1
|
Farias TDO, Figueiredo AFA, Wnuk NT, Talamoni SA, Costa GMJ. Testis and brown adipose tissue xenografts from yellowish myotis (Myotis levis). REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0056. [PMID: 36331914 PMCID: PMC9782442 DOI: 10.1530/raf-22-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
Yellowish myotis present a seasonal reproduction, influenced by rainfall distribution, in which the testis mass, germ cell composition, and brown adipose tissue mass change along the reproductive stages. In the present study, tissue xenografts were performed in immunodeficient mice to investigate spermatogenesis development in a stable endocrine milieu and the possible androgenic role of brown adipose tissue. Forty-one adult male bats were captured in the Santuário do Caraça, Minas Gerais, Brazil. The gonads and brown adipose tissue were collected, weighed, and grafted under the mice's back skin. Mice biometric and hormonal data were evaluated after grafting, and the testis grafts and mice gonads were fixed for histological and immunohistochemical analyses. As a result, testis grafts from adult bats presented a continuous germ cell development in all reproductive phases, showing round spermatids in all testis tissues. Furthermore, testis fragments in the Rest stage presented elongating spermatids as the most advanced germ cell type in the seminiferous epithelium after seven months of grafting. These data indicated that yellowish myotis spermatogenesis could be continued (presenting a constant spermatogonial differentiation) in a stable endocrine milieu, as found in mice. In addition, the best spermatogenic development was achieved when testis fragments were transplanted at their lowest activity (Rest stage). Regarding the brown adipose tissue grafts, the adipose tissue consumption by mice increased seminal vesicle mass and testosterone serum levels. This data proved that the brown adipose tissue is related to testosterone synthesis, which may be critical in stimulating the differentiation of spermatogonia in yellowish myotis.
Collapse
Affiliation(s)
- Talita De Oliveira Farias
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Natalia Teixeira Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Sônia Aparecida Talamoni
- Laboratory of Mastozoology, Department of Biological Sciences, Pontifical Catholic University of Minas Gerais - PUC Minas, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
2
|
Andrae CS, Oliveira ECS, Ferraz MAMM, Nagashima JB. Cryopreservation of grey wolf (Canis lupus) testicular tissue. Cryobiology 2021; 100:173-179. [PMID: 33482146 DOI: 10.1016/j.cryobiol.2021.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
Development of genomic preservation technologies for canids, especially for seasonally breeding species like the grey wolf (Canis lupus), is needed in advance of growing species conservation concerns. Here, we evaluated the efficacy of two cryopreservation protocols - needle immersion vitrification (NIV) and slow freezing (SF) on grey wolf (n = 7) testicular tissue morphology. NIV samples were equilibrated in a 7.5% v/v dimethyl sulfoxide (DMSO or Me2SO) + 7.5% ethylene glycol (EG) solution in minimum essential medium with 20% FBS for 10 min at 4 °C, then exposed to 15% DMSO + 15% EG + 0.5 M sucrose for 10 min at 4 °C before plunging into liquid nitrogen. For slow freezing, we assessed two cryoprotectant (CPA) strategies, DMSO, 15% v/v alone (SF-D) or 7.5% EG + 7.5% DMSO (SF-ED). Following thawing, there were no significant differences in seminiferous tubule area among treatment groups, although all cryopreserved tissues displayed reduced tubule size compared with fresh controls and increased apoptosis, the latter reaching significance for SF-D treated tissues. Slow freezing improved maintenance of testis architecture, with minimal detachment of seminiferous tubule basement membranes post-thaw. Spermatogonia densities were reduced in NIV tissues compared with fresh, with no differences in spermatocyte, spermatid, or Sertoli cell counts, or germ cell marker DDX4+ cell densities among groups. In sum, we conclude that slow freezing better maintained morphology of cryopreserved testicular tissues compared with needle vitrification with 15% each DMSO and EG and 0.5 M sucrose, and that DMSO + EG combination SF supports cell viability. This represents a first step in the development of male gonadal tissue preservation strategies for the grey wolf.
Collapse
Affiliation(s)
- Christopher S Andrae
- Smithsonian-Mason School of Conservation, George Mason University, 1500 Remount Rd., Front Royal, VA, 22630, USA
| | - Erika C S Oliveira
- University of Virginia, Department of Cell Biology, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Marcia A M M Ferraz
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, 22630, USA; Gene Center, Ludwig-Maximilians University, Feodor-Lynen Str. 25, D-81377, Munich, Germany
| | - Jennifer B Nagashima
- Smithsonian Conservation Biology Institute, 1500 Remount Rd., Front Royal, VA, 22630, USA.
| |
Collapse
|
3
|
Ibtisham F, Zhao Y, Nawab A, Wu J, Mei X, Honaramooz A, An L. In vitro production of haploid germ cells from murine spermatogonial stem cells using a two-dimensional cell culture system. Theriogenology 2021; 162:84-94. [PMID: 33450717 DOI: 10.1016/j.theriogenology.2020.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
The in vitro propagation and differentiation of spermatogonial stem cells (SSCs) has many potential applications within reproductive science and medicine. We established a two-dimensional (2D) cell culture system to proliferate and differentiate prepubertal mouse SSCs as a model capable of maximizing on a small number of donor SSCs. We also investigated the effects of retinol on in vitro SSC differentiation. Testis cells were cultured for 10 days in a serum-free medium. This produced SSC colonies which were then dissociated and sub-cultured for an additional 20 days in a differentiation medium. Before inducing differentiation, colonies expressed genes specific for undifferentiated spermatogonia (Ngn3, Plzf). After 10 days in the differentiation medium, Stra8 expression was upregulated. After 20 days, Acr expression was upregulated, indicating the completion of meiosis. Immunofluorescence, RT-PCR and flow cytometry confirmed the presence of haploid male germ cells (4.4% of all cells). When retinol was added to the differentiation medium the proportion of haploid germ cells increased (8.1% of cells). We concluded that, under serum-free culture conditions, prepubertal SSCs will generate colonies that can differentiate into haploid germ cells in a 2D culture system. These cells demonstrate a relatively high efficiency of haploid-cell production, which can be further improved with retinol.
Collapse
Affiliation(s)
- Fahar Ibtisham
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China; Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yi Zhao
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Aamir Nawab
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Jiang Wu
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiao Mei
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lilong An
- College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| |
Collapse
|
4
|
Fayaz MA, Awang-Junaidi AH, Singh J, Honaramooz A. Long-Term Monitoring of Donor Xenogeneic Testis Tissue Grafts and Cell Implants in Recipient Mice Using Ultrasound Biomicroscopy. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:3088-3103. [PMID: 32800471 DOI: 10.1016/j.ultrasmedbio.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Testis tissue xenografting and testis cell aggregate implantation from various donor species into recipient mice are novel models for the study and manipulation of testis formation and function in target species. Thus far, the analysis of such studies has been limited to surgical or post-mortem retrieval of samples. Here we used ultrasound biomicroscopy (UBM) to monitor the development of neonatal porcine testis grafts and implants in host mice for 24 wk, and to correlate UBM and (immuno)histologic changes. This led to long-term visualization of gradual changes in volume, dimension and structure of grafts and implants; detection of a 4 wk developmental gap between grafts and implants; and revelation of differences in implant development depending on the craniocaudal site of implantation on the back of host mice. Our data support the reliability and precision of UBM for longitudinal study of transplants, which eliminates the need for frequent surgical sampling.
Collapse
Affiliation(s)
- Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada; Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
5
|
The study and manipulation of spermatogonial stem cells using animal models. Cell Tissue Res 2020; 380:393-414. [PMID: 32337615 DOI: 10.1007/s00441-020-03212-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Spermatogonial stem cells (SSCs) are a rare group of cells in the testis that undergo self-renewal and complex sequences of differentiation to initiate and sustain spermatogenesis, to ensure the continuity of sperm production throughout adulthood. The difficulty of unequivocal identification of SSCs and complexity of replicating their differentiation properties in vitro have prompted the introduction of novel in vivo models such as germ cell transplantation (GCT), testis tissue xenografting (TTX), and testis cell aggregate implantation (TCAI). Owing to these unique animal models, our ability to study and manipulate SSCs has dramatically increased, which complements the availability of other advanced assisted reproductive technologies and various genome editing tools. These animal models can advance our knowledge of SSCs, testis tissue morphogenesis and development, germ-somatic cell interactions, and mechanisms that control spermatogenesis. Equally important, these animal models can have a wide range of experimental and potential clinical applications in fertility preservation of prepubertal cancer patients, and genetic conservation of endangered species. Moreover, these models allow experimentations that are otherwise difficult or impossible to be performed directly in the target species. Examples include proof-of-principle manipulation of germ cells for correction of genetic disorders or investigation of potential toxicants or new drugs on human testis formation or function. The primary focus of this review is to highlight the importance, methodology, current and potential future applications, as well as limitations of using these novel animal models in the study and manipulation of male germline stem cells.
Collapse
|
6
|
Silva AMD, Pereira AF, Comizzoli P, Silva AR. Cryopreservation and Culture of Testicular Tissues: An Essential Tool for Biodiversity Preservation. Biopreserv Biobank 2020; 18:235-243. [PMID: 32282240 DOI: 10.1089/bio.2020.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systematic cryo-banking of reproductive tissues could enhance reproductive management and ensure sustainability of rare mammalian genotypes. Testicular tissues contain a vast number of germ cells, including at early stages (spermatogonia and spermatocytes), that can potentially develop into viable spermatozoa after grafting or culture in vitro, and the resulting sperm cells then can be used for assisted reproductive techniques. The objective of this review was to describe current advances, limitations, and perspectives related to the use of testicular tissue preservation as a strategy for the conservation of male fertility. Testes can be obtained from mature or prepubertal individuals, immediately postmortem or by orchiectomy, but testicular biopsies could also be an alternative to collect samples from living individuals. Testicular fragments can be then cryopreserved by using slow or ultra-rapid freezing, or even vitrification methods. The composition of cryopreservation media can vary according to species-specific characteristics, especially regarding the cryoprotectant type and concentration. Finally, spermatozoa have been usually obtained after xenografting of testicular fragments into severely immunodeficient mice, while this method still has to be optimized after in vitro culture conditions.
Collapse
Affiliation(s)
- Andréia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital, Washington, District of Columbia, USA
| | | |
Collapse
|
7
|
Pukazhenthi BS. Saving wild ungulate diversity through enhanced management and sperm cryopreservation. Reprod Fertil Dev 2016; 28:RD15412. [PMID: 27246462 DOI: 10.1071/rd15412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/02/2016] [Indexed: 12/22/2022] Open
Abstract
Wild ungulates throughout the world face the impending risk of extinction. Small founding population size, lack of interest in exhibiting wild ungulates and declining space in zoos are not sustaining ex situ populations. Animals managed in ex situ collections continue to experience >20% neonate loss globally. To ensure population sustainability there is a critical need to: (1) manage ungulates in large herds, increasing mate choice and reproductive efficiency; (2) improve husbandry and genetic management; and (3) develop consistent assisted reproductive technologies, including sperm cryopreservation and AI. Recently, new models in the management of ungulates have begun to emerge. Animal managers and researchers are also beginning to exploit advances in genomics to improve genetic management of their collections. Furthermore, the past decade has witnessed significant advances particularly in semen collection and cryopreservation in numerous species. Advances in gonadal tissue cryopreservation now offer additional opportunities to preserve male genomes. The new knowledge generated is enabling the creation of genetic (sperm) banks to rescue and enhance reproductive management of wild ungulates. The present paper reviews the threats to ungulate populations, the status and relevance of animal management and biomaterial banking efforts to ensure long-term survival of these charismatic species.
Collapse
|
8
|
Arregui L, Dobrinski I, Roldan ERS. Germ cell survival and differentiation after xenotransplantation of testis tissue from three endangered species: Iberian lynx (Lynx pardinus), Cuvier's gazelle (Gazella cuvieri) and Mohor gazelle (G. dama mhorr). Reprod Fertil Dev 2015; 26:817-26. [PMID: 23763851 DOI: 10.1071/rd12411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 05/13/2013] [Indexed: 01/21/2023] Open
Abstract
The use of assisted reproductive techniques for endangered species is a major goal for conservation. One of these techniques, testis tissue xenografting, allows for the development of spermatozoa from animals that die before reaching sexual maturity. To assess the potential use of this technique with endangered species, testis tissue from six Iberian lynxes (one fetus, two perinatal cubs, two 6-month-old and one 2-year-old lynx), two Cuvier's gazelle fetuses and one 8-month-old Mohor gazelle were transplanted ectopically into nude mice. Tissue from the lynx fetus, perinatal cubs and 2-year-old donors degenerated, whereas spermatogonia were present in 15% of seminiferous tubules more than 70 weeks after grafting in transplanted testis tissue from 6-month-old donors. Seminal vesicle weights (indicative of testosterone production) increased over time in mice transplanted with tissue from 6-month-old lynxes. Progression of spermatogenesis was observed in xenografts from gazelles and was donor age dependent. Tissue from Cuvier's gazelle fetuses contained spermatocytes 40 weeks after grafting. Finally, round spermatids were found 28 weeks after transplantation in grafts from the 8-month-old Mohor gazelle. This is the first time that xenotransplantation of testicular tissue has been performed with an endangered felid and the first successful xenotransplantation in an endangered species. Our results open important options for the preservation of biological diversity.
Collapse
Affiliation(s)
- Lucía Arregui
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Ina Dobrinski
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N 4N1, Canada
| | - Eduardo R S Roldan
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), C/José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Pukazhenthi BS, Nagashima J, Travis AJ, Costa GM, Escobar EN, França LR, Wildt DE. Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS One 2015; 10:e0123957. [PMID: 25923660 PMCID: PMC4414479 DOI: 10.1371/journal.pone.0123957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
The ability to spur growth of early stage gametic cells recovered from neonates could lead to significant advances in rescuing the genomes of rare genotypes or endangered species that die unexpectedly. The purpose of this study was to determine, for the first time, the ability of two substantially different cryopreservation approaches, slow freezing versus vitrification, to preserve testicular tissue of the neonatal sheep and subsequently allow initiation of spermatogenesis post-xenografting. Testis tissue from four lambs (3-5 wk old) was processed and then untreated or subjected to slow freezing or vitrification. Tissue pieces (fresh, n = 214; slow freezing, then thawing, n = 196; vitrification, then warming, n = 139) were placed subcutaneously under the dorsal skin of SCID mice and then grafts recovered and evaluated 17 wk later. Grafts from fresh and slow frozen tissue contained the most advanced stages of spermatogenesis, including normal tubule architecture with elongating spermatids in ~1% (fresh) and ~10% (slow frozen) of tubules. Fewer than 2% of seminiferous tubules advanced to the primary spermatocyte stage in xenografts derived from vitrified tissue. Results demonstrate that slow freezing of neonatal lamb testes was far superior to vitrification in preserving cellular integrity and function after xenografting, including allowing ~10% of tubules to retain the capacity to resume spermatogenesis and yield mature spermatozoa. Although a first for any ruminant species, findings also illustrate the importance of preemptive studies that examine cryo-sensitivity of testicular tissue before attempting this type of male fertility preservation on a large scale.
Collapse
Affiliation(s)
- Budhan S. Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Jennifer Nagashima
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexander J. Travis
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York, United States of America
| | - Guilherme M. Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Enrique N. Escobar
- Department of Agriculture, Food and Resource Sciences School of Agriculture and Natural Sciences, University of Maryland-Eastern Shore, Princess Anne, Maryland, United States of America
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| |
Collapse
|
10
|
Pothana L, Makala H, Devi L, Varma VP, Goel S. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology 2014; 83:625-33. [PMID: 25467768 DOI: 10.1016/j.theriogenology.2014.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Abstract
Death of immature animals is one of the reasons for the loss of genetic diversity of rare and endangered species. Because sperm cannot be collected from immature males, cryobanking of testicular tissue combined with testis xenografting is a potential option for conservation. The objective of this study was to evaluate the establishment of spermatogenesis in cryopreserved immature testicular tissues from Indian spotted mouse deer (Moschiola indica) after ectopic xenografting onto immunodeficient nude mice. Results showed that testis tissues that were frozen in cryomedia containing either 10% DMSO with 80% fetal bovine serum (D10S80) or 20% DMSO with 20% fetal bovine serum (D20S20) had significantly more (P < 0.01) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled positive interstitial cells when compared with fresh testis tissues (46.3 ± 3.4 and 51.9 ± 4.0 vs. 22.8 ± 2.0). Xenografted testicular tissues showed degenerated seminiferous tubules 24 weeks after grafting in testes that had been cryopreserved in D20S20; alternatively, pachytene spermatocytes were the most advanced germ cells in testes that were cryopreserved in D10S80. Proliferating cell nuclear antigen staining confirmed the proliferative status of spermatocytes, and the increases in tubular and lumen diameters indicated testicular maturation in xenografts. However, persistent anti-Müllerian hormone staining in Sertoli cells of xenografts revealed incomplete testicular maturation. This study reports that cryopreserved testis tissue that had been xenografted from endangered animals onto mice resulted in the establishment of spermatogenesis with initiation of meiosis. These findings are encouraging for cryobanking of testicular tissues from immature endangered animals to conserve their germplasm.
Collapse
Affiliation(s)
- Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Himesh Makala
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Vivek Phani Varma
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
11
|
Arregui L, Dobrinski I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction 2014; 148:R71-84. [PMID: 25150043 DOI: 10.1530/rep-14-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spermatogenesis is a dynamic and complex process that involves endocrine and testicular factors. During xenotransplantation of testicular tissue fragments into immunodecifient mice, a functional communication between host brain and donor testis is established. This interaction allows for the progression of spermatogenesis and recovery of fertilisation-competent spermatozoa from a broad range of mammalian species. In the last few years, significant progress has been achieved in testis tissue xenografting that improves our knowledge about the factors determining the success of grafting. The goal of this review is to provide up to date information about the role of factors such as donor age, donor species, testis tissue preservation or type of recipient mouse on the efficiency of this technique. Applications are described and compared with other techniques with similar purposes. Recent work has demonstrated that testicular tissue xenografting is used as a model to study gonadotoxicity of drugs and to obtain sperm from valuable young males.
Collapse
Affiliation(s)
- Lucía Arregui
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Ina Dobrinski
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Campos-Junior PHA, Costa GMJ, Avelar GF, Lacerda SMSN, da Costa NN, Ohashi OM, Miranda MDS, Barcelos LS, Jorge EC, Guimarães DA, de França LR. Derivation of sperm from xenografted testis cells and tissues of the peccary (Tayassu tajacu). Reproduction 2014; 147:291-9. [PMID: 24324205 DOI: 10.1530/rep-13-0581] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because the collared peccary (Tayassu tajacu) has a peculiar Leydig cell cytoarchitecture, this species represents a unique mammalian model for investigating testis function. Taking advantage of the well-established and very useful testis xenograft technique, in the present study, testis tissue and testis cell suspensions from immature collared peccaries (n=4; 3 months old) were xenografted in SCID mice (n=48) and evaluated at 2, 4, 6, and 8 months after grafting. Complete spermatogenesis was observed at 6 and 8 months after testis tissue xenografting. However, probably due to de novo testis morphogenesis and low androgen secretion, functionally evaluated by the seminal vesicle weight, a delay in spermatogenesis progression was observed in the testis cell suspension xenografts, with the production of fertile sperm only at 8 months after grafting. Importantly, demonstrating that the peculiar testicular cytoarchitecture of the collared peccary is intrinsically programmed, the unique Leydig cell arrangement observed in this species was re-established after de novo testis morphogenesis. The sperm collected from the xenografts resulted in diploid embryos that expressed the paternally imprinted gene NNAT after ICSI. The present study is the first to demonstrate complete spermatogenesis with the production of fertile sperm from testis cell suspension xenografts in a wild mammalian species. Therefore, due to its unique testicular cytoarchitecture, xenograft techniques, particularly testis cell suspensions, may represent a new and very promising approach to evaluate testis morphogenesis and to investigate spermatogonial stem cell physiology and niche in the collared peccary.
Collapse
|