1
|
Elomda AM, Mehaisen GMK, Stino FKR, Saad MF, Ghaly MM, Partyka A, Abbas AO, Nassar FS. The characteristics of frozen-thawed rooster sperm using various intracellular cryoprotectants. Poult Sci 2024; 103:104190. [PMID: 39180781 PMCID: PMC11385514 DOI: 10.1016/j.psj.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/19/2024] [Accepted: 08/04/2024] [Indexed: 08/26/2024] Open
Abstract
Cryopreservation of rooster semen is essential for conserving genetic resources, genetic improvement, and increasing productivity. However, the nature of avian sperm presents a global issue in ensuring superior frozen semen for artificial insemination. Thus, the present study aimed to evaluate the impact of using dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), and ethylene glycol (EG) as cryoprotectants on post-thawed sperm motility, quality, antioxidant indicators, and fertilizing capacity. Twice a week, fresh semen ejaculates were collected from 15 adult roosters and immediately evaluated to constitute a pool from clean and qualified samples. The pooled semen was further diluted at a ratio of 1:2 (v/v) with an extender and then subjected to a freezing protocol in a liquid nitrogen vapor after adding a cryoprotectant solution containing 6% of either DMA, DMSO, or EG, respectively. After thawing, characteristics of sperm motion, quality, antioxidants, and fertilizing ability were evaluated and compared to fresh and cooled semen as controls. The results demonstrated that semen cooling negatively affected some parameters of sperm motility, quality, antioxidant biomarkers, and fertility. In comparison to the DMSO and EG groups, employing DMA considerably (P < 0.05) raised the percentages of sperm progressive motility, viability, plasma membrane intactness, and DNA integrity. The DMA group showed a significant increase in the catalase and glutathione reduced antioxidant enzyme activity and a reduction in nitric oxide and lipid peroxidation. After artificial insemination, the DMA and DMSO groups exhibited considerably (P < 0.05) better rates of hatchability and fertility than the EG group. It is concluded that freezing extenders containing 6% DMA is better than DMSO or EG to improve the post thaw semen quality and fertility in chickens.
Collapse
Affiliation(s)
- Ahmed M Elomda
- Department of Animal Biotechnology, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Gamal M K Mehaisen
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Farid K R Stino
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mohamed F Saad
- Department of Animal Biotechnology, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza, Egypt
| | - Mona M Ghaly
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Agnieszka Partyka
- Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.
| | - Ahmed O Abbas
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Farid S Nassar
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt; Department of Animal and Fish Production, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
2
|
da Silva MLM, Rufino JPF, Lima BDM, Mendonça MADF, Chaves FADL, de Oliveira RPM, Costa PDQ, Andrade PCM. Exploring Myrciaria dubia liquid extract as a potential semen extender for breeding roosters. Anim Reprod 2024; 21:e20240020. [PMID: 39371541 PMCID: PMC11452159 DOI: 10.1590/1984-3143-ar2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/29/2024] [Indexed: 10/08/2024] Open
Abstract
The current investigation aimed to explore the effects of Myrciaria dubia liquid extract (MDLE) as the primary component of an extender for breeder rooster semen over different periods at room temperature. Fifteen breeder roosters (40 weeks of age, average body weight of 2.05±0.12) with confirmed fertility were used. Employing a factorial design (3x4), the treatments consisted of semen in natura and two semen extenders (an experimental based on MDLE and a commercial) subjected to four periods at room temperature post-collection (5, 10, 15 and 20 minutes) with four replicates (tubes) each. All variables evaluated in this study yielding significant results (p<0.05). Analyzed individually, the experimental extender based on MDLE exhibited a linear reduction (p<0.05) in motility and vigor results, while it caused an increase in pH values and percentages of sperm defects evaluated. When compared with semen in natura and commercial extender, the efficiency of MDLE as a semen extender was inferior to that observed with the commercial extender and similar to the results observed with semen in natura. Nonetheless, the experimental extender based on MDLE yielded satisfactory results for up to 15 minutes of storage time. In conclusion, MDLE can be considered as an alternative for composing a roosters' semen extender, maintaining sperm characteristics within acceptable limits for up to 15 minutes at room temperature. However, this experimental extender demonstrated lower efficiency than the commercial extender in maintaining the sperm quality at room temperature across all periods tested.
Collapse
|
3
|
Yi X, Qiu Y, Tang X, Lei Y, Pan Y, Raza SHA, Althobaiti NA, Albalawi AE, Al Abdulmonem W, Makhlof RTM, Alsaad MA, Zhang Y, Sun X. Effect of Five Different Antioxidants on the Effectiveness of Goat Semen Cryopreservation. Reprod Sci 2024; 31:1958-1972. [PMID: 38267808 DOI: 10.1007/s43032-024-01452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
The effective combination of semen cryopreservation and artificial insemination has a positive effect on the conservation of germplasm resources, production and breeding, etc. However, during the process of semen cryopreservation, the sperm cells are very susceptible to different degrees of physical, chemical, and oxidative stress damage. Oxidative damage is the most important factor that reduces semen quality, which is affected by factors such as dilution equilibrium, change of osmotic pressure, cold shock, and enzyme action during the freezing-thawing process, which results in the aggregation of a large amount of reactive oxygen species (ROS) in sperm cells and affects the quality of semen after thawing. Therefore, the method of adding antioxidants to semen cryoprotective diluent is usually used to improve the effect of semen cryopreservation. The aim of this experiment was to investigate the effects of adding five antioxidants (GLP, Mito Q, NAC, SLS, and SDS) to semen cryoprotection diluent on the cryopreservation effect of semen from Saanen dairy goats. The optimal preservation concentrations were screened by detecting sperm viability, plasma membrane integrity, antioxidant capacity, and acrosomal enzyme activities after thawing, and the experimental results were as follows: the optimal concentrations of GLP, Mito Q, NAC, SLS, and SDS added to semen cryopreservation diluent at different concentrations were 0.8 mg/mL, 150 nmol/L, 0.6 mg/mL, 0.15 mg/ mL, 0.6 mg/mL, and 0.15 mg/mL. The optimal concentrations of the five antioxidants were added to the diluent and analyzed after 1 week of cryopreservation, and it was found that sperm viability, plasma membrane integrity, and mitochondrial activity were significantly enhanced after thawing compared with the control group (P < 0.05), and their antioxidant capacity was significantly enhanced (P < 0.05). Therefore, the addition of the above five antioxidants to goat sperm cryodilution solution had a better enhancement of sperm cryopreservation. This study provides a useful reference for exploring the improvement of goat semen cryoprotection effect.
Collapse
Affiliation(s)
- Xiaohua Yi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanbo Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoqin Tang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yichen Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yun Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities, Shaqra University, Al Quwaiiyah, 19257, Al Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Faculty of Science, Department of Biology, University of Tabuk, 47913, Tabuk, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah, 51452, Kingdom of Saudi Arabia
| | - Raafat T M Makhlof
- Department of Parasitology, Faculty of Medicine, Umm Al Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Mohammad A Alsaad
- College of Medicine, Umm AL Qura University, 21955, Makkah, Saudi Arabia
| | - Yu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
- College of Grassland Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Pardyak L, Liszewska E, Judycka S, Machcińska-Zielińska S, Karol H, Dietrich MA, Gojło E, Arent Z, Bilińska B, Rusco G, Iaffaldano N, Ciereszko A, Słowińska M. Liquid semen storage-induced alteration in the protein composition of turkey (Meleagris gallopavo) spermatozoa. Theriogenology 2024; 216:69-81. [PMID: 38159387 DOI: 10.1016/j.theriogenology.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Liquid storage of turkey semen without the loss of fertilizing ability is of practical interest to the poultry industry. However, fertility rates from liquid-stored turkey semen decline within a few hours. A clear cause of the decline in spermatozoa quality remains unidentified. Therefore, the purpose of the present study was to monitor the dynamics of proteomic changes in spermatozoa during 48 h of liquid storage by 2-dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization mass spectrometry. A total of 57 protein spots were differentially expressed between fresh and stored spermatozoa; 42 spots were more and 15 were less abundant after 48 h of semen storage. Raw proteomic data are available via ProteomeXchange with identifier PXD043050. The selected differentially expressed proteins (DEPs) were validated by western blotting and localized in specific spermatozoa structures by immunofluorescence, such as the head (acrosin and tubulin α), midpiece (acrosin, aconitate hydratase 2, and glycerol-3-phosphate dehydrogenase) and tail (tubulin α). Most of the DEPs that changed in response to liquid storage were related to flagellum-dependent cell motility, energy derivation through oxidation of organic compounds and induction of fertilization, suggesting the complexity of the processes leading to the decrease in stored semen quality. The damaging effect of liquid storage on spermatozoa flagellum manifested as more microtubule proteins, such as tubulins and tektins, most likely formed by posttranslational modifications, tubulin α relocation from the tail to the sperm head, which appeared after 48 h of semen storage, and decreases in fibrous shelf proteins at the same time. Motility could be affected by dysregulation of Ca2+-binding proteins and disturbances in energy metabolism in spermatozoa flagellum. Regarding sperm mitochondria, DEPs involved in energy derivation through the oxidation of organic compounds indicated disturbances in fatty acid beta oxidation and the tricarboxylic acid cycle as possible reasons for energy deficiency during liquid storage. Disturbances in acrosin and 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta may be involved in rapid declines in the fertility potential of stored turkey spermatozoa. These results showed the complexity of the processes leading to a decrease in stored semen quality and broadened knowledge of the detrimental effects of liquid storage on turkey spermatozoa physiology.
Collapse
Affiliation(s)
- Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248, Kraków, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Machcińska-Zielińska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748, Olsztyn, Poland
| | - Halina Karol
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewa Gojło
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Poland
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248, Kraków, Poland
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Kraków, Poland
| | - Giusy Rusco
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, CB, Italy
| | - Nicolaia Iaffaldano
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, CB, Italy
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
5
|
Suwimonteerabutr J, Ketkaew P, Netiprasert G, Khaopong C, Osiriphan B, Sriamornrat P, Nuntapaitoon M. Supplementing semen extenders with a combination of phosphorus and vitamin B12 Improves post-thawed cryopreserved rooster semen quality. Front Vet Sci 2023; 10:1301186. [PMID: 38173553 PMCID: PMC10761419 DOI: 10.3389/fvets.2023.1301186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Semen cryopreservation is an important technique for preserving the genetic material of numerous species. However, frozen semen is highly susceptible to sperm DNA damage and reduced motility, resulting in decreased fertility. The standard method for cryopreservation and several approaches have not been elucidated. This study aimed to determine the effects of supplementing rooster semen extender with a combination of phosphorus and vitamin B12 on cryopreserved semen quality. Semen was collected weekly via dorso-abdominal massage from 57 Burmese × Vietnam-crossbred Thai native roosters aged 1-3 years. In total, 139 semen samples were collected, pooled, and diluted to 200 million sperm per dose. The pooled sample was divided into six experimental groups: a control group (0.00%) diluted with modified Beltville Poultry Semen Extender (BPSE) and five treatment groups diluted with modified BPSE supplemented with phosphorus and vitamin B12 at concentrations 0.02, 0.04, 0.06, 0.08, and 0.10%, respectively. The semen samples were frozen and evaluated at 0, 15, and 30 min after thawing. Sperm kinematic parameters were determined using a computer-assisted sperm analysis system. Sperm quality was evaluated by measuring sperm viability, mitochondrial activity, acrosome integrity, and plasma membrane integrity. Statistical analyses were performed using a general linear mixed model (MIXED) in SAS. Factors in the statistical model were experimental groups, time after thawing, and interaction between experimental groups and time after thawing. Total and progressive motilities were greater in semen supplemented with 0.04% phosphorus and vitamin B12 compared with those in the control (p < 0.05). At 15 min post-thawing, VCL, VAP, and HPA in the 0.04% phosphorus and vitamin B12 supplementation group was greater than that in the control (p < 0.05). Phosphorus and vitamin B12 supplementation did not affect sperm kinematics at 0 and 30 min after thawing (p > 0.05). All the sperm parameters that were tested for the 0.04% phosphorus and vitamin B12 supplementation group in modified BPSE were the highest at all the timepoints after thawing. Thus, supplementing frozen semen extender with 0.04% phosphorus and vitamin B12 increased sperm motility, sperm kinematic parameters, and sperm quality.
Collapse
Affiliation(s)
- Junpen Suwimonteerabutr
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Punnapon Ketkaew
- Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals, Research Unit, Bangkok, Thailand
| |
Collapse
|
6
|
Sushadi PS, Kuwabara M, Maung EEW, Mohamad Mohtar MS, Sakamoto K, Selvaraj V, Asano A. Arresting calcium-regulated sperm metabolic dynamics enables prolonged fertility in poultry liquid semen storage. Sci Rep 2023; 13:21775. [PMID: 38066036 PMCID: PMC10709635 DOI: 10.1038/s41598-023-48550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The preservation of liquid semen is pivotal for both industrial livestock production and genetic management/conservation of species with sperm that are not highly cryo-tolerant. Nevertheless, with regard to poultry semen, even brief in vitro storage periods can lead to a notable decline in fertility, despite the in vivo capacity to maintain fertility for several weeks when within the hen's sperm storage tubules. For fertility in sperm, intracellular calcium ions ([Ca2+]i) play a key role in signaling towards modifying energy metabolism. While reducing [Ca2+]i has been found to enhance the preservation of sperm fertility in some mammals, the connection between semen fertility and calcium availability in avian sperm has received limited attention. In this study, we demonstrate that the use of extracellular and intracellular calcium chelators in liquid semen extenders, specifically EGTA and EGTA-AM, has distinct effects on prolonging the fertility of chicken sperm. These results were validated through in vivo fertility tests. Mechanistically, the effects observed were linked to coordination of mitochondrial metabolism and ATP catabolism. Despite both calcium chelators inducing hypoxia, they differentially regulated mitochondrial respiration and ATP accumulation. This regulation was closely linked to a bimodal control of dynein ATPase activity; a direct initial activation with reduction in [Ca2+]i, and subsequent suppression by cytoplasmic acidification caused by lactic acid. These findings not only contribute to advancing poultry liquid semen preservation techniques, but also elucidates biologically relevant mechanisms that may underlie storage within the female reproductive tract in birds.
Collapse
Affiliation(s)
- Pangda Sopha Sushadi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Maiko Kuwabara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ei Ei Win Maung
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Mohamad Shuib Mohamad Mohtar
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kouyo Sakamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
7
|
Tvrdá E, Petrovičová M, Ďuračka M, Benko F, Slanina T, Galovičová L, Kačániová M. Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders. Antibiotics (Basel) 2023; 12:1284. [PMID: 37627704 PMCID: PMC10451222 DOI: 10.3390/antibiotics12081284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Bacterial contamination of semen has become an important contributor to the reduced shelf life of insemination doses in the poultry industry, which is why antibiotics (ATBs) are an important component of semen extenders. Due to a global rise in antimicrobial resistance, the aim of this study was to assess the efficiency of selected commercially available semen extenders to prevent possible bacterial contamination of rooster ejaculates. Two selected extenders free from or containing 31.2 µg/mL kanamycin (KAN) were used to process semen samples from 63 healthy Lohmann Brown roosters. Phosphate-buffered saline without ATBs was used as a control. The extended samples were stored at 4 °C for 24 h. Sperm motility, viability, mitochondrial activity, DNA integrity and the oxidative profile of each extended sample were assessed following 2 h and 24 h of storage. Furthermore, selective media were used to quantify the bacterial load and specific bacterial species were identified with matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicate that semen extenders enriched with KAN ensured a significantly higher preservation of sperm quality in comparison to their KAN-free counterparts. Bacterial load was significantly decreased in diluents supplemented with ATBs (p ≤ 0.001); however, KAN alone was not effective enough to eradicate all bacteria since several Escherichia coli, Enterococcus faecalis, Enterococcus faecium and Micrococcus luteus were retrieved from samples extended in KAN-supplemented commercial extenders. As such, we may suggest that more focus should be devoted to the selection of an optimal combination and dose of antibiotics for poultry extenders, which should be accompanied by a more frequent bacteriological screening of native as well as extended poultry semen.
Collapse
Affiliation(s)
- Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Michaela Petrovičová
- Department of Neuroscience, Second Faculty of Medicine (2. LF UK), Charles University, V Úvalu 84, 15006 Prague, Czech Republic;
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia;
| | - Filip Benko
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Lucia Galovičová
- Institute of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (M.K.)
| | - Miroslava Kačániová
- Institute of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (L.G.); (M.K.)
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Cwiklinskiej 1, 35-601 Rzeszow, Poland
| |
Collapse
|
8
|
Win Maung EE, Sushadi PS, Asano A. Polymyxin B neutralizes endotoxin and improves the quality of chicken semen during liquid storage. Theriogenology 2023; 198:107-113. [PMID: 36577162 DOI: 10.1016/j.theriogenology.2022.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Despite its importance in gamete utilization for livestock production, poultry semen cryopreservation in a liquid state, is limited in the poultry industry due to a significant decline in sperm viability and functionality during liquid storage. Lipopolysaccharide (LPS) is released from gram-negative bacteria and impairs sperm function in mammals. Using exogeneous LPS, we show this endotoxin compromises sperm viability and function, including motility and penetrability to the inner peri-vitelline layer (IPVL) during liquid storage at 4 °C. This outcome was supported by LPS quantification showing an extreme increase in the first 24 h of storage. Polymyxin B (PMB) is an LPS neutralizer previously shown to improve fertility in boar semen, thus we explored the effect of PMB on chicken semen quality during liquid storage. Sperm viability and penetrability tests showed that PMB completely abolishes the deleterious effect by LPS. However, co-addition of PMB with penicillin G (PenG), an antibiotic against gram positive bacteria, reduces IPVL-penetrability while improving sperm viability post-storage. Furthermore, artificial insemination trials showed that PMB addition improves semen fertility at the post liquid storage. Our results show that chicken semen quality during liquid storage is impaired by bacterial LPS, but improved by PMB addition due to cancelled endotoxic effects, which offers a new approach for prolonged fertility of poultry semen storage in a liquid state.
Collapse
Affiliation(s)
- Ei Ei Win Maung
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Pangda Sopha Sushadi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
9
|
Janosikova M, Petricakova K, Ptacek M, Savvulidi FG, Rychtarova J, Fulka J. New approaches for long-term conservation of rooster spermatozoa. Poult Sci 2022; 102:102386. [PMID: 36599200 PMCID: PMC9817176 DOI: 10.1016/j.psj.2022.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In contrast to the livestock industry, sperm cryopreservation has not yet been successfully established in the poultry industry. This is because poultry sperm cells have a unique shape and membrane fluidity, differing from those of livestock sperm. The objective of this review is to discuss the cellular and molecular characteristics of rooster spermatozoa as a cause for their generally low freezability. Furthermore, here, we discuss novel developments in the field of semen extenders, cryoprotectants, and freezing processes, all with the purpose of increasing the potential of rooster sperm cryopreservation. Currently, it is very important to improve cryopreservation of rooster sperm on a global scale for the protection of gene resources due to the incidence of epidemics such as avian influenza.
Collapse
Affiliation(s)
- Martina Janosikova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic,Corresponding author:
| | - Kristyna Petricakova
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Martin Ptacek
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Praha, Suchdol, Czech Republic
| | - Jana Rychtarova
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| | - Josef Fulka
- Department of Biology of Reproduction, Institute of Animal Science, 104 00 Praha, Uhříněves, Czech Republic
| |
Collapse
|
10
|
Petričáková K, Janošíková M, Ptáček M, Zita L, Savvulidi FG, Partyka A. Comparison of Commercial Poultry Semen Extenders Modified for Cryopreservation Procedure in the Genetic Resource Program of Czech Golden Spotted Hen. Animals (Basel) 2022; 12:2886. [PMID: 36290271 PMCID: PMC9598354 DOI: 10.3390/ani12202886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 10/04/2024] Open
Abstract
Spermatozoa cryoconservation represents an important strategy for partial in vitro or rescue programs designed for threatened livestock populations. The procedure for the semen cryopreservation of the Czech Golden Spotted Hen was proposed due to the lower fertilization rate of poultry semen compared to mammalian species. The aim of this study was to compare commercial extenders designed for liquid storage preservation with the use of a predefined cryoprotectant, and, thus, to propose an important tool for the procedure of the semen cryopreservation of the Czech Golden Spotted Hen. Ejaculates were sampled from four roosters during five semen collection days. The samples were frozen in Poultry media®, Raptac® and NeXcell® extenders supplemented with a 9% N-methylacetamide (NMA) cryoprotectant. Sperm parameters of the total motility (MOT; %), plasma membrane and acrosome intactness (PAI; %), plasma membrane damage (%), acrosome damage (%) and cells with plasma membrane and acrosome damage (%) were assessed using a mobile mCASA analyzer and flow cytometer after the cryopreservation of the insemination doses (IDs). For Poultry media® (PAI = 51.11%; MOT = 23.58%) and Raptac® (PAI = 52.04%; MOT = 23.13%) extenders with the addition of an NMA cryoprotectant, the comparable results were detected after thawing. For NexCell® media, the results were poor (PAI = 7.07%; MOT = 3.83%). Our results indicated two extenders suitable for the cryopreservation procedure, with the applied modification.
Collapse
Affiliation(s)
- Kristýna Petričáková
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Martina Janošíková
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Martin Ptáček
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Lukáš Zita
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Filipp Georgijevič Savvulidi
- Department of Animal Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha, Czech Republic
| | - Agnieszka Partyka
- Faculty of Veterinary Medicine, Department of Reproduction and Clinic of Farm Animals, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 49, 50-366 Wroclaw, Poland
| |
Collapse
|
11
|
The Effect of Semen Cryopreservation Process on Metabolomic Profiles of Turkey Sperm as Assessed by NMR Analysis. BIOLOGY 2022; 11:biology11050642. [PMID: 35625370 PMCID: PMC9138281 DOI: 10.3390/biology11050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Semen cryopreservation represents the main tool for preservation of biodiversity; however, in avian species, the freezing−thawing process results in a sharp reduction in sperm quality and consequently fertility. Thus, to gain a first insight into the molecular basis of the cryopreservation of turkey sperm, the NMR-assessed metabolite profiles of fresh and frozen−thawed samples were herein investigated and compared with sperm qualitative parameters. Cryopreservation decreased the sperm viability, mobility, and osmotic tolerance of frozen−thawed samples. This decrease in sperm quality was associated with the variation in the levels of some metabolites in both aqueous and lipid sperm extracts, as investigated by NMR analysis. Higher amounts of the amino acids Ala, Ile, Leu, Phe, Tyr, and Val were found in fresh than in frozen−thawed sperm; on the contrary, Gly content increased after cryopreservation. A positive correlation (p < 0.01) between the amino acid levels and all qualitative parameters was found, except in the case of Gly, the levels of which were negatively correlated (p < 0.01) with sperm quality. Other water-soluble compounds, namely formate, lactate, AMP, creatine, and carnitine, turned out to be present at higher concentrations in fresh sperm, whereas cryopreserved samples showed increased levels of citrate and acetyl-carnitine. Frozen−thawed sperm also showed decreases in cholesterol and polyunsaturated fatty acids, whereas saturated fatty acids were found to be higher in cryopreserved than in fresh sperm. Interestingly, lactate, carnitine (p < 0.01), AMP, creatine, cholesterol, and phosphatidylcholine (p < 0.05) levels were positively correlated with all sperm quality parameters, whereas citrate (p < 0.01), fumarate, acetyl-carnitine, and saturated fatty acids (p < 0.05) showed negative correlations. A detailed discussion aimed at explaining these correlations in the sperm cell context is provided, returning a clearer scenario of metabolic changes occurring in turkey sperm cryopreservation.
Collapse
|