1
|
Zhuang H, Zhang X, Wu S, Yong P, Yan H. Opportunities and challenges of foodborne polyphenols applied to anti-aging health foods. Food Sci Biotechnol 2024; 33:3445-3461. [PMID: 39493397 PMCID: PMC11525373 DOI: 10.1007/s10068-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/12/2024] [Indexed: 11/05/2024] Open
Abstract
Abstract With the increasing proportion of the global aging population, aging mechanisms and anti-aging strategies become hot topics. Nonetheless, the safety of non-natural anti-aging active molecule and the changes in physiological function that occur during aging have not been clarified. There is therefore a need to develop safer pharmaceutical interventions for anti-aging. Numerous types of research have shown that food-derived biomolecules are of great interest due to their unique contribution to anti-aging safety issues and the prevention of degenerative diseases. Among these, polyphenolic organic compounds are widely used in anti-aging research for their ability to mitigate the physiological functional changes that occur during aging. The mechanisms include the free radical theory, immune aging theory, cellular autophagy theory, epigenetic modification theory, gut microbial effects on aging theory, telomere shortening theory, etc. This review elucidates the mechanisms underlying the anti-aging effects of polyphenols found in food-derived bioactive molecules, while also addressing the challenges associated with anti-aging pharmaceuticals. The review concludes by offering insights into the current landscape of anti-aging active molecule research, aiming to serve as a valuable resource for further scholarly inquiry. Graphical abstract
Collapse
Affiliation(s)
- Hong Zhuang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Xiaoliang Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Sijia Wu
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Pang Yong
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| | - Haiyang Yan
- College of Food Science and Engineering, Jilin University, Changchun, 130062 Jilin China
| |
Collapse
|
2
|
Immunohistochemical Expression (IE) of Oestrogen Receptors in the Intestines of Prepubertal Gilts Exposed to Zearalenone. Toxins (Basel) 2023; 15:toxins15020122. [PMID: 36828436 PMCID: PMC9967477 DOI: 10.3390/toxins15020122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
This study was conducted to determine if a low monotonic dose of zearalenone (ZEN) affects the immunohistochemical expression (IE) of oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) in the intestines of sexually immature gilts. Group C (control group; n = 18) gilts were given a placebo. Group E (experimental group; n = 18) gilts were dosed orally with 40 μg ZEN /kg body weight (BW), each day before morning feeding. Samples of intestinal tissue were collected post-mortem six times. The samples were stained to analyse the IE of ERα and Erβ in the scanned slides. The strongest response was observed in ERα in the duodenum (90.387-average % of cells with ERα expression) and in ERβ in the descending colon (84.329-average % of cells with ERβ expression); the opposite response was recorded in the caecum (2.484-average % of cells with ERα expression) and the ascending colon (2.448-average % of cells with ERα expression); on the first two dates of exposure, the digestive tract had to adapt to ZEN in feed. The results of this study, supported by a mechanistic interpretation of previous research findings, suggest that ZEN performs numerous functions in the digestive tract.
Collapse
|
3
|
Párraga-Ros E, Latorre-Reviriego R, Aparicio-González M, Boronat-Belda T, López-Albors O. The immunolocalization of HIF-2α, GLUT1 and CAIX in porcine oviduct during the estrous cycle. Anat Rec (Hoboken) 2023; 306:176-186. [PMID: 35684983 PMCID: PMC10084220 DOI: 10.1002/ar.25014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 01/29/2023]
Abstract
Oxygen (O2 ) rates in the oviduct are essential to human and animal reproduction. These rates are regulated by the activity of hypoxia markers such as the hypoxia-inducible factors (HIFs), the glucose transporters (GLUT), and the carbonic anhydrase (CA). In the porcine model, scarce studies have been reported regarding these markers and their effects in reproduction are unknown. The objective was to characterize the immunolocalization of HIF-2α, GLUT1, and CAIX in porcine oviducts throughout the estrous cycle. Oviducts (ampulla and isthmus) of adult sows (n = 45) were collected for histological and immunohistochemical analysis with HIF-2α, GLUT1, and CAIX markers. The percentage of immunopositive area was quantified, and the differences among phases of the estrous cycle were analyzed (folicular, early luteal, and late luteal). The three markers showed epithelial presence mainly. Significantly lower expression of HIF-2α was found in the luteal phases, especially in the isthmus. GLUT1 expression did not change throughout the estrous cycle, but differences were found between the ampulla and isthmus. CAIX expression showed the highest, with a significant downward trend throughout estrous cycle. The ubiquitous expression of hypoxia markers shows the porcine oviduct physiology in relation to O2 . The differential expression of HIF-2α, GLUT1, and CAIX in different subcompartments of the oviduct throughout the estrous cycle contributes to improve the knowledge of the cell physiology of the oviduct, which can be useful in fertilization studies.
Collapse
Affiliation(s)
- Ester Párraga-Ros
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Rafael Latorre-Reviriego
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Mónica Aparicio-González
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| | - Talía Boronat-Belda
- Unit of Cell Physiology and Nutrition, Miguel Hernández University, Alicante, Spain
| | - Octavio López-Albors
- Anatomy and Comparative Pathology Department, University of Murcia, International Excellence Campus for Higher Education and Research (Campus Mare Nostrum), Murcia, Spain
| |
Collapse
|
4
|
Köksal Karayildirim Ç, Nalbantsoy A, Karabay Yavaşoğlu NÜ. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol Biol Rep 2021; 48:7251-7259. [PMID: 34599704 DOI: 10.1007/s11033-021-06719-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Urinary bladder cancer (UBC) is considered one of the most prevalent malignant tumors worldwide. Complementary and integrative approaches for the treatment of bladder cancer, such as the intake of isoflavonoid phytoestrogens, are of increasing interest due to the risk of mortality and long-term morbidity associated with surgical procedures. The biological effects of prunetin, one of the less-studied phytoestrogens, have not yet been examined in this respect. Therefore, this study aimed to explore the efficacy of prunetin on UBC cells (RT-4). METHODS AND RESULTS: The cytotoxicity and nitric oxide synthase activities of prunetin were determined in cell cultures. The expression of apoptosis-related genes was determined with RT-PCR. Cell cycle assays were performed using a flow cytometer and cellular apoptotic rate was measured. The results suggested that prunetin has cytotoxic effects at 21.11 µg/mL on RT-4 cells. Flow cytometry analysis showed that prunetin induced apoptosis and arrested th cell cycle in the G0/G1 phase. Prunetin exposure was associated with increases in CASP3 and TNF-α gene expression in RT-4 cells at doses of 21.11 and 42.22 µg/mL, respectively. Strong nitric oxide inhibition was observed at IC50 of 5.18 µg/mL under macrophage mediated inflammatory circumstances. CONCLUSIONS Prunetin possesses anti-cancer properties and may be a candidate compound for the prevention of UBC. This is the first study that evaluated prunetin for its in vitro antitumor activities, clarified its possible apoptotic molecular mechanism and provided novel insights into its anti-inflammatory nature and effects on the expression of related key genes.
Collapse
Affiliation(s)
| | - Ayşe Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | |
Collapse
|
5
|
Gajęcka M, Dąbrowski M, Otrocka-Domagała I, Brzuzan P, Rykaczewska A, Cieplińska K, Barasińska M, Gajęcki MT, Zielonka Ł. Correlations between exposure to deoxynivalenol and zearalenone and the immunohistochemical expression of estrogen receptors in the intestinal epithelium and the mRNA expression of selected colonic enzymes in pre-pubertal gilts. Toxicon 2019; 173:75-93. [PMID: 31734251 DOI: 10.1016/j.toxicon.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 01/23/2023]
Abstract
Plant-based materials used in the production of pig feed are very often contaminated with deoxynivalenol and zearalenone. Daily intake of small amounts of these mycotoxins with feed induces various subclinical states in gilts and influences different biological processes. The aim of this preclinical study was to determine the correlation between monotonic doses of zearalenone and deoxynivalenol (40 μg/kg body weight and 12 μg/kg body weight, respectively, administered over a period of 42 days) and the immunohistochemical expression of estrogen receptors in the intestinal tract and the mRNA expression of selected colonic enzymes. The immunohistochemical expression of estrogen receptor alpha was observed in the colon, but its intensity varied in different weeks of exposure. A minor increase in estrogen receptor beta expression was noted only in the colon, whereas the expression of cytochrome P450 1A1 enzyme mRNA and mRNA isoform of the glutathione S-transferase π gene decreased. The observed correlations suggest that the risk of loss of control over the biotransformation and biological activity of the parent compounds in distal intestinal mucosa is delayed.
Collapse
Affiliation(s)
- Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Michał Dąbrowski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Iwona Otrocka-Domagała
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13D, 10-718, Olsztyn, Poland.
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland.
| | - Anna Rykaczewska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Katarzyna Cieplińska
- Microbiology Laboratory, Non-Public Health Care Centre, ul. Limanowskiego 31A, 10-342, Olsztyn, Poland.
| | - Marzena Barasińska
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Maciej T Gajęcki
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718, Olsztyn, Poland.
| |
Collapse
|
6
|
Arora I, Sharma M, Tollefsbol TO. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int J Mol Sci 2019; 20:ijms20184567. [PMID: 31540128 PMCID: PMC6769666 DOI: 10.3390/ijms20184567] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/24/2022] Open
Abstract
Polyphenols are potent micronutrients that can be found in large quantities in various food sources and spices. These compounds, also known as phenolics due to their phenolic structure, play a vital nutrient-based role in the prevention of various diseases such as diabetes, cardiovascular diseases, neurodegenerative diseases, liver disease, and cancers. However, the function of polyphenols in disease prevention and therapy depends on their dietary consumption and biological properties. According to American Cancer Society statistics, there will be an expected rise of 23.6 million new cancer cases by 2030. Due to the severity of the increased risk, it is important to evaluate various preventive measures associated with cancer. Relatively recently, numerous studies have indicated that various dietary polyphenols and phytochemicals possess properties of modifying epigenetic mechanisms that modulate gene expression resulting in regulation of cancer. These polyphenols and phytochemicals, when administrated in a dose-dependent and combinatorial-based manner, can have an enhanced effect on epigenetic changes, which play a crucial role in cancer prevention and therapy. Hence, this review will focus on the mechanisms of combined polyphenols and phytochemicals that can impact various epigenetic modifications such as DNA methylation and histone modifications as well as regulation of non-coding miRNAs expression for treatment and prevention of various types of cancer.
Collapse
Affiliation(s)
- Itika Arora
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Manvi Sharma
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Saghafi T, Taheri RA, Parkkila S, Emameh RZ. Phytochemicals as Modulators of Long Non-Coding RNAs and Inhibitors of Cancer-Related Carbonic Anhydrases. Int J Mol Sci 2019; 20:E2939. [PMID: 31208095 PMCID: PMC6627131 DOI: 10.3390/ijms20122939] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are classified as a group of transcripts which regulate various biological processes, such as RNA processing, epigenetic control, and signaling pathways. According to recent studies, lncRNAs are dysregulated in cancer and play an important role in cancer incidence and spreading. There is also an association between lncRNAs and the overexpression of some tumor-associated proteins, including carbonic anhydrases II, IX, and XII (CA II, CA IX, and CA XII). Therefore, not only CA inhibition, but also lncRNA modulation, could represent an attractive strategy for cancer prevention and therapy. Experimental studies have suggested that herbal compounds regulate the expression of many lncRNAs involved in cancer, such as HOTAIR (HOX transcript antisense RNA), H19, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), PCGEM1 (Prostate cancer gene expression marker 1), PVT1, etc. These plant-derived drugs or phytochemicals include resveratrol, curcumin, genistein, quercetin, epigallocatechin-3-galate, camptothcin, and 3,3'-diindolylmethane. More comprehensive information about lncRNA modulation via phytochemicals would be helpful for the administration of new herbal derivatives in cancer therapy. In this review, we describe the state-of-the-art and potential of phytochemicals as modulators of lncRNAs in different types of cancers.
Collapse
Affiliation(s)
- Tayebeh Saghafi
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 14965/161 Tehran, Iran.
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, FI-33520 Tampere, Finland.
- Fimlab Laboratories Ltd. and Tampere University Hospital, FI-33520 Tampere, Finland.
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| |
Collapse
|
8
|
Fu G, Wang L, Li L, Liu J, Liu S, Zhao X. Bacillus licheniformis CK1 alleviates the toxic effects of zearalenone in feed on weaned female Tibetan piglets. J Anim Sci 2019; 96:4471-4480. [PMID: 30169611 DOI: 10.1093/jas/sky301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/23/2018] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is widely present in feedstuffs and raw materials, causing reproductive disorders in animals. In this study, Bacillus licheniformis CK1 was used to detoxify ZEA in feed for alleviating its effect in Tibetan piglets. A total of 18 weaned female Tibetan piglets were randomly divided into 3 groups: control group (Control, ZEA-free basal diet); treatment group 1 (T1, ZEA-contaminated diet); and treatment group 2 (T2, ZEA-contaminated but pre-fermented by CK1 diet). There were no significant differences of average daily feed intake (ADFI), average daily gain (ADG), and feed efficiency (FE) among the 3 groups (P > 0.05). The T1 treatment significantly increased the vulva size and relative weight of the reproductive organ (P < 0.05), compared with the Control. However, the T2 treatment caused a significant reduction (P < 0.05) in vulva size and relative weight of the reproductive organ compared with the T1 group. The levels of luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P), and estradiol (E2) in the T1 group were significantly lower (P < 0.05) than those in the Control, while the levels of LH, P, and E2 in the T2 group were significantly greater (P < 0.05) than those in the T1 group. Zearalenone significantly increased (P < 0.05) the expression of estrogen receptor α in uterus and ovary and estrogen receptor β in vagina, while these indicators were not significant different (P > 0.05) between the T2 group and the Control group. In comparison with the Control group, ZEA significantly increased (P < 0.05) expression of several ATP-binding cassette (ABC) transporters: ABCB1 and ABCb4 in the vagina, ABCA1 and ABCb4 in the uterus, and ABCB1, ABCb4, ABCD3, and ABCG2 in the ovary, while these transporters in the T2 group were significantly decreased (P < 0.05) compared with the T1 group. In conclusion, the present study demonstrates that B. licheniformis CK1 could alleviate the harmful effect of ZEA in Tibetan piglets.
Collapse
Affiliation(s)
- Guanhua Fu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lihong Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jeruei Liu
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suozhu Liu
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, Tibet, China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Science, McGill University, Montreal, Québec, Canada
| |
Collapse
|
9
|
Kaneko A, Matsumoto T, Matsubara Y, Sekiguchi K, Koseki J, Yakabe R, Aoki K, Aiba S, Yamasaki K. Glucuronides of phytoestrogen flavonoid enhance macrophage function via conversion to aglycones by β-glucuronidase in macrophages. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:265-279. [PMID: 28480538 PMCID: PMC5569364 DOI: 10.1002/iid3.163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 12/24/2022]
Abstract
Introduction Flavonoids are converted to inactive metabolites like glucuronides in the gut, and circulate mainly as glucuronides in blood stream, resulting in low concentrations of active aglycones in plasma. It is therefore unclear how oral flavonoids exert their effects in tissues. We recently reported the plasma pharmacokinetics of some flavonoids and suggested the possibility that the absorbed flavonoids modified macrophage functions leading to enhance bacterial clearance. We aimed to confirm their pharmacological profiles focusing on tissue macrophages. Methods Pseudoinfection was induced by intradermal injection of FITC‐conjugated and killed Staphylococcus aureus into the ears of mice treated with or without genistein 7‐O‐glucuronide (GEN7G, 1 mg/kg, i.v.). FACS analysis was performed on single cell suspensions dispersed enzymatically from the skin lesions at 6 h post pseudoinfection to evaluate phagocytic activities of monocytes/macrophages (CD11b+Ly6G−) and neutrophils (CD11b+Ly6G+). Phagocytosis of the FITC‐conjugated bacteria by four glucuronides including GEN7G was evaluated in cultures of mouse macrophages. Results After GEN7G injection, genistein was identified in the inflamed ears as well as GEN7G, and the phagocytic activity of CD11b+Ly6G− cells was increased. GEN7G was converted to genistein by incubation with macrophage‐related β‐glucuronidase. Macrophage culture assays revealed that GEN7G increased phagocytosis, and the action was dampened by a β‐glucuronidase inhibitor. Binding of aglycones to estrogen receptors (ERs), putative receptors of flavonoid aglycones, correlated to biological activities, and glucuronidation reduced the binding to ERs. An ER antagonist suppressed the increase of macrophage function by GEN7G, whereas estradiol enhanced phagocytosis as well. Conclusions This study suggests a molecular mechanism by which oral flavonoids are carried as glucuronides and activated to aglycones by β‐glucuronidase in tissue macrophages, and contributes to the pharmacological study of glucuronides.
Collapse
Affiliation(s)
- Atsushi Kaneko
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Takashi Matsumoto
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Yosuke Matsubara
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Kyoji Sekiguchi
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Junichi Koseki
- Tsumura Research Laboratories, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Ryo Yakabe
- Analytical and Pharmaceutical Technology Research Center, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Katsuyuki Aoki
- Analytical and Pharmaceutical Technology Research Center, Tsumura & Co., Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
10
|
Ronis MJ, Gomez-Acevedo H, Blackburn ML, Cleves MA, Singhal R, Badger TM. Uterine responses to feeding soy protein isolate and treatment with 17β-estradiol differ in ovariectomized female rats. Toxicol Appl Pharmacol 2016; 297:68-80. [PMID: 26945725 DOI: 10.1016/j.taap.2016.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
There are concerns regarding reproductive toxicity from consumption of soy foods, including an increased risk of endometriosis and endometrial cancer, as a result of phytoestrogen consumption. In this study, female rats were fed AIN-93G diets made with casein (CAS) or soy protein isolate (SPI) from postnatal day (PND) 30, ovariectomized on PND 50 and infused with 5 μg/kg/d 17β-estradiol (E2) or vehicle. E2 increased uterine wet weight (P<0.05). RNAseq analysis revealed that E2 significantly altered expression of 1991 uterine genes (P<0.05). SPI feeding had no effect on uterine weight and altered expression of far fewer genes than E2 at 152 genes (P<0.05). Overlap between E2 and SPI genes was limited to 67 genes. Functional annotation analysis indicated significant differences in uterine biological processes affected by E2 and SPI and little evidence for recruitment of estrogen receptor (ER)α to the promoters of ER-responsive genes after SPI feeding. The major E2 up-regulated uterine pathways were carcinogenesis and extracellular matrix organization, whereas SPI feeding up-regulated uterine peroxisome proliferator activated receptor (PPAR) signaling and fatty acid metabolism. The combination of E2 and SPI resulted in significant regulation of 504 fewer genes relative to E2 alone. The ability of E2 to induce uterine proliferation in response to the carcinogen dimethybenz(a)anthracene (DMBA) as measured by expression of PCNA and Ki67 mRNA was suppressed by feeding SPI (P<0.05). These data suggest that SPI is a selective estrogen receptor modulator (SERM) interacting with a small sub-set of E2-regulated genes and is anti-estrogenic in the presence of endogenous estrogens.
Collapse
Affiliation(s)
- Martin J Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Michael L Blackburn
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Mario A Cleves
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Rohit Singhal
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| | - Thomas M Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States; Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, United States
| |
Collapse
|
11
|
Combinatorial effects of genistein and sex-steroids on the level of cystic fibrosis transmembrane regulator (CFTR), adenylate cyclase (AC) and cAMP in the cervix of ovariectomised rats. Reprod Toxicol 2015; 58:194-202. [PMID: 26529183 DOI: 10.1016/j.reprotox.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 10/19/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (p<0.05) while genistein plus [E+(E+P)] were higher than E+(E+P)-only treatment (p<0.05). In conclusions, increased levels of CFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.
Collapse
|
12
|
Wistedt A, Ridderstråle Y, Wall H, Holm L. Exogenous estradiol improves shell strength in laying hens at the end of the laying period. Acta Vet Scand 2014; 56:34. [PMID: 24884886 PMCID: PMC4067625 DOI: 10.1186/1751-0147-56-34] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 05/17/2014] [Indexed: 11/25/2022] Open
Abstract
Background Cracked shells, due to age related reduction of shell quality, are a costly problem for the industry. Parallel to reduced shell quality the skeleton becomes brittle resulting in bone fractures. Calcium, a main prerequisite for both eggshell and bone, is regulated by estrogen in a complex manner. The effects of estrogen, given in a low continuous dose, were studied regarding factors involved in age related changes in shell quality and bone strength of laying hens. A pellet containing 0.385 mg estradiol 3-benzoate (21-day-release) or placebo was inserted subcutaneously in 20 birds each of Lohmann Selected Leghorn (LSL) and Lohmann Brown (LB) at 70 weeks of age. Eggs were collected before and during the experiment for shell quality measurements. Blood samples for analysis of total calcium were taken three days after the insertion and at sacrifice (72 weeks). Right femur was used for bone strength measurements and tissue samples from duodenum and shell gland were processed for morphology, immunohistochemical localization of estrogen receptors (ERα, ERβ), plasma membrane calcium ATPase (PMCA) and histochemical localization of carbonic anhydrase (CA). Results Estrogen treatment increased shell thickness of both hybrids. In addition, shell weight and shell deformation improved in eggs from the brown hybrids. The more pronounced effect on eggs from the brown hybrid may be due to a change in sensitivity to estrogen, especially in surface epithelial cells of the shell gland, shown as an altered ratio between ERα and ERβ. A regulatory effect of estrogen on CA activity, but not PMCA, was seen in both duodenum and shell gland, and a possible connection to shell quality is discussed. Bone strength was unaffected by treatment, but femur was stronger in LSL birds suggesting that the hybrids differ in calcium allocation between shell and bone at the end of the laying period. Plasma calcium concentrations and egg production were unaffected. Conclusions A low continuous dose of estrogen improves shell strength but not bone strength in laying hens at the end of the laying period.
Collapse
|
13
|
Chinigarzadeh A, Kassim NM, Muniandy S, Salleh N. Genistein-induced fluid accumulation in ovariectomised rats' uteri is associated with increased cystic fibrosis transmembrane regulator expression. Clinics (Sao Paulo) 2014; 69:111-9. [PMID: 24519202 PMCID: PMC3912340 DOI: 10.6061/clinics/2014(02)07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/18/2013] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE High genistein doses have been reported to induce fluid accumulation in the uteri of ovariectomised rats, although the mechanism underlying this effect remains unknown. Because genistein binds to the oestrogen receptor and the cystic fibrosis transmembrane regulator mediates uterine fluid secretion, we hypothesised that this genistein effect involves both the oestrogen receptor and cystic fibrosis transmembrane regulator. METHODS Ovariectomised adult female Sprague-Dawley rats were treated with 25, 50, or 100 mg/kg/day genistein for three consecutive days with and without the ER antagonist ICI 182780. One day after the final drug injection, the animals were humanely sacrificed, and the uteri were removed for histology and cystic fibrosis transmembrane regulator mRNA and protein expression analysis using real-time polymerase chain reaction and Western blotting, respectively. The cystic fibrosis transmembrane regulator protein distribution was analysed visually by immunohistochemistry. RESULTS The histological analysis revealed an increase in the circumference of the uterine lumen with increasing doses of genistein, which was suggestive of fluid accumulation. Moreover, genistein stimulated a dose-dependent increase in the expression of cystic fibrosis transmembrane regulator protein and mRNA, and high-intensity cystic fibrosis transmembrane regulator immunostaining was observed at the apical membrane of the luminal epithelium following 50 and 100 mg/kg/day genistein treatment. The genistein-induced increase in uterine luminal circumference and cystic fibrosis transmembrane regulator expression was antagonised by treatment with ICI 182780. CONCLUSION Genistein-induced luminal fluid accumulation in ovariectomised rats' uteri involves the oestrogen receptor and up-regulation of cystic fibrosis transmembrane regulator expression, and these findings reveal the mechanism underlying the effect of this compound on changes in fluid volume in the uterus after menopause.
Collapse
Affiliation(s)
- Asma Chinigarzadeh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| | - Normadiah M Kassim
- University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Anatomy, Kuala Lumpur/Malaysia
| | - Sekaran Muniandy
- University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Molecular Medicine, Kuala Lumpur/Malaysia
| | - Naguib Salleh
- University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur, Malaysia, University of Malaya, Faculty of Medicine, Department of Physiology, Kuala Lumpur/Malaysia
| |
Collapse
|