of adipokines during induced ovulation in the bovine follicles and early corpus luteum. Reprod Domest Anim 2024; 59:e14624. [PMID: 38798196 DOI: 10.1111/rda.14624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
The study aimed to assess the local gene expression of adipokine members, namely vaspin, adiponectin, visfatin, resistin and their associated receptors - heat shock 70 protein 5 (HSPA5), adiponectin receptor 1 (AdipoR1) and adiponectin receptor 2 (AdipoR2) - in bovine follicles during the preovulatory period and early corpus luteum development. Follicles were collected before gonadotropin-releasing hormone (GnRH) treatment (0 h) and at 4, 10, 20, 25 and 60 h after GnRH application through transvaginal ovariectomy (n = 5 samples/group). Relative mRNA expression levels were quantified using real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin exhibited high mRNA levels immediately 4 h after GnRH application, followed by a significant decrease. Adiponectin mRNA levels were elevated at 25 h after GnRH treatment. AdipoR2 exhibited late-stage upregulation, displaying increased expression at 20, 25 and 60 h following GnRH application. Visfatin showed upregulation at 20 h post-GnRH application. In conclusion, the observed changes in adipokine family members within preovulatory follicles, following experimentally induced ovulation, may constitute crucial components of the local mechanisms regulating final follicle growth and development.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
- Faculty of Agriculture and Veterinary, Department of Animal Biotechnology, University of Prishtina, Prishtina, Kosovo
| | - Michael W Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Uddandrao VVS, Brahma Naidu P, Chandrasekaran P, Saravanan G. Pathophysiology of obesity-related infertility and its prevention and treatment by potential phytotherapeutics. Int J Obes (Lond) 2024; 48:147-165. [PMID: 37963998 DOI: 10.1038/s41366-023-01411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Obesity is a complex multifactorial disease in which the accumulation of excess body fat has adverse health effects, as it can increase the risk of several problems, including infertility, in both men and women. Obesity and infertility have risen together in recent years. Against this background, the present review aims to highlight the impact of obesity on infertility and the underlying pathophysiology of obesity-related infertility (ORI) in men and women, and to provide readers with knowledge of current trends in the effective development of phytotherapeutics for its treatment. METHODS We thoroughly searched in PubMed, MEDLINE, Scopus, EMBASE, and Google Scholar to find all relevant papers on ORI and the therapeutic effects of phytotherapeutics on ORI in men and women. RESULTS The extensive search of the available literature revealed that obesity affects reproductive function through several complex mechanisms such as hyperlipidaemia, hyperinsulinaemia, hyperandrogenism, increased body mass index, disruption of the hormonal milieu, systemic inflammation, oxidative stress, alterations in epigenetics and dysbiosis. On the other hand, several studies reported that phytotherapeutics has a broad therapeutic spectrum of action by improving sex hormone homeostasis, ovarian dysfunction, menstrual cycle and inhibiting ovarian hyperplasia, as well as down-regulating ovarian apoptosis, inflammation and oxidative stress, and controlling metabolic dysfunction in obese women. Male infertility is also addressed by phytotherapeutics by suppressing lipogenesis, increasing testosterone, 3β-HSD and 17β-HSD levels, improving sperm parameters and attenuating testicular dyslipidaemia, oxidative stress, inflammation and germ cell apoptosis. CONCLUSIONS In the present review, we discussed the effects of obesity on reproductive dysfunction in men and women and the underlying pathophysiology of ORI. In addition, the therapeutic effect of phytotherapeutics against ORI was highlighted.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India.
| | - Parim Brahma Naidu
- Department of Animal Physiology and Biochemistry, National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, Telangana, 500078, India
| | - P Chandrasekaran
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| | - G Saravanan
- Centre for Biological Sciences, Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, 637215, Tamilnadu, India
| |
Collapse
|
5
|
Than WW, Hossain Parash MT, Binti Abdul Majeed N, Nyein Yin K, Pg Baharuddin DMB, Fahmy EHAM, Mohd Daud MNB. A Case-Control Study on Factors Associated With Secondary Amenorrhea Among the Medical Students of Universiti Malaysia Sabah. Cureus 2023; 15:e47625. [PMID: 38022313 PMCID: PMC10667791 DOI: 10.7759/cureus.47625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND AND AIM This study aimed to evaluate the association between body mass index (BMI), anxiety, stress, depression, hormones, and secondary amenorrhea among female medical students at Universiti Malaysia Sabah (UMS). METHODS In this case-control study, UMS undergraduate female medical students aged 19-25 years who did not menstruate in the last three months (with a previous history of a regular menstrual cycle) or six months (with a history of irregular menstruation) were included as cases (40 students), and students with similar criteria but no menstrual irregularities were recruited in the study as controls (40 students). The study was conducted at Polyclinic UMS from January 1, 2021, until December 31, 2022. The chi-squared test and odd ratio examined the association of the above-mentioned factors with the secondary amenorrhea. A p-value less than 0.05 was considered significant, and an odds ratio if the confidence interval did not contain one was considered significant. RESULT Both the groups had a similar frequency of different BMI grades. The cases exhibited significantly higher levels of depression, anxiety, and stress than the controls. Again, the cases demonstrated higher estradiol (E2), testosterone, and thyroid-stimulating hormone (TSH) levels and lower levels of luteinizing hormone (LH) than those with regular menstruation. The research also revealed that a one-unit decrease in follicle-stimulating hormone (FSH) levels corresponds to a threefold increase in the risk of experiencing secondary amenorrhea, while the risk escalates to fourfold for LH. Moreover, E2, testosterone, and TSH levels exhibited protective effects on secondary amenorrhea. CONCLUSION Anxiety, serum LH, and FSH were significantly associated with secondary amenorrhea. Future studies should address the diurnal variation of the hormones and consider the participants' circumstances to get a proper effect of hormonal influence and stress.
Collapse
Affiliation(s)
- Win Win Than
- Obstetrics and Gynecology, Faculty of Medicine, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong, MYS
| | - M Tanveer Hossain Parash
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, MYS
| | | | - Khin Nyein Yin
- Rehabilitation Medicine, Hospital Universiti Malaysia, Kota Kinabalu, MYS
- Rehabilitation Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, MYS
| | | | - Ehab Helmy Abdel Malek Fahmy
- Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, MYS
| | - Mohd Nazri Bin Mohd Daud
- Public Health Medicine, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, MYS
| |
Collapse
|
6
|
Thaqi G, Berisha B, Pfaffl MW. Expression of Locally Produced Adipokines and Their Receptors during Different Physiological and Reproductive Stages in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:1782. [PMID: 37889693 PMCID: PMC10251875 DOI: 10.3390/ani13111782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 10/05/2023] Open
Abstract
This study aimed to determine the gene expression of different local novel adipokines, such as vaspin, adiponectin, visfatin, and resistin, and their known receptors, namely, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the bovine corpus luteum (CL) during different phases of the estrous cycle (on days 1-2, 3-4, 5-7, 8-12, 13-18, >18) and pregnancy (at months 1-2, 3-4, 5-7, >7). The mRNA expression was measured by reverse transcription polymerase chain reaction (RT-qPCR). The mRNA expression levels were normalized to the geometric mean of all three constantly expressed reference genes (cyclophilin A, ubiquitin, ubiquitin C). Our findings suggest that adipokines are expressed and present in all investigated groups, and are specifically up- or downregulated during the estrus cycle and during pregnancy. Vaspin and adiponectin levels were upregulated in the middle and late cycle stages. Resistin was abundant during the CL regression stage and in the first months of pregnancy. The specific expression of adipokine receptors indicates their involvement in the local mechanisms that regulate CL function. Further investigations are required to elucidate the regulative mechanisms underlying the different local effects of adipokines on the ovarian physiology of cows.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, TUM School of Life Sciences, Technical University of Munich, 85354 Weihenstephan, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
7
|
Batalha IM, Maylem ERS, Spicer LJ, Pena Bello CA, Archilia EC, Schütz LF. Effects of asprosin on estradiol and progesterone secretion and proliferation of bovine granulosa cells. Mol Cell Endocrinol 2023; 565:111890. [PMID: 36822263 DOI: 10.1016/j.mce.2023.111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 01/28/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Asprosin is an adipokine synthesized by the white adipose tissue that regulates glucose homeostasis and that has been reported to affect bovine theca cell function and follicular growth, but its role on granulosa cell functions remains to be unveiled. Hence, the objective of this study was to investigate asprosin impacts on granulosa cell steroidogenesis. Bovine granulosa cells from small ovarian follicles were cultured in vitro to investigate the effects of asprosin on cell proliferation, production of steroids, mRNA abundance of genes that encode steroidogenic enzymes and cell cycle regulators, and protein relative abundance of steroidogenic signaling pathways. Asprosin was shown to affect granulosa cell functions in a dose-dependent manner. In the presence of FSH, asprosin enhanced estradiol production and stimulated an increase in mRNA expression of FSHR and CYP19A1 in a dose-dependent manner. In the presence of IGF1, asprosin decreased estradiol production, increased progesterone production, altered PKA relative protein expression, and tended to alter the ratio of p-ERK1/2/total ERK1/2 protein expression in a dose-dependent manner. Furthermore, asprosin increased p-53 gene expression in basal culture conditions and with or without FSH and IGF1. Taken together, findings of this study show that asprosin is a regulator of granulosa cell functions and the effects of asprosin depend on dose and cell culture conditions.
Collapse
Affiliation(s)
- Isadora Maria Batalha
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Excel Rio S Maylem
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University Stillwater, OK 74078, USA
| | - Camilo Andres Pena Bello
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Evandro Carlos Archilia
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA
| | - Luis Fernando Schütz
- Departament of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
8
|
Abstract
The dramatic rise in obesity has recently made it a global health issue. About 1.9 billion were overweight, and 650 million global populations were obese in 2016. Obese women suffer longer conception time, lowered fertility rates, and greater rates of miscarriage. Obesity alters hormones such as adiponectin and leptin, affecting all levels within the hypothalamic-pituitary-gonadal axis. Advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are inflammatory cytokines that may play an important role in the pathophysiology of ovarian dysfunction in obesity. In obese males, there are altered sperm parameters, reduced testosterone, increased estradiol, hypogonadism, and epigenetic modifications transmitted to offspring. The focus of this article is on the possible adverse effects on reproductive health resulting from obesity and sheds light on different molecular pathways linking obesity with infertility in both female and male subjects. Electronic databases such as Google Scholar, Embase, Science Direct, PubMed, and Google Search Engine were utilized to find obesity and infertility-related papers. The search strategy is detailed in the method section. Even though multiple research work has shown that obesity impacts fertility in both male and female negatively, it is significant to perform extensive research on the molecular mechanisms that link obesity to infertility. This is to find therapeutics that may be developed aiming at these mechanisms to manage and prevent the negative effects of obesity on the reproductive system.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Physiology, Department of Physiology, Medical College for Women and Hospital, Dhaka, BGD
| | - Mainul Haque
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
9
|
Spicer LJ, Schütz LF. Effects of grape phenolics, myricetin and piceatannol, on bovine granulosa and theca cell proliferation and steroid production in vitro. Food Chem Toxicol 2022; 167:113288. [PMID: 35820639 DOI: 10.1016/j.fct.2022.113288] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022]
Abstract
Myricetin (a flavonol) and piceatannol (a stilbenoid) are naturally occurring phenolic compounds in red wine with cardio-protective and anti-carcinogenic effects, but their potential reproductive effects have not been investigated. Thus, the present study was designed to determine if myricetin and piceatannol can directly affect ovarian function using bovine granulosa cells (GC) and theca cells (TC) as in vitro model systems to evaluate effects on cell proliferation and steroid production. In Experiment 1 and 2, myricetin and piceatannol at 30 μM blocked insulin-like growth factor 1 (IGF1)-induced progesterone production by GC without affecting GC numbers. In contrast, myricetin stimulated IGF1-induced estradiol production, whereas piceatannol at 30 μM inhibited IGF1-induced estradiol production by 90% in GC. In Experiment 3 and 4, TC androstenedione and progesterone production and TC proliferation was inhibited by myricetin and piceatannol at 30 μM. In Experiment 5, piceatannol (30 μM) reduced the Fusarium mycotoxin, beauvericin (6 μM)-induced inhibition on progesterone production and cell proliferation. Myricetin (30 μM) reduced the inhibitory effect of beauvericin on estradiol but not progesterone production or cell proliferation. In conclusion, the red wine phenols, myricetin and piceatannol, directly affected GC and TC steroidogenesis, and were able to reduce some of the inhibitory effects of beauvericin on GC function.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Luis F Schütz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
10
|
Spicer LJ, Schutz LF, Aad PY. Effects of bone morphogenetic protein 4, gremlin, and connective tissue growth factor on estradiol and progesterone production by bovine granulosa cells. J Anim Sci 2021; 99:6415266. [PMID: 34724558 DOI: 10.1093/jas/skab318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β family of proteins that have been implicated in the paracrine regulation of granulosa cell (GC) function, but whether responses to BMPs change with follicular size or interact with connective tissue growth factor (CTGF) or BMP antagonists (e.g., gremlin [GREM]) to directly affect GC function of cattle is unknown. Therefore, to determine the effects of BMP4 on proliferation and steroidogenesis of GCs and its interaction with GREM or CTGF, experiments were conducted using bovine GC cultures. In vitro, BMP4 (30 ng/mL) inhibited (P < 0.05) follicle-stimulating hormone (FSH) plus insulin-like growth factor 1 (IGF1)-induced progesterone and estradiol production by large- and small-follicle GCs, but the inhibitory effect of BMP4 on estradiol production was much more pronounced in large-follicle GCs. In small-follicle GCs, BMP4 had no effect (P > 0.10) on IGF1-induced proliferation, but GREM inhibited (P < 0.05) cell proliferation and estradiol and progesterone production in IGF1 plus FSH-treated GCs. In large-follicle GCs, BMP4 (10 to 30 ng/mL) increased (P < 0.05) GC numbers and GREM (100 ng/mL) blocked this effect. In large-follicle GCs, CTGF inhibited (P < 0.05) FSH plus IGF1-induced progesterone and estradiol production, and CTGF blocked the stimulatory effect of BMP4 on GC proliferation. These results indicate that BMP4, GREM, and CTGF inhibit GC aromatase activity and progesterone production. Also, the stimulatory effect of BMP4 on GC proliferation and the inhibitory effects of BMP4 on GC steroidogenesis are more pronounced in large vs. small follicles.
Collapse
Affiliation(s)
- Leon J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Luis F Schutz
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Pauline Y Aad
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
11
|
Seasonal and Nutritional Fluctuations in the mRNA Levels of the Short Form of the Leptin Receptor ( LRa) in the Hypothalamus and Anterior Pituitary in Resistin-Treated Sheep. Animals (Basel) 2021; 11:ani11082451. [PMID: 34438908 PMCID: PMC8388769 DOI: 10.3390/ani11082451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Research since the discovery of leptin has mainly focused on the long form of the leptin receptor. Currently, experiments on the short form of the leptin receptor have confirmed that not only is short form of leptin receptor present in the hypothalamus, but also expanded knowledge with information documenting the specific expression of that form of leptin receptor in selected areas of the hypothalamus and in the pituitary gland. In addition, we have shown that short form of leptin receptor expression levels are affected by day length, adiposity and resistin in sheep. Abstract The short form of the leptin receptor (LRa) plays a key role in the transport of leptin to the central nervous system (CNS). Here, the resistin (RSTN)-mediated expression of LRa in the preoptic area (POA), ventromedial and dorsomedial nuclei (VMH/DMH),arcuate nucleus (ARC) and the anterior pituitary gland (AP)was analyzed considering the photoperiodic (experiment 1) and nutritional status (experiment 2) of ewes. In experiment 1, 30 sheep were fed normally and received one injection of saline or two doses of RSTN one hour prior to euthanasia. RSTN increased LRa expression mainly in the ARC and AP during long days (LD) and only in the AP during short days (SD). In experiment 2, an altered diet for 5 months created lean or fat sheep. Twenty sheep were divided into four groups: the lean and fat groups were given saline, while the lean-R and fat-R groups received RSTN one hour prior to euthanasia. Changes in adiposity influenced the effect of RSTN on LRa mRNA transcript levels in the POA, ARC and AP and without detection of LRa in the VMH/DMH. Overall, both photoperiodic and nutritional signals influence the effects of RSTN on leptin transport to the CNS and are involved in the adaptive/pathological phenomenon of leptin resistance in sheep.
Collapse
|
12
|
Juengel JL, Cushman RA, Dupont J, Fabre S, Lea RG, Martin GB, Mossa F, Pitman JL, Price CA, Smith P. The ovarian follicle of ruminants: the path from conceptus to adult. Reprod Fertil Dev 2021; 33:621-642. [PMID: 34210385 DOI: 10.1071/rd21086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022] Open
Abstract
This review resulted from an international workshop and presents a consensus view of critical advances over the past decade in our understanding of follicle function in ruminants. The major concepts covered include: (1) the value of major genes; (2) the dynamics of fetal ovarian development and its sensitivity to nutritional and environmental influences; (3) the concept of an ovarian follicle reserve, aligned with the rise of anti-Müllerian hormone as a controller of ovarian processes; (4) renewed recognition of the diverse and important roles of theca cells; (5) the importance of follicular fluid as a microenvironment that determines oocyte quality; (6) the 'adipokinome' as a key concept linking metabolic inputs with follicle development; and (7) the contribution of follicle development to the success of conception. These concepts are important because, in sheep and cattle, ovulation rate is tightly regulated and, as the primary determinant of litter size, it is a major component of reproductive efficiency and therefore productivity. Nowadays, reproductive efficiency is also a target for improving the 'methane efficiency' of livestock enterprises, increasing the need to understand the processes of ovarian development and folliculogenesis, while avoiding detrimental trade-offs as greater performance is sought.
Collapse
Affiliation(s)
- Jennifer L Juengel
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand; and Corresponding author
| | - Robert A Cushman
- Livestock Biosystems Research Unit, US Department of Agriculture, Agricultural Research Service, US Meat Animal Research Center, Clay Center, NE, USA
| | - Joëlle Dupont
- INRAE Institute UMR85 Physiologie de la Reproduction et des Comportements, Tours University, France
| | - Stéphane Fabre
- GenPhySE, Université de Toulouse, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut national polytechnique de Toulouse, Ecole nationale vétérinaire de Toulouse, Castanet Tolosan, France
| | - Richard G Lea
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK
| | - Graeme B Martin
- UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Francesca Mossa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Italy
| | - Janet L Pitman
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | - Christopher A Price
- Faculty of Veterinary Medicine, Université de Montréal, Montréal, QC, Canada
| | - Peter Smith
- AgResearch Ltd, Invermay Agricultural Centre, Mosgiel, New Zealand
| |
Collapse
|
13
|
Rubio I, White FJ, Spicer LJ, Wettemann RP. Postpartum nutrition affects the insulin-like growth factor system in dominant follicles and plasma of anestrous beef cows. Anim Reprod Sci 2021; 229:106760. [PMID: 33962315 DOI: 10.1016/j.anireprosci.2021.106760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Effects of nutrition on insulin-like growth factor-I (IGF-I), IGF binding proteins (IGFBP), and insulin in plasma and dominant follicles were evaluated at day 72 and 56 (Exp. 1, n = 12 and Exp. 2, n = 28, respectively) postpartum in anovulatory primiparous beef cows. Cows were stratified based on body condition score at calving and randomly assigned to nutritional treatments: maintain (M), 2.27 kg of a 40 % CP supplement per day and ad libitum hay; or gain (G), ad libitum access to a 50 % concentrate diet and ad libitum hay. Blood samples were collected twice weekly starting 30 days postpartum. Ovarian follicles were evaluated using ultrasonography commencing 42 (Exp. 1) or 30 (Exp. 2) days postpartum. Body weight and condition score were greater (P < 0.05) for cows of G than M groups and postpartum interval to luteal function was longer for cows of the M than G group. Insulin and IGF-I concentrations in follicular fluid (FF) and plasma were greater (P < 0.05) for cows of the G than M group at follicular aspiration. Plasma and FF IGFBP4 and IGFBP5 concentrations were greater (P < 0.05) in Exp. 2, and IGFBP5 was greater in Exp. 1 for cows of the G than M group. Treatment did not affect FF steroid concentrations or granulosal cell CYP19A1, PAPPA, IGFBP4, and IGFBP5 mRNA abundance. These results indicate concentrations of IGF-I, insulin, IGFBP4, and IGFBP5 in FF and plasma are affected by nutritional intake and may be related to follicular function.
Collapse
Affiliation(s)
- I Rubio
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - F J White
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - R P Wettemann
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
14
|
Nikanfar S, Oghbaei H, Rastgar Rezaei Y, Zarezadeh R, Jafari-Gharabaghlou D, Nejabati HR, Bahrami Z, Bleisinger N, Samadi N, Fattahi A, Nouri M, Dittrich R. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol 2021; 209:105852. [PMID: 33610800 DOI: 10.1016/j.jsbmb.2021.105852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/28/2020] [Accepted: 01/30/2021] [Indexed: 01/02/2023]
Abstract
Adipokines are mainly produced by adipose tissue; however, their expression has been reported in other organs including female reproductive tissues. Therefore, adipokines have opened new avenues of research in female fertility. In this regard, studies reported different roles for certain adipokines in ovarian function, although the role of other recently identified adipokines is still controversial. It seems that adipokines are essential for normal ovarian function and their abnormal levels could be associated with ovarian-related disorders. The objective of this study is to review the available information regarding the role of adipokines in ovarian functions including follicular development, oogenesis and steroidogenesis and also their involvement in ovary-related disorders.
Collapse
Affiliation(s)
- Saba Nikanfar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Oghbaei
- Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Rastgar Rezaei
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Nejabati
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahrami
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Bleisinger
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| | - Naser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- Department of Obstetrics and Gynecology, Erlangen University Hospital, Friedrich-Alexander University of Erlangen, Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Han Y, Chen Y, Yang F, Sun X, Zeng S. Mechanism underlying the stimulation by IGF-1 of LHCGR expression in porcine granulosa cells. Theriogenology 2021; 169:56-64. [PMID: 33933758 DOI: 10.1016/j.theriogenology.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
IGF-1 plays important roles in mammalian fertility by promoting cell growth and increasing steroid hormone secretion. Although IGF-1 significantly upregulated luteinizing hormone/choriogonadotropin receptor (LHCGR) gene expression in granulosa cells in a previous study, the mechanism was unclear. The present experiment was designed to primarily explore the regulation of LHCGR expression by IGF-1. First, based on a porcine LHCGR double-luciferase reporter experiment, c-Fos significantly inhibited the activity of the LHCGR promoter. Second, porcine granulosa cells were cultured in vitro with IGF-1, and we observed that the expression of LHCGR was significantly increased and the expression of c-Fos mRNA significantly reduced. After c-Fos overexpression in granulosa cells, IGF-1 attenuated the inhibitory effect of c-Fos on LHCGR. Furthermore, the level of LHCGR mRNA stimulated by IGF-1 in the presence of SB203580 was markedly lower than that of IGF-1 alone action. In conclusion, IGF-1 enhanced the expression of LHCGR by regulating c-Fos in granulosa cells, which may be mediated by the p38MAPK-signaling pathway.
Collapse
Affiliation(s)
- Ying Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; College of Agronomy, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Yanhong Chen
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaomei Sun
- Jiangsu Key Laboratory of Animal Genetics, Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update 2021; 27:771-796. [PMID: 33764457 DOI: 10.1093/humupd/dmab004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Metabolic and endocrine alterations in women with polycystic ovary syndrome (PCOS) affect adipose tissue mass and distribution. PCOS is characterised by hyperandrogenism, obesity and adipocyte dysfunction. Hyperandrogenism in PCOS drives dysfunctional adipocyte secretion of potentially harmful adipocytokines. Glucocorticoids and sex-steroids modulate adipocyte development and function. For their part, adipocyte products interact with adrenal and ovarian steroidogenic cells. Currently, the relationship between adipocyte and steroidogenic cells is not clear, and for these reasons, it is important to elucidate the interrelationship between these cells in women with and without PCOS. OBJECTIVE AND RATIONALE This comprehensive review aims to assess current knowledge regarding the interrelationship between adipocytes and adrenal and ovarian steroidogenic cells in animal models and humans with or without PCOS. SEARCH METHODS We searched for articles published in English and Portuguese in PubMed. Keywords were as follows: polycystic ovary syndrome, steroidogenesis, adrenal glands, theca cells, granulosa cells, adipocytes, adipocytokines, obesity, enzyme activation, and cytochrome P450 enzymes. We expanded the search into the references from the retrieved articles. OUTCOMES Glucocorticoids and sex-steroids modulate adipocyte differentiation and function. Dysfunctional adipocyte products play important roles in the metabolic and endocrine pathways in animals and women with PCOS. Most adipokines participate in the regulation of the hypothalamic-pituitary-adrenal and ovarian axes. In animal models of PCOS, hyperinsulinemia and poor fertility are common; various adipokines modulate ovarian steroidogenesis, depending on the species. Women with PCOS secrete unbalanced levels of adipocyte products, characterised by higher levels of leptin and lower levels of adiponectin. Leptin expression positively correlates with body mass index, waist/hip ratio and levels of total cholesterol, triglyceride, luteinising hormone, oestradiol and androgens. Leptin inhibits the production of oestradiol and, in granulosa cells, may modulate 17-hydroxylase and aromatase enzyme activities. Adiponectin levels negatively correlate with fat mass, body mass index, waist-hip ratio, glucose, insulin and triglycerides, and decrease androgen production by altering expression of luteinising hormone receptor, steroidogenic acute regulatory protein, cholesterol-side-chain cleavage enzyme and 17-hydroxylase. Resistin expression positively correlates with body mass index and testosterone, and promotes the expression of 17-hydroxylase enzyme in theca cells. The potential benefits of adipokines in the treatment of women with PCOS require more investigation. WIDER IMPLICATIONS The current data regarding the relationship between adipocyte products and steroidogenic cells are conflicting in animals and humans. Polycystic ovary syndrome is an excellent model to investigate the interrelationship among adipocyte and steroidogenic cells. Women with PCOS manifest some pathological conditions associated with hyperandrogenism and adipocyte products. In animals, cross-talk between cells may vary according to species, and the current review suggests opportunities to test new medications to prevent or even reverse several harmful sequelae of PCOS in humans. Further studies are required to investigate the possible therapeutic application of adipokines in women with obese and non-obese PCOS. Meanwhile, when appropriate, metformin use alone, or associated with flutamide, may be considered for therapeutic purposes.
Collapse
Affiliation(s)
- Sebastião Freitas de Medeiros
- Department of Gynecology and Obstetrics, Medical School, Federal University of Mato Grosso; and Tropical Institute of Reproductive Medicine,Cuiabá, MT, Brazil
| | - Raymond Joseph Rodgers
- Paediatrics and Reproductive Health, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert John Norman
- Robinson Research Institute Adelaide Medical School, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Kurowska P, Mlyczyńska E, Dawid M, Sierpowski M, Estienne A, Dupont J, Rak A. Adipokines change the balance of proliferation/apoptosis in the ovarian cells of human and domestic animals: A comparative review. Anim Reprod Sci 2021; 228:106737. [PMID: 33756403 DOI: 10.1016/j.anireprosci.2021.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Adipose tissue secretes multiple hormones termed adipokines, which are important regulators of many processes. There are four types of evidence supporting an association between adipokines and female fertility which are effects that occur: centrally at the pituitary; peripherally and locally at the ovary and reproductive tract; directly on the oocyte/embryo and during pregnancy. In this review, there was a focus on the description of adipokines (leptin, apelin, resistin, chemerin, adiponectin, vaspin and visfatin) on ovarian cell proliferation, cell cycle progression and apoptosis in comparison to effects on human and domestic animal ovaries including pigs, cattle and chickens. Knowledge about molecules which regulate the balance between proliferation and apoptosis so that these processes are optimal for ovarian function is essential for understanding the physiology and reducing the incidence of infertility. Furthermore, oogenesis, folliculogenesis, oocyte loss/selection and atresia are important processes for optimal ovarian physiological functions. There, however, is ovulation from only a few follicles, while the majority undergo atresia that is induced by apoptosis.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mateusz Sierpowski
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anthony Estienne
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
18
|
Hypothalamic-Pituitary and Adipose Tissue Responses to the Effect of Resistin in Sheep: The Integration of Leptin and Resistin Signaling Involving a Suppressor of Cytokine Signaling 3 and the Long Form of the Leptin Receptor. Nutrients 2019; 11:nu11092180. [PMID: 31514318 PMCID: PMC6769434 DOI: 10.3390/nu11092180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022] Open
Abstract
We hypothesized that resistin is engaged in the development of leptin central insensitivity/resistance in sheep, which is a unique animal model to explore reversible leptin resistance. Thirty Polish Longwool ewes, which were ovariectomized with estrogen replacement, were used. Treatments consisted of the intravenous injection of control (saline) or recombinant bovine resistin (rbresistin): control (Control; n = 10), a low dose of rbresistin (R1; 1.0 μg/kg body weight (BW); n = 10), and a high dose of rbresistin (R2; 10.0 μg/kg BW; n = 10). The studies were performed during short-day (SD) and long-day (LD) photoperiods. Leptin and resistin concentrations were determined. Expression levels of a suppressor of cytokine signaling (SOCS)-3 and the long form of the leptin receptor (LeptRb) were determined in selected brain regions, including in the anterior pituitary (AP), hypothalamic arcuate nucleus (ARC), preoptic area (POA), and ventro- and dorsomedial nuclei (VMH/DMH). The results indicate that resistin induced a consistent decrease in LeptRb (except in POA) and an increase in SOCS-3 expression during the LD photoperiod in all selected brain regions. In conclusion, the results demonstrate that the action of resistin appears to be strongly associated with photoperiod-driven changes in the leptin signaling pathway, which may underlie the phenomenon of central leptin resistance.
Collapse
|
19
|
Estienne A, Bongrani A, Reverchon M, Ramé C, Ducluzeau PH, Froment P, Dupont J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int J Mol Sci 2019; 20:ijms20184431. [PMID: 31505789 PMCID: PMC6769682 DOI: 10.3390/ijms20184431] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
It is well known that adipokines are endocrine factors that are mainly secreted by white adipose tissue. Their central role in energy metabolism is currently accepted. More recently, their involvement in fertility regulation and the development of some reproductive disorders has been suggested. Data concerning the role of leptin and adiponectin, the two most studied adipokines, in the control of the reproductive axis are consistent. In recent years, interest has grown about some novel adipokines, chemerin, visfatin, resistin and apelin, which have been found to be strongly associated with obesity and insulin-resistance. Here, we will review their expression and role in male and female reproduction in humans and animal models. According to accumulating evidence, they could regulate the secretion of GnRH (Gonadotropin-Releasing Hormone), gonadotropins and steroids. Furthermore, their expression and that of their receptors (if known), has been demonstrated in the human and animal hypothalamo-pituitary-gonadal axis. Like leptin and adiponectin, these novel adipokines could thus represent metabolic sensors that are able to regulate reproductive functions according to energy balance changes. Therefore, after investigating their role in normal fertility, we will also discuss their possible involvement in some reproductive troubles known to be associated with features of metabolic syndrome, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia and intra-uterine growth retardation in women, and sperm abnormalities and testicular pathologies in men.
Collapse
Affiliation(s)
- Anthony Estienne
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Alice Bongrani
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Maxime Reverchon
- SYSAAF-Syndicat des Sélectionneurs Avicoles et Aquacoles Français, Centre INRA Val de Loire, F-37380 Nouzilly, France
| | - Christelle Ramé
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Pierre-Henri Ducluzeau
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
- Internal Medicine Department, Unit of Endocrinology, CHRU Tours, F-37044 Tours, France
| | - Pascal Froment
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
- Université François Rabelais de Tours F-37041 Tours, France
- IFCE, F-37380 Nouzilly, France
| | - Joëlle Dupont
- INRA UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR 7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours F-37041 Tours, France.
- IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
20
|
Messini CI, Vasilaki A, Korona E, Anifandis G, Georgoulias P, Dafopoulos K, Garas A, Daponte A, Messinis IE. Effect of resistin on estradiol and progesterone secretion from human luteinized granulosa cells in culture. Syst Biol Reprod Med 2019; 65:350-356. [DOI: 10.1080/19396368.2019.1615151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Christina I. Messini
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Anna Vasilaki
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Evangelia Korona
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Antonios Garas
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis E. Messinis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
21
|
Bach À. Effects of nutrition and genetics on fertility in dairy cows. Reprod Fertil Dev 2019; 31:40-54. [DOI: 10.1071/rd18364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optimal reproductive function in dairy cattle is mandatory to maximise profits. Dairy production has progressively improved milk yields, but, until recently, the trend in reproductive performance has been the opposite. Nutrition, genetics, and epigenetics are important aspects affecting the reproductive performance of dairy cows. In terms of nutrition, the field has commonly fed high-energy diets to dairy cows during the 3 weeks before calving in an attempt to minimise postpartum metabolic upsets. However, in the recent years it has become clear that feeding high-energy diets during the dry period, especially as calving approaches, may be detrimental to cow health, or at least unnecessary because cows, at that time, have low energy requirements and sufficient intake capacity. After calving, dairy cows commonly experience a period of negative energy balance (NEB) characterised by low blood glucose and high non-esterified fatty acid (NEFA) concentrations. This has both direct and indirect effects on oocyte quality and survival. When oocytes are forced to depend highly on the use of energy resources derived from body reserves, mainly NEFA, their development is compromised due to a modification in mitochondrial β-oxidation. Furthermore, the indirect effect of NEB on reproduction is mediated by a hormonal (both metabolic and reproductive) environment. Some authors have attempted to overcome the NEB by providing the oocyte with external sources of energy via dietary fat. Conversely, fertility is affected by a large number of genes, each with small individual effects, and thus it is unlikely that the decline in reproductive function has been directly caused by genetic selection for milk yield per se. It is more likely that the decline is the consequence of a combination of homeorhetic mechanisms (giving priority to milk over other functions) and increased metabolic pressure (due to a shortage of nutrients) with increasing milk yields. Nevertheless, genetics is an important component of reproductive efficiency, and the incorporation of genomic information is allowing the detection of genetic defects, degree of inbreeding and specific single nucleotide polymorphisms directly associated with reproduction, providing pivotal information for genetic selection programs. Furthermore, focusing on improving bull fertility in gene selection programs may represent an interesting opportunity. Conversely, the reproductive function of a given cow depends on the interaction between her genetic background and her environment, which ultimately modulates gene expression. Among the mechanisms modulating gene expression, microRNAs (miRNAs) and epigenetics seem to be most relevant. Several miRNAs have been described to play active roles in both ovarian and testicular function, and epigenetic effects have been described as a consequence of the nutrient supply and hormonal signals to which the offspring was exposed at specific stages during development. For example, there are differences in the epigenome of cows born to heifers and those born to cows, and this epigenome seems to be sensitive to the availability of methyl donor compounds of the dam. Lastly, recent studies in other species have shown the relevance of paternal epigenetic marks, but this aspect has been, until now, largely overlooked in dairy cattle.
Collapse
|
22
|
Zurita-Cruz JN, Medina-Bravo P, Manuel-Apolinar L, Damasio-Santana L, Wakida-Kusunoki G, Padilla-Rojas M, Maldonado-Rivera C, Gutierrez-Gonzalez A, Nishimura-Meguro E, Garrido-Magaña E, Rivera-Hernández ADJ, Villasís-Keever MA. Resistin levels are not associated with obesity in central precocious puberty. Peptides 2018; 109:9-13. [PMID: 30273692 DOI: 10.1016/j.peptides.2018.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To compare serum resistin concentrations between prepubertal girls with a BMI > 85th percentile and girls with precocious puberty (CPP) who have and have not undergone GnRH analog treatment. PATIENTS AND METHODS This is a cross-sectional study in girls with a BMI > 85th percentile and a median age of 8 years. We included 31 girls with CPP who did not receive treatment (CPPoT), 23 girls with CPP who were treated with leuprolide (CPPT), 22 prepubertal girls and 24 pubertal girls. Anthropometric data and the fasting plasma concentrations of lipids, glucose, insulin, and resistin were measured. RESULTS The z-BMI scores were similar among the groups (p = 0.344), and body fat percentage (BF%) was similar among CPPT, CPPoT and prepubertal girls (p = 0.151). Resistin and insulin levels were lower in girls with CPP (CPPT and CPPoT) than in prepubertal and pubertal girls (median resistin level: CPPT 11.8 pg/ml vs CPPoT 11 pg/ml vs prepubertal 16 pg/ml vs pubertal 16 pg/ml, p = 0.001; median insulin level: CPPT 10.7 μUI/mL vs CPPoT 10.2 μUI/mL vs prepubertal 14.4 μUI/mL vs pubertal 32 μUI/mL p = 0.02). ANCOVA analysis, after adjustments for pubertal stage, BF% and z-BMI, showed that CPP modifies resistin levels (F = 31.4; p = 0.0001) independently of these parameters (p < 0.05). CONCLUSIONS In the group of girls with overweight or obesity, the resistin level was lower in girls with CPP than in prepubertal and pubertal girls. More studies are needed to understand the role of resistin in CPP patients.
Collapse
Affiliation(s)
- Jessie N Zurita-Cruz
- Unit of Nutrition, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Patricia Medina-Bravo
- Department of Pediatric Endocrinology. Hospital Infantil de México Federico Gómez, Ministry of Health (SSA), Mexico City, Mexico
| | - Leticia Manuel-Apolinar
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leticia Damasio-Santana
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Guillermo Wakida-Kusunoki
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | - Michel Padilla-Rojas
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | - Cesar Maldonado-Rivera
- Pediatrics Service, South Central Hospital of High Specialty of Petroleos Mexicanos, Health Services of Petroleos Mexicanos, Mexico City, Mexico
| | | | - Elisa Nishimura-Meguro
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eulalia Garrido-Magaña
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aleida de J Rivera-Hernández
- Department of Pediatric Endocrinology, Children's Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Miguel A Villasís-Keever
- Unit of Medical Research in Clinical Epidemiology, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
23
|
Biernat W, Kirsz K, Szczesna M, Zieba DA. Resistin regulates reproductive hormone secretion from the ovine adenohypophysis depending on season. Domest Anim Endocrinol 2018; 65:95-100. [PMID: 30086525 DOI: 10.1016/j.domaniend.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 01/17/2023]
Abstract
Work in cattle and rodents has shown that resistin, in addition to its roles in insulin resistance and inflammation, is involved in the regulation of gonadal steroidogenesis. However, the role of resistin in the regulation of reproductive processes in other species, such as seasonally breeding sheep, is completely unknown. Herein, we tested the hypothesis that resistin can influence the secretion of anterior pituitary hormones and that its effect in ewes is dependent on the day length. Thirty Polish Longwool ewes, a breed that exhibits a strong seasonal reproductive pattern, were ovariectomized with estrogen replacement using subcutaneously inserted estradiol implants. Ewes were fed ad libitum and housed under a natural photoperiod (longitude: 19°57' E, latitude: 50° 04' N). Intravenous treatments consisted of control or recombinant bovine resistin (rbresistin) in saline: (1) control (saline; n = 10), (2) low resistin dose (1.0 μg/kg BW; n = 10), and (3) high resistin dose (10.0 μg/kg BW; n = 10). Experiments were conducted during both short-day (SD) and long-day (LD) seasons using 5 sheep per group within each season. Blood samples were collected every 10 min over 4 h. Blood plasma concentrations of FSH, LH, and prolactin (PRL) were assayed using RIA. A season × dose interaction was observed for all hormonal variables measured. Greater concentrations (P < 0.001) of LH and FSH were observed during SDs than during LDs in all groups. During SDs, the high dose (10 μg/kg BW) decreased (P < 0.001) basal LH levels and amplitude (P < 0.05) of LH pulses and increased (P < 0.001) circulating concentrations of FSH. However, the low dose of resistin decreased (P < 0.001) FSH concentrations compared to those of controls. During LDs, both the low and high resistin doses increased mean concentrations of LH (P < 0.001 and P < 0.05, respectively) and FSH (P < 0.001). A high dose of rbresistin increased (P < 0.001) the mean circulating concentrations of PRL during both seasons. However, in all groups, concentrations of PRL were greater during LDs than SDs. These results demonstrate for the first time that resistin is involved in the regulation of pituitary hormone secretion and that this effect is differentially mediated during LDs and SDs.
Collapse
Affiliation(s)
- Weronika Biernat
- Department of Animal Biotechnology, Agricultural University of Krakow, Laboratory of Biotechnology and Genomics, Krakow, Poland
| | - Katarzyna Kirsz
- Department of Animal Biotechnology, Agricultural University of Krakow, Laboratory of Biotechnology and Genomics, Krakow, Poland
| | - Malgorzata Szczesna
- Department of Animal Biotechnology, Agricultural University of Krakow, Laboratory of Biotechnology and Genomics, Krakow, Poland
| | - Dorota A Zieba
- Department of Animal Biotechnology, Agricultural University of Krakow, Laboratory of Biotechnology and Genomics, Krakow, Poland.
| |
Collapse
|
24
|
Robinson CL, Zhang L, Schütz LF, Totty ML, Spicer LJ. MicroRNA 221 expression in theca and granulosa cells: hormonal regulation and function. J Anim Sci 2018; 96:641-652. [PMID: 29385487 DOI: 10.1093/jas/skx069] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNA molecules (miRNA) regulate protein levels in a post-transcriptional manner by partial base pairing to the 3'-UTR of target genes thus mediating degradation or translational repression. Previous studies indicate that numerous miRNA regulate the biosynthesis of intraovarian hormones, and emerging evidence indicates that one of these, miRNA-221 (MIR221), may be a modulator of ovarian function. However, the hormonal control of ovarian MIR221 is not known. The objectives of this study were to investigate the developmental and hormonal regulation of MIR221 expression in granulosa (GC) and theca cell (TC) and its possible role in regulating follicular function. Bovine ovaries were collected from a local abattoir and GC and TC were obtained from small (<6 mm) and large (≥8 mm) follicles. In Exp. 1, GCs of small follicles had 9.7-fold greater (P < 0.001) levels of MIR221 than those of large follicles, and TCs of large follicles had 3.7-fold greater (P < 0.001) levels of MIR221 than those of small follicles. In large follicles, abundance of MIR221 was 66.6-fold greater (P < 0.001) in TCs than in GCs. In small follicles, MIR221 abundance did not differ (P = 0.14) between GC and TCs. In vitro Exp. 2, 3, and 4 revealed that treatment of bovine TCs with various steroids, phytoestrogens, IGF1, forskolin, and dibutyryl cyclic adenosine monophosphate had no effect (P > 0.35) on MIR221 expression, whereas treatment with fibroblast growth factor 9 (FGF9) and FGF2 increased (P < 0.001) TC MIR221 abundance 1.7- to 2.5-fold. In Exp. 5, FGF9 increased (P < 0.05) GC MIR221 abundance by 1.7- and 2.0-fold in small and large follicles, respectively. The role of MIR221 in GC steroidogenesis was investigated in Exp. 6 and it was found that transfection with a MIR221 mimic reduced (P < 0.01) GC estradiol and progesterone production induced by FSH and IGF1, whereas transfection with MIR221 inhibitor had little or no effect. We conclude that thecal MIR221 expression is increased by FGF9 and increased MIR221 may act to inhibit GC steroidogenesis in cattle.
Collapse
Affiliation(s)
| | - Lingna Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Luis F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Morgan L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| | - Leon J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK
| |
Collapse
|
25
|
Maillard V, Elis S, Desmarchais A, Hivelin C, Lardic L, Lomet D, Uzbekova S, Monget P, Dupont J. Visfatin and resistin in gonadotroph cells: expression, regulation of LH secretion and signalling pathways. Reprod Fertil Dev 2018; 29:2479-2495. [PMID: 28672116 DOI: 10.1071/rd16301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/21/2017] [Indexed: 12/15/2022] Open
Abstract
Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LβT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LβT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LβT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.
Collapse
Affiliation(s)
- Virginie Maillard
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Sébastien Elis
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Alice Desmarchais
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Céline Hivelin
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Lionel Lardic
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Didier Lomet
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Svetlana Uzbekova
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Philippe Monget
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Joëlle Dupont
- UMR85 PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
26
|
Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol 2018; 16:22. [PMID: 29523133 PMCID: PMC5845358 DOI: 10.1186/s12958-018-0336-z] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/28/2018] [Indexed: 12/20/2022] Open
Abstract
Both obesity and overweight are increasing worldwide and have detrimental influences on several human body functions including the reproductive health. In particular, obese women undergo perturbations of the 'hypothalamic pituitary ovarian axis', and frequently suffer of menstrual dysfunction leading to anovulation and infertility. Besides the hormone disorders and subfertility that are common in the polycystic ovary syndrome (PCOS), in obesity the adipocytes act as endocrine organ. The adipose tissue indeed, releases a number of bioactive molecules, namely adipokines, that variably interact with multiple molecular pathways of insulin resistance, inflammation, hypertension, cardiovascular risk, coagulation, and oocyte differentiation and maturation. Moreover, endometrial implantation and other reproductive functions are affected in obese women with complications including delayed conceptions, increased miscarriage rate, reduced outcomes in assisted conception treatments.On the contrary, weight loss programs through lifestyle modification in obese women, have been proven to restore menstrual cyclicity and ovulation and improve the likelihood of conception.
Collapse
Affiliation(s)
- Erica Silvestris
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Giovanni de Pergola
- Departmentof Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Raffaele Rosania
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| | - Giuseppe Loverro
- Interdisciplinary Department of Medicine, Section of Obstetrics and Gynecology, University of Bari Aldo Moro, P.za G.Cesare, 11-70124 Bari, Italy
| |
Collapse
|
27
|
Feng T, Schutz LF, Morrell BC, Perego MC, Spicer LJ. Effect of melatonin on bovine theca cells in vitro. Reprod Fertil Dev 2018; 30:643-650. [DOI: 10.1071/rd17203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Melatonin affects granulosa cell function in several species but its function in theca cells is less clear, particularly in monotocous animals. Thus, the objectives of this study were to determine the effects of melatonin on theca cell steroidogenesis, gene expression and cell proliferation in a monotocous species, namely cattle. Ovaries were collected from a local bovine abattoir, from which theca cells were isolated from large (8–22 mm) follicles and treated with various hormones in serum-free medium for 24 h or 48 h. Melatonin caused a dose-dependent inhibition (P < 0.05) of LH+insulin-like growth factor 1 (IGF1)-induced androstenedione and progesterone production. Also, melatonin inhibited (P < 0.05) LH+IGF1-induced expression of steroidogenic acute regulatory protein (StAR) mRNA (via real-time polymerase chain reaction) in theca cells, but it had no effect (P > 0.10) on cytochrome P450 11A1 (CYP11A1) and cytochrome P450 17A1 (CYP17A1) mRNA abundance. In LH+IGF1-treated theca cells, melatonin decreased caspase 3 (CASP3) mRNA to levels similar to those observed in LH-treated theca cells. In contrast, melatonin increased (P < 0.05) the number of bovine theca cells in both LH- and LH+IGF1-treated cultures. In conclusion, melatonin may act as an endocrine regulator of ovarian function in cattle by stimulating theca cell proliferation and inhibiting differentiation via inhibition of hormone-induced steroidogenesis.
Collapse
|
28
|
Mellouk N, Rame C, Touzé JL, Briant E, Ma L, Guillaume D, Lomet D, Caraty A, Ntallaris T, Humblot P, Dupont J. Involvement of plasma adipokines in metabolic and reproductive parameters in Holstein dairy cows fed with diets with differing energy levels. J Dairy Sci 2017; 100:8518-8533. [PMID: 28803009 DOI: 10.3168/jds.2017-12657] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the association between plasma adipokine concentrations and metabolic and reproductive parameters in Holstein dairy cows fed diets with different energy levels during the peripartum period. The experiment started 1 mo before first calving and was maintained for 2 lactations. Dry matter intake and energy balance in animals fed a low-energy (LE) diet were significantly lower than that of animals fed a high-energy (HE) diet in the first lactation. Body weight, milk production, back fat thickness, and plasma concentrations of fatty acids, glucose, and insulin were not affected by diet, whereas plasma leptin and adiponectin concentrations were lower and plasma resistin concentrations higher in animals fed the LE diet. Unlike concentrations of adiponectin, plasma resistin concentrations were positively correlated with back fat thickness and plasma fatty acids concentrations and negatively correlated with dry matter intake and plasma leptin concentrations. No effect of diet was found on reproductive variables; that is, pregnancy rates at 35 or 90 d after artificial insemination (AI); numbers of small (3-5 mm), medium (>5 and ≤7 mm), and large (>7 mm) follicles; calving-to-AI and calving-to-calving intervals; and magnitude and duration of the LH surge. However, the commencement of luteal activity after first calving occurred sooner and the frequency of LH pulses was higher in the HE group than in the LE group. A significant positive correlation was found between the number of follicles (of any size) and the area under the curve of plasma resistin concentrations. The number of small follicles was also positively correlated with the nadir of plasma resistin concentrations. Taken together, these results suggest that dietary energy content in the range applied here can alter the resumption of ovarian activity and LH pulsatility without affecting fat mobilization. Plasma adipokine profiles (leptin, resistin, and adiponectin) were significantly altered by diet and negative energy balance but relationships with reproductive variables were limited to follicular growth characteristics and plasma resistin concentrations.
Collapse
Affiliation(s)
- N Mellouk
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - C Rame
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - J L Touzé
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - E Briant
- INRA, UEPAO 1297, F-37380 Nouzilly, France
| | - L Ma
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - D Guillaume
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - D Lomet
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - A Caraty
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - T Ntallaris
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden 75103
| | - P Humblot
- Division of Reproduction, Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden 75103
| | - J Dupont
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
29
|
Rak A, Mellouk N, Froment P, Dupont J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction 2017; 153:R215-R226. [DOI: 10.1530/rep-17-0002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/14/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022]
Abstract
Adipokines, including adiponectin and resistin, are cytokines produced mainly by the adipose tissue. They play a significant role in metabolic functions that regulate the insulin sensitivity and inflammation. Alterations in adiponectin and resistin plasma levels, or their expression in metabolic and gonadal tissues, are observed in some metabolic pathologies, such as obesity. Several studies have shown that these two hormones and the receptors for adiponectin, AdipoR1 and AdipoR2 are present in various reproductive tissues in both sexes of different species. Thus, these adipokines could be metabolic signals that partially explain infertility related to obesity, such as polycystic ovary syndrome (PCOS). Species and gender differences in plasma levels, tissue or cell distribution and hormonal regulation have been reported for resistin and adiponectin. Furthermore, until now, it has been unclear whether adiponectin and resistin act directly or indirectly on the hypothalamo–pituitary–gonadal axis. The objective of this review was to summarise the latest findings and particularly the species and gender differences of adiponectin and resistin on female and male reproduction known to date, based on the hypothalamo–pituitary–gonadal axis.
Collapse
|
30
|
Spicer LJ, Schütz LF, Williams JA, Schreiber NB, Evans JR, Totty ML, Gilliam JN. G protein-coupled receptor 34 in ovarian granulosa cells of cattle: changes during follicular development and potential functional implications. Domest Anim Endocrinol 2017; 59:90-99. [PMID: 28040605 PMCID: PMC5357439 DOI: 10.1016/j.domaniend.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
Abundance of G protein-coupled receptor 34 (GPR34) mRNA is greater in granulosa cells (GCs) of cystic vs normal follicles of cattle. The present experiments were designed to determine if GPR34 mRNA in granulosa cell [GC] changes during selection and growth of dominant follicles in cattle as well as to investigate the hormonal regulation of GPR34 mRNA in bovine GC in vitro. In Exp. 1, estrous cycles of nonlactating cows were synchronized and then ovariectomized on either day 3-4 or 5-6 after ovulation. GPR34 mRNA abundance in GC was 2.8- to 3.8-fold greater (P < 0.05) in small (1-5 mm) and large (≥8 mm) estrogen-inactive dominant follicles than in large estrogen-active follicles. Also, GPR34 mRNA tended to be greater (P < 0.10) in F2 than F1 follicles on day 3-4 postovulation. In Exp. 2-7, ovaries were collected at an abattoir and GC were isolated and treated in vitro. Expression of GPR34 was increased (P < 0.05) 2.2-fold by IGF1. Tumor necrosis factor (TNF)-α decreased (P < 0.05) the IGF1-induced GPR34 mRNA abundance in small-follicle GC, whereas IGF1 decreased (P < 0.05) GPR34 expression by 45% in large-follicle GC. Treatment of small-follicle GC with either IL-2, prostaglandin E2 or angiogenin decreased (P < 0.05) GPR34 expression, whereas FSH, cortisol, wingless 3A, or hedgehog proteins did not affect (P > 0.10) GPR34 expression. In Exp. 6 and 7, 2 presumed ligands of GPR34, L-a-lysophosphatidylserine (LPPS) and LPP-ethanolamine, increased (P < 0.05) GC numbers and estradiol production by 2-fold or more in small-follicle GC, and this response was only observed in IGF1-treated GC. In conclusion, GPR34 is a developmentally and hormonally regulated gene in GC, and its presumed ligands enhance IGF1-induced proliferation and steroidogenesis of bovine GC.
Collapse
Affiliation(s)
- L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - L F Schütz
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J A Williams
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - N B Schreiber
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J R Evans
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA
| | - J N Gilliam
- Department of Veterinary Clinical Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
31
|
MicroRNA Mediating Networks in Granulosa Cells Associated with Ovarian Follicular Development. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4585213. [PMID: 28316977 PMCID: PMC5337806 DOI: 10.1155/2017/4585213] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Ovaries, which provide a place for follicular development and oocyte maturation, are important organs in female mammals. Follicular development is complicated physiological progress mediated by various regulatory factors including microRNAs (miRNAs). To demonstrate the role of miRNAs in follicular development, this study analyzed the expression patterns of miRNAs in granulosa cells through investigating three previous datasets generated by Illumina miRNA deep sequencing. Furthermore, via bioinformatic analyses, we dissected the associated functional networks of the observed significant miRNAs, in terms of interacting with signal pathways and transcription factors. During the growth and selection of dominant follicles, 15 dysregulated miRNAs and 139 associated pathways were screened out. In comparison of different styles of follicles, 7 commonly abundant miRNAs and 195 pathways, as well as 10 differentially expressed miRNAs and 117 pathways in dominant follicles in comparison with subordinate follicles, were collected. Furthermore, SMAD2 was identified as a hub factor in regulating follicular development. The regulation of miR-26a/b on smad2 messenger RNA has been further testified by real time PCR. In conclusion, we established functional networks which play critical roles in follicular development including pivotal miRNAs, pathways, and transcription factors, which contributed to the further investigation about miRNAs associated with mammalian follicular development.
Collapse
|
32
|
Totty ML, Morrell BC, Spicer LJ. Fibroblast growth factor 9 (FGF9) regulation of cyclin D1 and cyclin-dependent kinase-4 in ovarian granulosa and theca cells of cattle. Mol Cell Endocrinol 2017; 440:25-33. [PMID: 27816766 PMCID: PMC5173412 DOI: 10.1016/j.mce.2016.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023]
Abstract
To determine the mechanism by which fibroblast growth factor 9 (FGF9) alters granulosa (GC) and theca (TC) cell proliferation, cell cycle proteins that regulate progression through G1 phase of the cell cycle, cyclin D1 (CCND1) and cyclin-dependent kinase-4 (CDK4; CCND1's catalytic partner), were evaluated. Ovaries were obtained from a local abattoir, GC were harvested from small (1-5 mm) and large (8-22 mm) follicles, and TC were harvested from large follicles. GC and TC were plated in medium containing 10% fetal calf serum followed by various treatments in serum-free medium. Treatment with 30 ng/mL of either FGF9 or IGF1 significantly increased GC numbers and when combined, synergized to further increase GC numbers by threefold. Abundance of CCND1 and CDK4 mRNA in TC and GC were quantified via real-time PCR. Alone and in combination with IGF1, FGF9 significantly increased CCND1 mRNA expression in both GC and TC. Western blotting revealed that CCND1 protein levels were increased by FGF9 in TC after 6 h and 12 h of treatment, but CDK4 protein was not affected. A mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway inhibitor, U0126, significantly reduced FGF9-induced CCND1 mRNA expression to basal levels. For the first time we show that CCND1 mRNA expression is increased by FGF9 in bovine TC and GC, and that FGF9 likely uses the MAPK pathway to induce CCND1 mRNA production in bovine TC.
Collapse
Affiliation(s)
- M L Totty
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - B C Morrell
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA
| | - L J Spicer
- Department of Animal Science, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
33
|
Rak-Mardyła A, Drwal E. In vitro interaction between resistin and peroxisome proliferator-activated receptor γ in porcine ovarian follicles. Reprod Fertil Dev 2016; 28:357-68. [DOI: 10.1071/rd14053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/13/2014] [Indexed: 11/23/2022] Open
Abstract
In the present study, using real-time polymerase chain reaction and immunoblotting methods, we quantified the expression of peroxisome proliferator-activated receptor (PPAR) γ, PPARα and PPARβ in different sized ovarian follicles (small (SF), medium (MF) and large (LF) follicles) in prepubertal and adult pigs. In prepubertal pigs, PPARγ and PPARα expression was highest in LF; however, PPARβ expression did not differ among SF, MF and LF. In mature pigs, only protein expression of PPARγ and PPARα increased during ovarian follicle development. Following identification of very high levels of PPARγ expression in LF in prepubertal and adult pigs, using in vitro culture of ovarian follicles, we determined the effect of resistin at 0.1, 1 and 10 ng mL–1 on PPARγ mRNA and protein expression and the effect of rosiglitazone at 25 and 50 µM (a PPARγ agonist) on resistin mRNA and protein expression. Resistin increased PPARγ expression in ovarian follicles in both prepubertal and adult pigs, whereas rosiglitazone had an inhibitory effect on resistin expression. The role of PPARγ in regulating the effects of resistin on ovarian steroidogenesis was investigated using GW9662 (a PPARγ antagonist at dose of 1 μM). In these studies, GW9662 reversed the effect of resistin on steroid hormone secretion. The data suggest that there is local cooperation between resistin and PPARγ expression in the porcine ovary. Resistin significantly increased the expression of PPARγ, whereas PPARγ decreased resistin expression; thus, PPARγ is a new key regulator of resistin expression and function.
Collapse
|
34
|
Rak A, Drwal E, Karpeta A, Gregoraszczuk EŁ. Regulatory Role of Gonadotropins and Local Factors Produced by Ovarian Follicles on In Vitro Resistin Expression and Action on Porcine Follicular Steroidogenesis1. Biol Reprod 2015; 92:142. [DOI: 10.1095/biolreprod.115.128611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022] Open
|
35
|
Salilew-Wondim D, Ahmad I, Gebremedhn S, Sahadevan S, Hossain MDM, Rings F, Hoelker M, Tholen E, Neuhoff C, Looft C, Schellander K, Tesfaye D. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One 2014; 9:e106795. [PMID: 25192015 PMCID: PMC4156418 DOI: 10.1371/journal.pone.0106795] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/02/2014] [Indexed: 01/21/2023] Open
Abstract
This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291-318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Ijaz Ahmad
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Samuel Gebremedhn
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Sudeep Sahadevan
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - MD Munir Hossain
- Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Franca Rings
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Christian Looft
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
36
|
The effect of nutrition and metabolic status on the development of follicles, oocytes and embryos in ruminants. Animal 2014; 8:1031-44. [PMID: 24774511 DOI: 10.1017/s1751731114000937] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The impact of nutrition and energy reserves on the fertility of ruminants has been extensively described. However, the metabolic factors and the molecular mechanisms involved in the interactions between nutrition and ovarian function are still poorly understood. These factors could be hormonal (either reproductive and/or metabolic) and/or dietary and metabolic (glucose, amino acids and fatty acids). In this review, we briefly summarize the impact of those nutrients (fatty acids, glucose and amino acids) and metabolic hormones (insulin/IGF-I, growth hormone, T3/4, ghrelin, apelin and the adipokines (leptin, adiponectin and resistin)) implicated in the development of ovarian follicles, oocytes and embryos in ruminants. We then discuss the current hypotheses on the mechanisms of action of these factors on ovarian function. We particularly describe the role of some energy sensors including adenosine monophosphate-activated kinase and peroxisome proliferator-activated receptors in the ovarian cells.
Collapse
|
37
|
Reverchon M, Ramé C, Bertoldo M, Dupont J. Adipokines and the female reproductive tract. Int J Endocrinol 2014; 2014:232454. [PMID: 24695544 PMCID: PMC3948585 DOI: 10.1155/2014/232454] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/27/2013] [Indexed: 12/15/2022] Open
Abstract
It is well known that adipose tissue can influence puberty, sexual maturation, and fertility in different species. Adipose tissue secretes molecules called adipokines which most likely have an endocrine effect on reproductive function. It has been revealed over the last few years that adipokines are functionally implicated at all levels of the reproductive axis including the gonad and hypothalamic-pituitary axis. Many studies have shown the presence and the role of the adipokines and their receptors in the female reproductive tract of different species. These adipokines regulate ovarian steroidogenesis, oocyte maturation, and embryo development. They are also present in the uterus and placenta where they could create a favorable environment for embryonic implantation and play a key role in maternal-fetal metabolism communication and gestation. Reproductive functions are strongly dependent on energy balance, and thereby metabolic abnormalities can lead to the development of some pathophysiologies such as polycystic ovary syndrome (PCOS). Adipokines could be a link between reproduction and energy metabolism and could partly explain some infertility related to obesity or PCOS.
Collapse
Affiliation(s)
- Maxime Reverchon
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours, 37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Christelle Ramé
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours, 37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Michael Bertoldo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours, 37041 Tours, France
- IFCE, 37380 Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- CNRS, UMR6175 Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
- Université François Rabelais de Tours, 37041 Tours, France
- IFCE, 37380 Nouzilly, France
- *Joëlle Dupont:
| |
Collapse
|
38
|
Hiller B. Recent developments in lipid metabolism in ruminants – the role of fat in maintaining animal health and performance. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an14555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Optimising farm animal performance has long been the key focus of worldwide livestock production research. Advances in the understanding of metabolism/phenotype associations have outlined the central role of the lipid metabolism of farm animals for economically relevant phenotypic traits, such as animal health (immune status, fertility/reproductive capacity, adaptability/metabolic flexibility, robustness, well being) and performance aspects (meat/milk quality and quantity) and have led to an extensive exploitation of lipid metabolism manipulation strategies (e.g. tailored nutritional regimes, alimentary/intravenous fat supplementation, rumen-protected fat feeding, hormone application). This contribution gives an overview of established concepts to tailor animals’ lipid metabolism and highlights novel strategies to expand these application-oriented approaches via improved analysis tools, omics-approaches, cell model systems and systems biology methods.
Collapse
|
39
|
Elis S, Coyral-Castel S, Freret S, Cognié J, Desmarchais A, Fatet A, Rame C, Briant E, Maillard V, Dupont J. Expression of adipokine and lipid metabolism genes in adipose tissue of dairy cows differing in a female fertility quantitative trait locus. J Dairy Sci 2013; 96:7591-602. [DOI: 10.3168/jds.2013-6615] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022]
|
40
|
Aad PY, Echternkamp SE, Spicer LJ. Possible role of IGF2 receptors in regulating selection of 2 dominant follicles in cattle selected for twin ovulations and births. Domest Anim Endocrinol 2013; 45:187-95. [PMID: 24209503 DOI: 10.1016/j.domaniend.2013.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/18/2022]
Abstract
Abundance of IGF-2 receptor (IGF2R), FSH receptor (FSHR), and LH receptor (LHCGR) mRNA in granulosa cells (GCs) or theca cells (TCs) or both cells as well as estradiol (E2), progesterone (P4), and androstenedione concentrations in follicular fluid were compared in cows genetically selected (Twinner) or not selected (control) for multiple ovulations and twin births. Cows were slaughtered at day 3 to 4 (day 3) and day 5 to 6 (day 5) of an estrous cycle, and ovaries, follicular fluid, GCs, and TCs were collected. The two largest (F1 and F2) E2-active (EA) and E2-inactive (EI) follicles were selected according to their E2-to-P4 ratio and diameter. Androstenedione levels in EA F1 and F2 follicles were 5-fold greater (P < 0.05) in Twinner cows than in control cows on day 3 but did not differ on day 5. Twinner cows also had greater (P < 0.05) E2 and P4 concentrations, whereas steroid levels in EI follicles did not differ (P > 0.10) between genotypes. In EA F2 follicles, IGF2R levels in GCs were greater (P < 0.05) in control cows than in Twinner cows on day 3 and day 5, whereas IGF2R mRNA in TCs did not differ (P > 0.10). On day 3, FSHR mRNA levels were greater (P < 0.05) in GCs of EA F1 and EI F2 follicles of control cows than of Twinner cows. LH receptor mRNA expression was less in GCs and greater in TCs of EA F2 follicles in control cows than in Twinner cows (P < 0.05). We hypothesize that reduced GC IGF2R expression in F2 follicles of Twinner cows may play a role in the development of 2 or more dominant follicles.
Collapse
Affiliation(s)
- P Y Aad
- Department of Animal Science, Oklahoma State University, 114 Animal Science Bldg., Stillwater, OK 74078, USA
| | | | | |
Collapse
|
41
|
Rak-Mardyła A, Durak M, Łucja Gregoraszczuk E. Effects of resistin on porcine ovarian follicle steroidogenesis in prepubertal animals: an in vitro study. Reprod Biol Endocrinol 2013; 11:45. [PMID: 23680257 PMCID: PMC3665660 DOI: 10.1186/1477-7827-11-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/27/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistin was first reported to be an adipocyte-specific hormone, but recent studies have indicated a connection between resistin and reproductive function. However, it is not yet known if resistin is expressed by the ovary and if it can affect steroidogenesis in ovarian follicles from prepubertal pigs. METHODS In this study, using real time PCR, immunoblotting, and ELISA, we quantified resistin expression and concentration in maturing ovarian follicles (small, 3-4 mm; medium, 4-5 mm; large, 6-7 mm) collected from prepubertal pigs. In addition, the dose-responsive effects of recombinant human resistin (0.1, 1, 10, and 100 ng/ml) on steroid hormone (i.e., progesterone [P4], androstendione [A4], testosterone [T], and estradiol [E2]) secretion in culture medium and steroidogenic enzyme (i.e., CYP11A1, 3betaHSD, CYP17A1, 17betaHSD, and CYP19A1) expression in ovarian follicles were determined. RESULTS We observed that resistin gene and protein expression increased significantly (P < 0.05) during follicular growth, with large follicles expressing the highest level of this adipokine. Recombinant resistin also increased P4, A4, and T secretion by up-regulating the steady state levels of CYP11A1, 3betaHSD, CYP17A1, and 17betaHSD. Recombinant resistin had no effects on E2 secretion and CYP19A1 expression in ovarian follicles. CONCLUSION Our results show resistin expression in ovarian follicles from prepubertal pigs for the first time. We also show that recombinant resistin stimulates steroidogenesis in ovarian follicles by increasing the expression of CYP11A1, 3betaHSD, CYP17A1, and 17betaHSD. The presence of resistin in the porcine ovary and its direct effects on steroidogenesis suggest that resistin is a new regulator of ovary function in prepubertal animals.
Collapse
Affiliation(s)
- Agnieszka Rak-Mardyła
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Cracow, Gronostajowa 9, Cracow, 30-387, Poland
| | - Martyna Durak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Cracow, Gronostajowa 9, Cracow, 30-387, Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology, Jagiellonian University in Cracow, Gronostajowa 9, Cracow, 30-387, Poland
| |
Collapse
|
42
|
Chen X, Jia X, Qiao J, Guan Y, Kang J. Adipokines in reproductive function: a link between obesity and polycystic ovary syndrome. J Mol Endocrinol 2013; 50:R21-37. [PMID: 23335807 DOI: 10.1530/jme-12-0247] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrinopathy associated with infertility and metabolic disorder in women of reproductive age. Dysfunction of adipose tissue has been implicated in the pathophysiology of PCOS. Increasing evidence shows that the dysregulated expression of adipokines, the secreted products of adipose tissue, plays an important role in the pathology of PCOS. Here, we review the role of several identified adipokines that may act as a link between obesity and PCOS. PCOS also reciprocally influences the profile of adipokines. Insight into the underlying mechanisms will help better understand the pathology of PCOS and identify new therapeutic targets of this syndrome.
Collapse
Affiliation(s)
- Xinwang Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | | | | | | | | |
Collapse
|
43
|
Reverchon M, Cornuau M, Ramé C, Guerif F, Royère D, Dupont J. Resistin decreases insulin-like growth factor I-induced steroid production and insulin-like growth factor I receptor signaling in human granulosa cells. Fertil Steril 2013; 100:247-55.e1-3. [PMID: 23548939 DOI: 10.1016/j.fertnstert.2013.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To identify resistin in human ovarian follicles and investigate the effect and the molecular mechanisms associated with resistin on steroidogenesis in human granulosa cells (GCs). DESIGN The effects of recombinant human resistin on the secretion of progesterone (P) and estradiol (E2) by cultured human GCs were investigated. SETTING Academic institutions. PATIENT(S) Twenty infertile and healthy women undergoing IVF. INTERVENTION(S) Primary human GC cultures stimulated with recombinant human resistin (10 ng/mL). MAIN OUTCOME MEASURE(S) Determination of messenger RNA (mRNA) and protein expression of resistin in fresh human GCs by reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblot and immunohistochemistry, respectively; measurement of P and E2 levels in the conditioned media by radioimmunoassay; determination of cell proliferation by tritiated thymidine incorporation; and analysis of signaling pathways activation by immunoblot analysis. RESULT(S) Human GCs and theca cells express resistin. In primary human GCs, resistin decreases P and E2 secretion in response to insulin-like growth factor I (IGF-I). This was associated with a reduction in the P450 aromatase and P450scc (cholesterol side-chain cleavage cytochromes P450) (P450scc) protein levels but not those of 3β-hydroxysteroid dehydrogenase (3β-HSD) or steroidogenic acute regulatory protein (StAR) and with a decrease in IGF-I-induced IGF-I receptor and mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Resistin treatment does not affect IGF-I-induced cell proliferation and basal steroidogenesis (there is no IGF-I or follicle-stimulating hormone stimulation). In the basal state, resistin rapidly stimulates Akt and MAPK ERK1/2 and p38 phosphorylation in primary human GCs. CONCLUSION(S) Resistin is present in human GCs and theca cells. It decreases P and E2 secretion, P450scc and P450 aromatase protein levels, and IGF-IR signaling in response to IGF-I in primary human GCs.
Collapse
Affiliation(s)
- Maxime Reverchon
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
44
|
Garcia-Garcia RM. Integrative control of energy balance and reproduction in females. ISRN VETERINARY SCIENCE 2012; 2012:121389. [PMID: 23762577 PMCID: PMC3671732 DOI: 10.5402/2012/121389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-insulin system and local ovarian mediators. In the past years, several hormones and neuropeptides have been emerging as important mediators between energy balance and reproduction. The present review goes over the main sites implicated in the control of energy balance linked to reproductive success and summarizes the most important metabolic and neuroendocrine signals that participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides. Also, a little overview about the effects of maternal nutrition, affecting offspring reproduction, has been presented.
Collapse
Affiliation(s)
- R M Garcia-Garcia
- Physiology Department (Animal Physiology), Complutense University, Avenida Puerta de Hierro S/N, 28040 Madrid, Spain
| |
Collapse
|
45
|
Jean S, Landry D, Daigle M, Martin LJ. Influence of the adipose derived hormone resistin on signal transducer and activator of transcription factors, steroidogenesis and proliferation of Leydig cells. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2012. [DOI: 10.1016/s2305-0500(13)60038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|