1
|
Li Z, Sun J, Li K, Qin J, Sun Y, Zeng J, El-Ashram S, Zhao Y. Metabolomic analysis reveals spermatozoa and seminal plasma differences between Duroc and Liang guang Small-spotted pig. Front Vet Sci 2023; 9:1078928. [PMID: 36686181 PMCID: PMC9853278 DOI: 10.3389/fvets.2022.1078928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The Liang guang Small-spotted pig is a well-known Chinese indigenous pig that is valued for its exceptional meat quality. However, the Liang guang Small-spotted pig has a lower semen storage capacity, shorter storage time and worse semen quality compared to Duroc. Pig sperm used for artificial insemination (AI) loses part of vitality and quality when being stored in commercial solutions. Serious vitality losses and short shelf life of the semen are particularly prominent in Liang guang Small-spotted pig. In this study, the metabolites in seminal plasma and spermatozoa of Duroc and Liang guang Small-spotted pigs were identified using UHPLC-Q-TOF/MS technology. The findings indicated forty distinct metabolites concentrating on energy metabolic substrates and antioxidant capacity in Liang guang Small-spotted pig and Duroc seminal plasma, including D-Fructose, succinate, 2-dehydro-3-deoxy-d-gluconate, alanine betaine, citrate, carnitine, acetylcarnitine and so on. Seventeen different metabolites were explored, with a focus on glycerophospholipid metabolism in Liang guang Small-spotted pig and Duroc spermatozoa, primarily including glycerol 3-phosphate, acetylcarnitine, phosphatidylcholine (PC) 16:0/16:0, palmitoyl sphingomyelin, acetylcholine, choline, glycerophosphocholine, betaine, L-carnitine, creatinine and others. This study reveals the metabolite profile of spermatozoa and seminal plasma among different pig breeds and might be valuable for understanding the mechanisms that lead to sperm storage capacity. Metabolites involved in energy metabolism, antioxidant capacity and glycerophospholipid metabolism might be key to the poor sperm storage capacity in Liang guang Small-spotted pig.
Collapse
Affiliation(s)
- Zhili Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingshuai Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kebiao Li
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiali Qin
- Guangxi Yangxiang Co., Ltd., Guigang, China
| | - Yanmei Sun
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jianhua Zeng
- Guangdong YIHAO Food Co., Ltd., Guangzhou, China
| | | | - Yunxiang Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China,Guangxi Yangxiang Co., Ltd., Guigang, China,*Correspondence: Yunxiang Zhao ✉
| |
Collapse
|
2
|
Sun J, Zhao Y, He J, Zhou Q, El-Ashram S, Yuan S, Chi S, Qin J, Huang Z, Ye M, Huang S, Li Z. Small RNA expression patterns in seminal plasma exosomes isolated from semen containing spermatozoa with cytoplasmic droplets versus regular exosomes in boar semen. Theriogenology 2021; 176:233-243. [PMID: 34673403 DOI: 10.1016/j.theriogenology.2021.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Multiple physiological pathways are controlled by exosomes. Exosomes may be found in seminal plasma where they carry functional molecules to the sperm, such as microRNAs (miRNAs). Sperm cytoplasmic droplets (CDs) are remnants of cytoplasm, and their migration is a morphological characteristic of epididymal maturation. However, miRNA expression patterns in seminal plasma exosomes found in semen containing spermatozoa with CDs versus regular exosomes in boar semen have not been examined. In this study, seminal plasma exosomes were isolated from semen containing spermatozoa with CDs and miRNA expression profiles were analyzed. A total of 348 known and 206 new miRNAs were identified. Sixteen miRNAs were significantly differentially expressed. Of these, 13 miRNAs (ssc-miR-101, ssc-miR-148a-5p, ssc-miR-184, ssc-miR-202-3p, ssc-miR-221-5p, ssc-miR-2483, ssc-miR-29a-3p, ssc-miR-29c, ssc-miR-31, ssc-miR-362, ssc-miR-500-5p, ssc-miR-542-3p, and ssc-miR-769-5p) were significantly upregulated, whereas three miRNAs (ssc-miR-1249, ssc-miR-155-5p, and ssc-miR-296-5p) were significantly downregulated. GO and KEGG pathway analyses showed that these targeted genes were enriched for functions such as metabolic process, reproductive process, proteasome, ubiquitin mediated proteolysis, and oxidative phosphorylation. Therefore, seminal plasma exosomes are predicted to play a key role in the regulation of sperm CDs.
Collapse
Affiliation(s)
- Jingshuai Sun
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Yunxiang Zhao
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China.
| | - Jian He
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Qingbin Zhou
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Shihong Chi
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Jiali Qin
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Zongyang Huang
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Manqing Ye
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China
| | - Zhili Li
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong province, China.
| |
Collapse
|
3
|
Wu L, Ding Y, Han S, Wang Y. Role of Exosomes in the Exchange of Spermatozoa after Leaving the Seminiferous Tubule: A Review. Curr Drug Metab 2021; 21:330-338. [PMID: 32433001 DOI: 10.2174/1389200221666200520091511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/05/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Exosomes are extracellular vesicles (EVs) released from cells upon fusion of an intermediate endocytic compartment with the plasma membrane. They refer to the intraluminal vesicles released from the fusion of multivesicular bodies with the plasma membrane. The contents and number of exosomes are related to diseases such as metabolic diseases, cancer and inflammatory diseases. Exosomes have been used in neurological research as a drug delivery tool and also as biomarkers for diseases. Recently, exosomes were observed in the seminal plasma of the one who is asthenozoospermia, which can affect sperm motility and capacitation. OBJECTIVE The main objective of this review is to deeply discuss the role of exosomes in spermatozoa after leaving the seminiferous tubule. METHODS We conducted an extensive search of the literature available on relationships between exosomes and exosomes in spermatozoa on the bibliographic database. CONCLUSION This review thoroughly discussed the role that exosomes play in the exchange of spermatozoa after leaving the seminiferous tubule and its potential as a drug delivery tool and biomarkers for diseases as well.
Collapse
Affiliation(s)
- Luming Wu
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Ding
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| | - Shiqiang Han
- Linxia Hui Autonomous Prefecture Maternity and Childcare Hospital, Linxia, China
| | - Yiqing Wang
- Gansu Key Laboratory of Reproductive Medicine and Embryo,The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|
5
|
Stančić I, Radović I, Dragin S, Mirkov M, Pihler I, Horvatović M, Apić J, Zdraveski I. Influence of transcervical infusion of seminal plasma on the farrowing rate and litter size in artificially inseminated sows. ARQ BRAS MED VET ZOO 2020. [DOI: 10.1590/1678-4162-11227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Recent studies have focused on the use of seminal plasma to increase sow fertility after classical intracervical artificial insemination (AI). The aim of the present study was to investigate the influence of seminal plasma infusion, prior to the application of conventional AI dose, on the fertility rate in sows. A total of 114 sows were treated with intrauterine infusion of 30ml seminal plasma (SP), while 114 control sows were infused by physiological solution (PS), immediately before the application of conventional AI dose. The experiment was conducted at one commercial pig farm in Serbia, which is comprised of 1,500 sows in the breeding herd. Intrauterine infusion of seminal plasma produced significantly (P<0.05) higher farrowing rate (93.8%) and significantly (P<0.01) more live-born piglets per litter (12.27), compared with the control sows (83.33% farrowing rate and 10.48 piglets). The present results show that intrauterine infusion of seminal plasma can be a useful tool for increasing the fertility rate in artificially inseminated sows, under the conditions of practical intensive pig production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. Apić
- Scientific Veterinary Institute Novi Sad, Serbia
| | - I. Zdraveski
- Faculty of Veterinary Medicine, Republic of Macedonia
| |
Collapse
|
6
|
Morgan HL, Eid N, Khoshkerdar A, Watkins AJ. Defining the male contribution to embryo quality and offspring health in assisted reproduction in farm animals. Anim Reprod 2020; 17:e20200018. [PMID: 33029211 PMCID: PMC7534566 DOI: 10.1590/1984-3143-ar2020-0018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assisted reproductive technologies such as artificial insemination have delivered significant benefits for farm animal reproduction. However, as with humans, assisted reproduction in livestock requires the manipulation of the gametes and preimplantation embryo. The significance of this ‘periconception’ period is that it represents the transition from parental genome regulation to that of the newly formed embryo. Environmental perturbations during these early developmental stages can result in persistent changes in embryonic gene expression, fetal organ development and ultimately the long-term health of the offspring. While associations between maternal health and offspring wellbeing are well-defined, the significance of paternal health for the quality of his semen and the post-conception development of his offspring have largely been overlooked. Human and animal model studies have identified sperm epigenetic status (DNA methylation levels, histone modifications and RNA profiles) and seminal plasma-mediated maternal uterine immunological, inflammatory and vascular responses as the two central mechanisms capable of linking paternal health and post-fertilisation development. However, there is a significant knowledge gap about the father’s contribution to the long-term health of his offspring, especially with regard to farm animals. Such insights are essential to ensure the safety of widely used assisted reproductive practices and to gain better understanding of the role of paternal health for the well-being of his offspring. In this article, we will outline the impact of male health on semen quality (both sperm and seminal plasma), reproductive fitness and post-fertilisation offspring development and explore the mechanisms underlying the paternal programming of offspring health in farm animals.
Collapse
Affiliation(s)
- Hannah Louise Morgan
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Nader Eid
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Afsaneh Khoshkerdar
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Adam John Watkins
- Division of Child Health, Obstetrics and Gynaecology, Queen's Medical Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
7
|
The Presence of Seminal Plasma during Liquid Storage of Pig Spermatozoa at 17 °C Modulates Their Ability to Elicit In Vitro Capacitation and Trigger Acrosomal Exocytosis. Int J Mol Sci 2020; 21:ijms21124520. [PMID: 32630462 PMCID: PMC7350249 DOI: 10.3390/ijms21124520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Although seminal plasma is essential to maintain sperm integrity and function, it is diluted/removed prior to liquid storage and cryopreservation in most mammalian species. This study sought to evaluate, using the pig as a model, whether storing semen in the presence of seminal plasma affects the sperm ability to elicit in vitro capacitation and acrosomal exocytosis. Upon collection, seminal plasma was separated from sperm samples, which were diluted in a commercial extender, added with seminal plasma (15% or 30%), and stored at 17 °C for 48 or 72 h. Sperm cells were subsequently exposed to capacitating medium for 4 h, and then added with progesterone to induce acrosomal exocytosis. Sperm motility, acrosome integrity, membrane lipid disorder, intracellular Ca2+ levels, mitochondrial activity, and tyrosine phosphorylation levels of glycogen synthase kinase-3 (GSK3)α/β were determined after 0, 2, and 4 h of incubation, and after 5, 30, and 60 min of progesterone addition. Results showed that storing sperm at 17 °C with 15% or 30% seminal plasma led to reduced percentages of viable spermatozoa exhibiting an exocytosed acrosome, mitochondrial membrane potential, intracellular Ca2+ levels stained by Fluo3, and tyrosine phosphorylation levels of GSK3α/β after in vitro capacitation and progesterone-induced acrosomal exocytosis. Therefore, the direct contact between spermatozoa and seminal plasma during liquid storage at 17 °C modulated their ability to elicit in vitro capacitation and undergo acrosomal exocytosis, via signal transduction pathways involving Ca2+ and Tyr phosphorylation of GSK3α/β. Further research is required to address whether such a modulating effect has any impact upon sperm fertilizing ability.
Collapse
|
8
|
Morgan HL, Watkins AJ. The influence of seminal plasma on offspring development and health. Semin Cell Dev Biol 2020; 97:131-137. [DOI: 10.1016/j.semcdb.2019.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022]
|
9
|
Guo H, Chang Z, Zhang Z, Zhao Y, Jiang X, Yu H, Zhang Y, Zhao R, He B. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism. Theriogenology 2019; 139:113-120. [PMID: 31401476 DOI: 10.1016/j.theriogenology.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Artificial insemination using diluted semen with reduced presence of seminal plasma has been applied worldwide. Sperm stored in seminal plasma rather than diluted or removed show improvement in survival and motility. However, the link between seminal plasma and sperm remains poorly understood. This study focuses on the effect of extracellular adenosine triphosphate (exATP) produced by boar seminal plasma exosomes on sperm motility, as well as the underlying molecular mechanisms. The seminal plasma exosomes had an average diameter of 86.6 nm and showed universal exosome markers, such as heat shock protein 70 (HSP70) and CD63. Production of net ATP increased when exosomes were incubated with glucose and partly inhibited by a glycolytic inhibitor such as iodoacetate. Fresh boar sperm incubated with exATP significantly increased sperm motility and reduced apoptotic rate. Ser21 phosphorylation of glycogen synthase kinase 3α (inactivation) also significantly increased, consistent with the increase in mitochondrial transmembrane potential in the exATP-treated sperm. Moreover, exATP treatment increased the intracellular ATP (inATP) concentration and decreased the ADP/ATP ratio in boar sperm. Lactate content in the incubation medium was decreased, whereas lactate dehydrogenase activity in sperm was increased. This finding suggested that exATP could prompt lactate to produce inATP in order to sustain motility. The combined results indicate that exATP produced in seminal plasma exosomes may finely modulate mitochondrial metabolism to control sperm motility. The results can provide insights into semen dilution and artificial insemination.
Collapse
Affiliation(s)
- Huiduo Guo
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhanglin Chang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhilong Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yuting Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xueyuan Jiang
- Shanghai Engineering Research Center of Breeding Pigs, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Hongyan Yu
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanwen Zhang
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bin He
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
10
|
Leal DF, Torres MA, Ravagnani GM, Martins SMMK, Meirelles FV, de Andrade AFC. Absence of seminal plasma from sperm-rich fraction decreases boar sperm quality characteristics during the course of liquid storage. Anim Reprod Sci 2018; 198:20-26. [PMID: 30219377 DOI: 10.1016/j.anireprosci.2018.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/28/2018] [Accepted: 08/24/2018] [Indexed: 11/30/2022]
Abstract
Seminal plasma (SP), the fluid that surrounds the sperm cells, is known to exert substantial influence on sperm physiology. The SP has a pivotal role in sperm function in vivo, and due to its components, it functions in an ambiguous manner in vitro, simultaneously possessing deleterious and beneficial effects. This experiment aimed to describe the differences between the presence or absence of SP from the sperm-rich fraction on some spermatozoa characteristics (kinetics, plasma and acrosome membrane integrity, lipid peroxidation and capacitation-like changes). Furthermore, this experiment focused on distinguishing the effects of SP on the variables evaluated from the effects of centrifugation during SP removal. Total and progressive sperm motility, as well as integrity of plasma and acrosome membranes, were less (P < 0.05) in the absence of SP. Membrane lipid peroxidation (P < 0.05) and sperm membrane stability (P < 0.05) did not differ among treatments. The SP from the sperm-rich fraction is important for the maintenance of adequate structural and functional characteristics of extended liquid boar semen and should be present in seminal doses throughout storage. Furthermore, the detrimental effect on the variables evaluated was caused solely by the absence of SP and not by the process of removal through centrifugation at 500 x g for 10 min.
Collapse
Affiliation(s)
- D F Leal
- Swine Research Center, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - M A Torres
- Swine Research Center, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - G M Ravagnani
- Swine Research Center, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - S M M K Martins
- Swine Research Center, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - F V Meirelles
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil
| | - A F C de Andrade
- Swine Research Center, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, 13635-900, Brazil.
| |
Collapse
|
11
|
Wasilewska K, Fraser L. Boar variability in sperm cryo-tolerance after cooling of semen in different long-term extenders at various temperatures. Anim Reprod Sci 2017; 185:161-173. [DOI: 10.1016/j.anireprosci.2017.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 08/05/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
|
12
|
Pinyopummin A, Mahasawangkul S, Kornkaewrat K, Rattanapirom S, Leartsang W, Kitkha S. The presence of seminal plasma, especially derived from stallion semen, helps preserve chilled Asian elephant (Elephas maximus) sperm motility. Andrologia 2016; 49. [PMID: 27785817 DOI: 10.1111/and.12690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2016] [Indexed: 11/28/2022] Open
Abstract
The effects of seminal plasma (SP), derived from autologous, homologous and heterologous species (stallion, boar and dog) on chilled Asian elephant sperm quality, were determined. Semen was collected from eight males and samples with ≥30% motile spermatozoa were used in the study. Semen was diluted with Tris-glucose-egg yolk extender, supplemented with different SP types and preserved at 4°C for 48 hr. Experiment 1 (n = 31), showed that the presence of SP (autologous) helped to preserve sperm quality in terms of sperm motility and acrosome integrity (p < .05). Homologous SP did not result in better sperm quality than autologous SP. Heterologous SP from stallion provided higher sperm motility and velocities compared to autologous SP (p < .05). Experiment 2 (n = 14) determined the effect of different SP from four stallions. All stallion SP gave higher (p < .05) results for motile spermatozoa and sperm velocities than autologous SP. In conclusion, the presence of SP helps preserve Asian elephant sperm quality and stallion SP supports the motility of Asian elephant spermatozoa during cold storage.
Collapse
Affiliation(s)
- A Pinyopummin
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - S Mahasawangkul
- The National Elephant Institute, The Forest Industry Organization, Lampang, Thailand
| | - K Kornkaewrat
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - S Rattanapirom
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - W Leartsang
- Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - S Kitkha
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
13
|
Bromfield JJ. A role for seminal plasma in modulating pregnancy outcomes in domestic species. Reproduction 2016; 152:R223-R232. [PMID: 27601714 DOI: 10.1530/rep-16-0313] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/05/2016] [Indexed: 12/21/2022]
Abstract
Seminal plasma is a complex fluid produced by the accessory glands of the male reproductive tract. Seminal plasma acts primarily as a transport medium for sperm on its arduous journey through the male and then female reproductive tract following ejaculation. This spermatozoan expedition will hopefully result in the meeting of and resultant fertilization of an oocyte, perpetuating the genetic lineage of both sexes. Whereas seminal plasma has historically been perceived as only a transport medium providing a nutrient-rich fluid environment for sperm during this exchange of genetic material, new insights into a complex communication pathway between males and females has been unraveled in the past 30 years. This new research suggests seminal plasma as a method to promote early pregnancy success by modulating cellular and molecular adaptions of the maternal environment required to facilitate healthy, successful pregnancy outcomes. Whereas much work on this exciting new communication process has focused on mice and translation to human reproduction, here we review the current evidence in domestic species where artificial insemination in the absence of seminal plasma is routine. Improving artificial insemination in domestic species to optimize offspring health and productivity could have far-reaching impacts on agriculturally relevant species such as cattle, sheep, pigs and horses.
Collapse
Affiliation(s)
- John J Bromfield
- D H Barron Reproductive and Perinatal Biology Research ProgramDepartment of Animal Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Qadeer S, Khan M, Ansari M, Rakha B, Ejaz R, Husna A, Ashiq M, Iqbal R, Ullah N, Akhter S. Evaluation of antifreeze protein III for cryopreservation of Nili-Ravi (Bubalus bubalis) buffalo bull sperm. Anim Reprod Sci 2014; 148:26-31. [DOI: 10.1016/j.anireprosci.2014.04.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|