2
|
Ahmed S, Dongdong B, Jiayu Z, Liu G, Ding Y, Jiang X, Teketay W, Jing H. Immunocastration with gene vaccine (KISS1) induces a cell-mediated immune response in ram testis: A transcriptome evaluation. Reprod Domest Anim 2022; 57:653-664. [PMID: 35247007 DOI: 10.1111/rda.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/27/2022] [Indexed: 11/29/2022]
Abstract
Immunocastration vaccines achieve their effects through neutralization of the endogenous hormone by the humoral antibody produced against the immunized genes. But there is little information regarding cell-mediated immune response on the gonadal function of the immunized model is available. In this study, we used ram as a model animal to identify the cellular immune response in testicular tissues of rams immunized with intranasal KISS1 gene vaccine. The immune castration model was evaluated by sexual behaviors, spermatogenesis, and serum hormone profiles after the KISS1 gene immunization. Transcriptome analysis of testicular tissues was carried out to identify the expressions of protein-coding genes involved in cellular immunity. The results showed that we successfully constructed the KISS1 immune castration ram model, in which testicular growth and development, testosterone and kisspeptin-54 levels, and sexual function were suppressed in immunized rams (P <0.05). Using HiseqTM 2000 high sequencing for ram testicular, we identified 21 differentially expressed genes (DEGs) related to cellular immunity, of which, 14 genes were up-regulated and seven genes were down-regulated in the testis of the immunized group (P<0.05). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed that these differentially expressed genes were enriched in the antigen presentation process mediated by MHC class I and the cytotoxic pathway mediated by natural killer cells. It is concluded that KISS1 gene vaccine induced the cell-mediated immune response in testicular tissue to suppress reproductive activities in rams.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Bo Dongdong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhao Jiayu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yi Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wassie Teketay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Haijing Jing
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
3
|
Yao Z, Si W, Tian W, Ye J, Zhu R, Li X, Ji S, Zheng Q, Liu Y, Fang F. Effect of active immunization using a novel GnRH vaccine on reproductive function in rats. Theriogenology 2018; 111:1-8. [PMID: 29407422 DOI: 10.1016/j.theriogenology.2018.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 11/29/2022]
Abstract
To investigate the effect of gonadotropin-releasing hormone 2-multiple antigen peptide (GnRH2-MAP) on reproductive function. In our study, 20-day-old male rats (n = 90) were randomly allocated to one of three treatment groups: GnRH2-MAP immunization, GnRH2 immunization, and non-immunized control groups. The immunized animals were administered three doses of GnRH2-MAP or GnRH2 vaccines from 0 to 6 weeks at 2-week intervals. The control group only received oil adjuvant. Blood and right testis samples were collected, and the left testis was weighed and its volume was measured at 0, 2, 4, 6, 8, 10 and 12 weeks after the first immunization. The serum antibody titer and testosterone concentration were determined by ELISA, and the right testis samples were collected for histological analysis. The results revealed that the serum of vaccinated rats elicited a significantly higher antibody titer and a lower T concentration compared with the control group two weeks after the first immunization (P < 0.05), but the highest antibody titer and lowest T concentration were found in animals treated with GnRH2-MAP (P < 0.05). The second immunization resulted in a significant decrease in testicular weight and volume (P < 0.05) in both immunized groups compared to the control, but these values were significantly lower in the GnRH2-MAP group than in the GnRH2 group. Furthermore, seminiferous tubules revealed more significant atrophy in the GnRH2-MAP group than in the GnRH2 group, and no sperm were observed in rats of the GnRH2-MAP group. Thus, GnRH2-MAP may be an effective antigen and a potential immunocastration vaccine with higher effectiveness.
Collapse
Affiliation(s)
- Zhiqiu Yao
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Wenyu Si
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Weiguo Tian
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Jing Ye
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Rongfei Zhu
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Xiumei Li
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Shichun Ji
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Qianqian Zheng
- Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Ya Liu
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
| | - Fugui Fang
- Anhui Provincial Key Laboratory of Genetic Resources Protection and Biological Breeding in Local Livestock and Poultry, 130 Changjiang West Road, Hefei, Anhui 230036, China; Department of Animal Veterinary Science, College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Sharma S, McDonald I, Miller L, Hinds LA. Parenteral administration of GnRH constructs and adjuvants: immune responses and effects on reproductive tissues of male mice. Vaccine 2014; 32:5555-63. [PMID: 25130539 DOI: 10.1016/j.vaccine.2014.07.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 10/24/2022]
Abstract
Two gonadotrophin releasing hormone (GnRH) constructs prepared by either chemical conjugation to keyhole limpet hemocyanin (GnRH-KLH) or as an expressed recombinant fusion protein (Multimer) were evaluated with or without adjuvants (immunostimulating complexes, ISCOMs, or cytosine-phosphate-guanosine oligodeoxynucleotides, CpG ODNs). After subcutaneous administration to Balb/c male mice at Weeks 0, 2 and 4, these preparations were assessed for induction of immune responses and effects on reproductive organs. GnRH-KLH plus ISCOMs formulation induced strong IgG immune responses from Week 4 through Week 12 resulting in consistent reproductive organ atrophy by Week 12 after subcutaneous administration. GnRH-KLH plus CpG ODNs generated immune responses but no atrophy of reproductive tissues by Week 12. Multimer plus ISCOMs induced poor immune responses and no effects on reproductive tissues by Week 12. In the absence of additional adjuvant, none of the GnRH constructs induced reproductive organ atrophy. GnRH-KLH induced stronger immune responses when formulated with ISCOMs or CpG ODN compared to Multimer. GnRH-KLH with ISCOMs could be an effective colloidal alternative for emulsion GnRH vaccine formulations.
Collapse
Affiliation(s)
- Sameer Sharma
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biosecurity Flagship, GPO Box 1700, Canberra, ACT, Australia; Invasive Animals Cooperative Research Centre (IA CRC), University of Canberra, Canberra, ACT, Australia
| | - Ian McDonald
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biosecurity Flagship, GPO Box 1700, Canberra, ACT, Australia; Invasive Animals Cooperative Research Centre (IA CRC), University of Canberra, Canberra, ACT, Australia; School of Agriculture and Food Science, University of Queensland, Brisbane, Queensland, Australia
| | - Lowell Miller
- National Wildlife Research Center, USDA, Fort Collins, CO, USA
| | - Lyn A Hinds
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Biosecurity Flagship, GPO Box 1700, Canberra, ACT, Australia; Invasive Animals Cooperative Research Centre (IA CRC), University of Canberra, Canberra, ACT, Australia.
| |
Collapse
|