1
|
Zhao Y, Lei Y, Ning H, Zhang Y, Chen G, Wang C, Wan Q, Guo S, Liu Q, Xie R, Zhuo Y, Yan S, Zhao J, Wei F, Wang L, Wang X, Li W, Yan H, Yu Y. PGF 2α facilitates pathological retinal angiogenesis by modulating endothelial FOS-driven ELR + CXC chemokine expression. EMBO Mol Med 2022; 15:e16373. [PMID: 36511116 PMCID: PMC9832840 DOI: 10.15252/emmm.202216373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
The pathological retinal angiogenesis often causes blindness. Current anti-angiogenic therapy for proliferative retinopathy targets the vascular endothelial growth factor (VEGF), but many patients do not radically benefit from this therapy. Herein, we report that circulating prostaglandin (PG) F2α metabolites were increased in type 2 diabetic patients with proliferative retinopathy, and the PGF2α receptor (Ptgfr) was upregulated in retinal endothelial cells (ECs) from a mouse model of oxygen-induced retinopathy (OIR). Further, disruption of the PTGFR receptor in ECs attenuated OIR in mice. PGF2α promoted the proliferation and tube formation of human retinal microvascular endothelial cells (HRMECs) via the release of ELR+ CXC chemokines, such as CXCL8 and CXCL2. Mechanistically, the PGF2α /PTGFR axis potentiated ELR+ CXC chemokine expression in HRMECs through the Gq /CAMK2G/p38/ELK-1/FOS pathway. Upregulated FOS-mediated ELR+ CXC chemokine expression was observed in retinal ECs from PDR patients. Moreover, treatment with PTGFR inhibitor lessened the development of OIR in mice in a CXCR2-dependent manner. Therefore, inhibition of PTGFR may represent a new avenue for the treatment of retinal neovascularization, particularly in PDR.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Yi Lei
- Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Huying Ning
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Yaqiang Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life ScienceEast China Normal UniversityShanghaiChina
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Chenchen Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina,CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Shumin Guo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Qian Liu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Ruotian Xie
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Yujuan Zhuo
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Shuai Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jing Zhao
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Fengjiang Wei
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lu Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Xiaohong Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Weidong Li
- Department of Genetics, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Hua Yan
- Department of OphthalmologyTianjin Medical University General HospitalTianjinChina
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, Center for Cardiovascular Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| |
Collapse
|
2
|
Zhang L, Zhou C, Jiang X, Huang S, Li Y, Su T, Wang G, Zhou Y, Liu M, Xu D. Circ0001470 Acts as a miR-140-3p Sponge to Facilitate the Progression of Embryonic Development through Regulating PTGFR Expression. Cells 2022; 11:cells11111746. [PMID: 35681442 PMCID: PMC9179393 DOI: 10.3390/cells11111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the porcine GRN gene, differentially expressed on day 18 versus day 32 of gestation in Meishan and Yorkshire pigs was screened. The circularization characteristic of circ0001470 was identified based on divergent primer amplification, Sanger sequencing, RNase digestion, and RNA nuclear-cytoplasmic fractionation. Functionally, circ0001470 can promote cell proliferation and cycle progression of endometrial epithelial cells (EECs) and also inhibit apoptosis of EECs using CCK-8 assays and flow cytometry analyses. Mechanistically, bioinformatics database prediction, luciferase screening, RNA immunoprecipitation (RIP), RNA-pull down, and FISH co-localization experiments revealed that the circ0001470 acted as a competing endogenous RNA (ceRNA) through sponging miR-140-3p to regulate downstream PTGFR expression. Moreover, in vivo assays revealed that mmu_circGRN promoted embryonic development by affecting the expression of PTGFR, which can activate the MAPK reproduction pathway and facilitate pregnancy maintenance. This study enriched our understanding of circRNAs in embryo implantation and development by deciding the fate of EECs.
Collapse
Affiliation(s)
- Long Zhang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changfan Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Jiang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuntao Huang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiheng Li
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Tao Su
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guowei Wang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - You Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Min Liu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dequan Xu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
3
|
Administration of PGF2α at the moment of timed-AI using sex-sorted or conventional semen in suckled nelore cows with different intensity of estrus behavior. Theriogenology 2021; 174:169-175. [PMID: 34455244 DOI: 10.1016/j.theriogenology.2021.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The aim of this work was to evaluate pregnancy rates (PR) and ovulatory characteristics of Nelore cows receiving PGF2α at the time of AI (artificial insemination) in a progesterone(P4)/estradiol-based timed-AI protocol. We also compared the effects of PGF2α treatment at AI in cows inseminated with conventional or sex-sorted semen, with the absence or expression of estrus. In experiment 1, a total of 701 suckled, multiparous Nelore cows from two commercial beef farms were submitted to the same protocol. All cows received a 12.5 mg (IM) injection of dinoprost tromethamine (Dinoprost; Lutalyse®; PGF treatment) at days 7 and 9 of a timed-AI protocol. Following P4 device removal (day 11; D11), AI was performed 48 h later with conventional or sex-sorted semen from two different sires. At AI, cows received an additional dose of 12.5 mg (IM) of Dinoprost (PGF treatment) or 2.5 mL (IM) of sterile saline (Control). Estrus behavior was determined at D11 by activation of an estrus detection device (Estrotect®). The overall PR was 32.8% (n = 348) at Farm 1 and 42.3% (n = 353) at Farm 2 (P = 0.01). Despite PR differences between farms, the same factors affected PR at Farms 1 and 2. Body condition score (P = 0.02), estrus behavior (P = 0.01), and type of semen (P < 0.001) were factors affecting PR. Conventional semen had a 2.73x greater chance of successful pregnancy than sex-sorted semen. Cows displaying estrus had a 2.5x greater chance of successful pregnancy than cows that did not display estrus. No treatment effect (P = 0.67) was detected in cows receiving conventional or sex-sorted semen. However, there was a tendency (P = 0.08) for an interaction between treatment (PGF or control) and estrus behavior (estrus or no estrus). PGF2α at the time of AI tended to increase PR of cows that did not display estrus (P < 0.10). In experiment 2, 29 suckled, multiparous Nelore cows were compared using B-mode and Doppler ultrasongraphy to assess the ovulatory characteristics of cows receiving the 12.5 mg (IM) injection of Dinoprost (PGF treatment) or saline solution (control) at D11. No significant effects of PGF2α treatment at D11 were observed in follicular characteristics and/or ovulation performance. It was concluded that fertility of sex-sorted semen was lower than conventional semen, regardless of the PGF2α treatment. The 12.5 mg treatment of Dinoprost at AI did not accelerate the occurrence of ovulation; however, it was interesting to note that PGF2α treatment at timed-AI appeared to increase the fertility of cows that did not display estrus, independent of semen type.
Collapse
|
4
|
Qin X, Yang S, Zhang Y, Li L, Li P, Long M, Guo Y. Effects of non-esterified fatty acids on relative abundance of prostaglandin E 2 and F 2α synthesis-related mRNA transcripts and protein in endometrial cells of cattle in vitro. Anim Reprod Sci 2020; 221:106549. [PMID: 32861111 DOI: 10.1016/j.anireprosci.2020.106549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
Cows nearing parturition have a negative energy balance (NEB), which is closely associated with lesser fertility. The NEB results in greater fat mobilisation and production of a large amount of non-esterified fatty acid (NEFA). Prostaglandins (PG), especially prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α), have important functions in regulating reproductive function. There, however, is little known about how the synthesis and release of PG are affected by NEFA. In this study, there was a focus on effects of NEFA on PG secretion as well as relative abundances of mRNA transcript and protein for PG synthetases and PG receptors in bovine endometrial (BEND) cells. Proliferation rate of BEND cells decreased in a concentration-dependent manner as NEFA increased in the media. The concentrations of PGE2 and PGF2α in NEFA treatment groups also decreased, while the ratio of PGE2/PGF2α and the relative abundances of proteins and mRNA that regulate PG synthesis and PG receptor mRNA transcripts and protein were greater as the NEFA concentration increased. Collectively, when there were large NEFA concentrations in the medium, there was a lesser release of PGE2 and PGF2α, however, there was a greater ratio of PGE2/PGF2α and relative abundances of mRNA transcripts and protein for PG synthetases and PG receptors in BEND cells, which changed the internal milieu and physiological function of the uterus with possible effects on fertility after calving. These findings provide important information that will help for further investigation of associations between NEB and fertility in dairy cows during the non-lactation to lactation-transition period.
Collapse
Affiliation(s)
- Xueqiang Qin
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| | - Yang Guo
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110161, China.
| |
Collapse
|
5
|
Ye K, Jiang Q, Lu Y, Wen X, Yang J. Quantification of prostaglandins in rat uterus by ultra high-performance liquid chromatography/mass spectrometry based on derivatization with analogous reagents. J Chromatogr A 2020; 1618:460869. [DOI: 10.1016/j.chroma.2020.460869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/04/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
|
6
|
Dong J, Li J, Li J, Cui L, Meng X, Qu Y, Wang H. The proliferative effect of cortisol on bovine endometrial epithelial cells. Reprod Biol Endocrinol 2019; 17:97. [PMID: 31757215 PMCID: PMC6873581 DOI: 10.1186/s12958-019-0544-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 11/13/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Bovine endometrial epithelial cells (BEECs) undergo regular regeneration after calving. Elevated cortisol concentrations have been reported in postpartum cattle due to various stresses. However, the effects of the physiological level of cortisol on proliferation in BEECs have not been reported. The aim of this study was to investigate whether cortisol can influence the proliferation properties of BEECs and to clarify the possible underlying mechanism. METHODS BEECs were treated with different concentrations of cortisol (5, 15 and 30 ng/mL). The mRNA expression of various growth factors was detected by quantitative reverse transcription-polymerase chain reaction (qPCR), progression of the cell cycle in BEECs was measured using flow cytometric analysis, and the activation of the Wnt/β-catenin and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways was detected with Western blot and immunofluorescence. RESULTS Cortisol treatment resulted in upregulated mRNA levels of vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF); however, it had no influence on transforming growth factor-beta1 (TGF-β1). Cortisol (15 ng/mL) accelerated the cell cycle transition from the G0/G1 to the S phase. Cortisol upregulated the expression of β-catenin, c-Myc, and cyclinD1 and promoted the phosphorylation of PI3K and AKT. CONCLUSIONS These results demonstrated that cortisol may promote proliferation in BEECs by increasing the expression of some growth factors and activating the Wnt/β-catenin and PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Junsheng Dong
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Jun Li
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Jianji Li
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Luying Cui
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Xia Meng
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Yang Qu
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| | - Heng Wang
- grid.268415.cCollege of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
7
|
Grycmacher K, Boruszewska D, Sinderewicz E, Kowalczyk-Zięba I, Staszkiewicz-Chodor J, Woclawek-Potocka I. Prostaglandin F 2α (PGF 2α) production possibility and its receptors expression in the early- and late-cleaved preimplantation bovine embryos. BMC Vet Res 2019; 15:203. [PMID: 31200703 PMCID: PMC6570898 DOI: 10.1186/s12917-019-1939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/29/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Prostaglandin F2α (PGF2α) is an important component for the physiology of female reproductive processes. In the literature, the data pertaining to the synthesis and action of PGF2α in early embryonic bovine development are limited. In our study, we used the bovine in vitro culture model based on the time of first cleavage to determine the mRNA expression and immunolocalization of PGF2α synthase and its receptor in bovine embryos from the 2-cell stage to the hatched blastocyst stage. We also evaluated PGF2α production at 2, 5 and 7 days of in vitro culture. RESULTS We found a significantly higher proportion of blastocysts obtained from the early-cleaved embryos than from the late-cleaved embryos (37.7% vs. 26.1% respectively, P < 0.05). The PGFS mRNA expression was significantly higher in the late-cleaved group than in the early-cleaved group at the 2-, 4- and 16-cell stages (P < 0.05). For PTGFR, we observed that within the late-cleaved group, the mRNA abundance was significantly higher in embryos at the 2- and 16-cell stages than in embryos at the 4- and 8-cell stages (P < 0.05). We observed that PTGFR mRNA expression was significantly higher in the 2- and 16-cell embryos in the late-cleaved group than that in the early-cleaved group embryos (P < 0.05). Among the blastocysts, the PGFS and PTGFR expression levels showed a trend towards higher mRNA expression in the late-cleaved group than in the early-cleaved group. Analysis of PGF2α production showed that within the early-cleaved group, the content of PGF2α in the in vitro culture medium was significantly higher on day 7 than it was on day 2 (P < 0.05). CONCLUSIONS The mRNA expression levels of PGF2α synthase and its receptor depend on the developmental stage and the embryo quality. Analyses of PGFS and PTGFR expression in bovine blastocysts and of PGF2α embryo production suggest that prostaglandin F2α can act in an autocrine and paracrine manner in bovine in vitro-produced preimplantation embryos. Moreover, the tendency of PTGFR and PGFS mRNA expression to be upregulated in embryos with low developmental potential can indicate a compensation mechanism related to high PGFS and PTGFR mRNA expression levels in low-quality embryos.
Collapse
Affiliation(s)
- Katarzyna Grycmacher
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Emilia Sinderewicz
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Ilona Kowalczyk-Zięba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Joanna Staszkiewicz-Chodor
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747, Olsztyn, Poland.
| |
Collapse
|
8
|
Immune status during postpartum, peri-implantation and early pregnancy in cattle: An updated view. Anim Reprod Sci 2019; 206:1-10. [PMID: 31133358 DOI: 10.1016/j.anireprosci.2019.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/25/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023]
Abstract
Throughout the estrous cycle the mammalian endometrium undergoes morphological and functional changes that are essential for the establishment of pregnancy and proper ovarian and uterine functions. Among these changes, the most important are alterations in both inter- and intracellular signalling molecules, many of which modulate immune processes. In the endometrial tissue there are local innate (nonspecific) and adaptive (specific/acquired) response mechanisms which vary because of the endocrine status during the estrous cycle, pregnancy and postpartum period. Endometrial cells have responses that support the immune system by producing pro-inflammatory factors such as cytokines, sensors, effector molecules and chemokines. This response is important during gestation, pregnancy, and fetal growth, as well as in preventing infection, and immuno-rejection of the semi-allogeneic embryo. In dairy cows, both before and immediately after calving, there are marked changes in the values for hormonal and metabolic variables and the immune status is impaired. Thus, in several studies there has been assessment of the physiological and/or abnormal maternal immune changes and possible effects on dairy cow reproductive performance. The objective with this review is to summarize the novel information about the immune mechanisms involved during the postpartum period, subsequent peri-implantation period and pregnancy in dairy cows, and the possible effects on reproductive performance. This information provides for an enhanced understanding of the local and systemic immune responses associated with the metabolic and hormonal status of dairy cows, and alterations in the immune system of high producing cows and the possible effects on subsequent fertility.
Collapse
|