1
|
Ma S, Wang H, Li W, Yan Z, Luo X, Lu P. The correlation between the expression of ATF4 and procalcitonin combined with the detection of RET mutation and the pathological stage and clinical prognosis of medullary thyroid carcinoma. Can J Physiol Pharmacol 2021; 100:19-25. [PMID: 34822305 DOI: 10.1139/cjpp-2021-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explore the correlation between the activating transcription factor 4 (ATF4) and procalcitonin (PCT) expressions combined with RET mutation and the pathological staging and clinical prognosis of sporadic medullary thyroid carcinoma (SMTC). Fifty cases (tumor tissue) of SMTC diagnosed by clinicopathology were collected and the patients with nodular goiter were selected as normal control. The RET mutation site was analyzed by detection kit and expressions of PCT and ATF4 in SMTC were analyzed by Western blot and immunohistochemistry. Multiple linear regression was used to analyze the correlation of risk factors (PCT or ATF4 expression, RET mutation, tumor differentiation, SMTC stage, lymphatic metastasis) for 5-year recurrence and survival of SMTC. The ATF4 and PCT expressions were significantly decreased and increased, respectively, with the increase of the SMTC stage. The most frequent mutation of RET gene in cancer tissue was M 22458A in exon 16. The ATF4 and PCT expressions, as well as RET mutation, were significantly associated with a 5-year recurrence, while the ATF4 expression was significantly related to better 5-year survival. ATF4 and PCT expressions combined with RET mutation are related to the clinical prognosis of SMTC and can predict SMTC staging.
Collapse
Affiliation(s)
- Shihong Ma
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Hui Wang
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Wanling Li
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Zhe Yan
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| | - Pinxiang Lu
- Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China.,Department of General Surgery, Shanghai Xuhui District Central Hospital, Shanghai 200031, China
| |
Collapse
|
2
|
Dong N, Feng J, Xie J, Tian X, Li M, Liu P, Zhao Y, Wei C, Gao Y, Li B, Qiu Y, Yan X. Co-exposure to Arsenic-Fluoride Results in Endoplasmic Reticulum Stress-Induced Apoptosis Through the PERK Signaling Pathway in the Liver of Offspring Rats. Biol Trace Elem Res 2020; 197:192-201. [PMID: 31768761 DOI: 10.1007/s12011-019-01975-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
Abstract
Arsenic and fluoride are two of the major groundwater pollutants. To better understand the liver damage induced during development, 24 male rats exposed to fluoride (F), arsenic (As), and their combination (As + F) from the prenatal stage to 90 days after birth were selected for analysis. Histopathological results showed vacuolar degeneration in the As and As + F groups. Compared to those in the control group, aspartate aminotransferase and alanine aminotransferase levels were significantly increased in the combined group. Catalase activity significantly decreased in the treatment groups compared to that in the controls, and the malondialdehyde content in the As and As + F groups was significantly higher than those in the control group. We further evaluated whether this damage is linked to endoplasmic reticulum stress and its related pathways. The mRNA expression levels of PERK, GRP78, EIF2α, ATF4, and CHOP as well as the protein levels of CHOP was significantly increased in the As + F group compared with the control group. These results demonstrate that As, F, and their combination could lead to liver function damage and reduce the antioxidant capacity of the liver to cause oxidative damage to tissues. Moreover, the combination of As and F triggers endoplasmic reticulum stress-induced apoptosis in liver cells by activating the PERK pathway in the unfolded protein response. As and F seem to have different independent effects, whereas their combination resulted in more severe effects overall.
Collapse
Affiliation(s)
- Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Cailing Wei
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
3
|
Cole DW, Svider PF, Shenouda KG, Lee PB, Yoo NG, McLeod TM, Mutchnick SA, Yoo GH, Kaufman RJ, Callaghan MU, Fribley AM. Targeting the unfolded protein response in head and neck and oral cavity cancers. Exp Cell Res 2019; 382:111386. [PMID: 31075256 DOI: 10.1016/j.yexcr.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Many FDA-approved anti-cancer therapies, targeted toward a wide array of molecular targets and signaling networks, have been demonstrated to activate the unfolded protein response (UPR). Despite a critical role for UPR signaling in the apoptotic execution of cancer cells by many of these compounds, the authors are currently unaware of any instance whereby a cancer drug was developed with the UPR as the intended target. With the essential role of the UPR as a driving force in the genesis and maintenance of the malignant phenotype, a great number of pre-clinical studies have surged into the medical literature describing the ability of dozens of compounds to induce UPR signaling in a myriad of cancer models. The focus of the current work is to review the literature and explore the role of the UPR as a mediator of chemotherapy-induced cell death in squamous cell carcinomas of the head and neck (HNSCC) and oral cavity (OCSCC), with an emphasis on preclinical studies.
Collapse
Affiliation(s)
- Daniel W Cole
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Peter F Svider
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kerolos G Shenouda
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Paul B Lee
- Oakland University William Beaumont School of Medicine, Rochester Hills, Michigan, USA
| | - Nicholas G Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Thomas M McLeod
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sean A Mutchnick
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - George H Yoo
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael U Callaghan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA
| | - Andrew M Fribley
- Department of Otolaryngology - Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, USA; Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA; Children's Hospital of Michigan, Detroit Medical Center, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
4
|
Zhao C, Wang M, Liu Y, Liang Y, Han L, Chen C. Effects of the combination of As 2O 3 and AZT on proliferation inhibition and apoptosis induction of hepatoma HepG2 cells following silencing of Egr-1. Onco Targets Ther 2018; 11:3293-3301. [PMID: 29910624 PMCID: PMC5987793 DOI: 10.2147/ott.s155169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Context Previous studies have demonstrated that 3′-azido-3′-deoxythymidine (AZT) and arsenic trioxide (As2O3), traditional chemotherapy agents, can synergically inhibit the growth of hepatocellular carcinoma cells. However, the molecular mechanisms underlying As2O3 and AZT anti-hepatoma activity are unknown. Objective This study aimed to investigate the role of early growth response protein 1 (Egr-1) in the process of As2O3 combined with AZT inhibiting proliferation and inducing apoptosis of human hepatocellular carcinoma HepG2 cells, and explore the possible mechanism. Materials and methods The expression of Egr-1 was silenced using siRNA, and then HepG2 cells were treated with As2O3 (2 μM) and AZT (20 μM). The rates of cell inhibition and apoptosis were determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) method and flow cytometry, respectively. The mRNA and protein expression of p53, caspase-3, and Egr-1 were detected by real-time quantitative polymerase chain reaction and Western blotting, respectively. Results The inhibitory rate of As2O3 (2 μM) combined with AZT (20 μM) on proliferation of HepG2 cells was significantly higher than that of As2O3 alone. The combination index (CI) values were 0.2<CI<0.4, showing strong synergic effect. After silencing Egr-1, the proliferation inhibition and proapoptotic ability of As2O3 combined with AZT on HepG2 cells were decreased, and the CI value was greater than 1, showing antagonistic effect. In addition, the expression of p53 and caspase-3 mRNA/protein was also significantly decreased. Conclusion The present results show that AZT could increase the sensitization of As2O3 for inhibiting proliferation and promoting apoptosis of HepG2 cells through regulating the expression of Egr-1, which may control the expression of p53 and caspase-3.
Collapse
Affiliation(s)
- Chuan Zhao
- Department of Clinical Laboratory Diagnostics and Molecular Biology, Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Mei Wang
- Department of Clinical Laboratory Diagnostics and Molecular Biology, Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnostics and Molecular Biology, Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongjuan Liang
- Department of Clinical Laboratory Diagnostics and Molecular Biology, Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Li Han
- Emergency Research Institution, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Che Chen
- Department of Clinical Laboratory Diagnostics and Molecular Biology, Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
5
|
Li J, Tang G, Qin W, Yang R, Ma R, Ma B, Wei J, Lv H, Jiang Y. Toxic effects of arsenic trioxide on Echinococcus granulosus protoscoleces through ROS production, and Ca2+-ER stress-dependent apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50:579-585. [PMID: 29684096 DOI: 10.1093/abbs/gmy041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 11/14/2022] Open
Abstract
Cystic echinococcosis is a severe parasitic disease that commonly affects the liver and causes abscesses or rupture into the surrounding tissues, leading to multiple complications, such as shock, severe abdominal pain, and post-treatment abscess recurrence. Currently, there are no efficient measures to prevent these complications. We previously confirmed that arsenic trioxide (As2O3) exhibited in vitro cytotoxicity against Echinococcus granulosus protoscoleces. In the present study, we aimed to explore the mechanism of As2O3-induced E. granulosus protoscoleces apoptosis. After exposing E. granulosus protoscoleces to 0, 4, 6, and 8 μM As2O3, reactive oxygen species (ROS) level was detected by fluorescence microscopy; superoxide dismutase (SOD), and caspase-3 activities were measured; intracellular Ca2+ was detected by flow cytometry; GRP-78 and caspase-12 protein levels were measured by western blot analysis. Our results showed that the expression of caspase-3 was gradually increased and the expression of SOD was gradually decreased in As2O3-treated groups of protoscoleces. Simultaneously, fluorescence microscopy and flow cytometry showed that the ROS level and the intracellular Ca2+ level were increased in a time- and dose-dependent manner. Western blot analysis showed that the expressions of GRP-78 and caspase-12 were higher in As2O3-treated groups than in the control group. These results suggest that As2O3-induced apoptosis in E. granulosus protoscoleces is related to elevation of ROS level, disruption of intracellular Ca2+ homeostasis, and endoplasmic reticulum stress. These mechanisms can be targeted in the future by safer and more effective drugs to prevent recurrence of cystic echinococcosis.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Guangyao Tang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Wenjuan Qin
- Department of Ultrasound Diagnosis, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Rentan Yang
- The First People's Hospital of Jining City, Jining 272000, China
| | - Rongji Ma
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Bin Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jianfeng Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Hailong Lv
- Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu 610031, China
| | - Yufeng Jiang
- Department of Histology and Embryology, School of Medicine, Shihezi University, Shihezi 832000, China
- School of Preclinical Medicine, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
6
|
Gao H, Dong H, Li G, Jin H. Combined treatment with acetazolamide and cisplatin enhances chemosensitivity in laryngeal carcinoma Hep-2 cells. Oncol Lett 2018; 15:9299-9306. [PMID: 29928333 PMCID: PMC6004654 DOI: 10.3892/ol.2018.8529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to determine whether acetazolamide (Ace) treatment enhances the chemosensitivity of Hep-2 laryngeal cells to cisplatin (Cis). At the logarithmic growth phase, Hep-2 cells were treated with Ace, Cis or both, and cell viability was detected using an MTT assay. The degree of apoptosis was detected using flow cytometry. Expression levels of apoptosis-related proteins, including BCL2 apoptosis regulator (bcl-2), BCL2 associated X (bax) and caspase-3, and of proliferation-related proteins, including proliferating cell nuclear antigen (PCNA) and tumor protein p53 (P53), were detected using western blotting. mRNA expression levels of aquaporin-1 (AQP1) in each group were detected using reverse transcription-polymerase chain reaction. Compared with the drugs used alone, treatment with both Ace and Cis displayed synergistic effects on the growth inhibition and apoptosis induction in Hep-2 cells. The Ace/Cis combination decreased the expression of PCNA but increased the expression of p53. In addition, the combination treatment decreased the ratio of bcl-2/bax and increased the expression of caspase-3, as well as decreased the expression of AQP1. These results demonstrated that the combined use of Ace and Cis enhanced the chemosensitivity of laryngeal carcinoma cells.
Collapse
Affiliation(s)
- Hong Gao
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| | - Hai Dong
- Tonghua Mining Group Limited Liability Company General Hospital, Baishan, Jilin 134300, P.R. China
| | - Guijun Li
- Tonghua Mining Group Limited Liability Company General Hospital, Baishan, Jilin 134300, P.R. China
| | - Hui Jin
- Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
7
|
Wu W, Yao X, Jiang L, Zhang Q, Bai J, Qiu T, Yang L, Gao N, Yang G, Liu X, Chen M, Sun X. Pancreatic islet-autonomous effect of arsenic on insulin secretion through endoplasmic reticulum stress-autophagy pathway. Food Chem Toxicol 2018; 111:19-26. [PMID: 29111283 DOI: 10.1016/j.fct.2017.10.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/26/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022]
Abstract
Inorganic arsenic is a worldwide environmental pollutant. Arsenic's relationship with the incidence of diabetes arouses concerns on its etiological mechanism. In this study, the glucose-stimulated insulin secretion (GSIS) from isolated pancreatic islets of As2O3-treated mice was significantly lower than that of control mice. It indicated that the effect of As2O3-inhibited GSIS was pancreatic islet-autonomous. The level of phospho-PERK (p-PERK), a biomarker of endoplasmic reticulum (ER) stress, in pancreas of As2O3-treated mice was increased significantly. After treatment with NaAsO2, the p-PERK level in INS-1 rat pancreatic β- cells was increased correspondingly. After treatment with PERK inhibitor, the GSIS from isolated pancreatic islets of As2O3-treated mice was recovered. Arsenic induced autophagy in pancreatic islets, as evidenced by elevated LC3-II level and depressed P62 level in vivo and in vitro. In NaAsO2-treated INS-1 cells, the initiation of ER stress preceded the stimulation of autophagy, which was a key factor controlling pancreatic β cell function. Furthermore, knockdown of PERK attenuated NaAsO2-induced autophagy in INS-1 cells. These data indicated that arsenic impaired β cell function through ER stress-autophagy pathway. The present study will provide new mechanistic insights into arsenic-related diabetes.
Collapse
Affiliation(s)
- Wei Wu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Liaoning Anti-Degenerative Diseases Natural Products Engineering Research Center, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Qiaoting Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Jie Bai
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Lei Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Ni Gao
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Guang Yang
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiaofang Liu
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Min Chen
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, Dalian Medical University, 9 W Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
8
|
Sun H, Yang Y, Shao H, Sun W, Gu M, Wang H, Jiang L, Qu L, Sun D, Gao Y. Sodium Arsenite-Induced Learning and Memory Impairment Is Associated with Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Hippocampus. Front Mol Neurosci 2017; 10:286. [PMID: 28936164 PMCID: PMC5594089 DOI: 10.3389/fnmol.2017.00286] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic arsenic exposure has been associated to cognitive deficits. However, mechanisms remain unknown. The present study investigated the neurotoxic effects of sodium arsenite in drinking water over different dosages and time periods. Based on results from the Morris water maze (MWM) and morphological analysis, an exposure to sodium arsenite could induce neuronal damage in the hippocampus, reduce learning ability, and accelerate memory impairment. Sodium arsenite significantly increased homocysteine levels in serum and brain. Moreover, sodium arsenite triggered unfolded protein response (UPR), leading to the phosphorylation of RNA-regulated protein kinase-like ER kinase (PERK) and eukaryotic translation initiation factor 2 subunit α (eIF2α), and the induction of activating transcription factor 4 (ATF4). Arsenite exposure also stimulated the expression of the endoplasmic reticulum (ER) stress markers, glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and the cleavage of caspase-12. Furthermore, exposure to arsenite enhanced apoptosis as demonstrated by expression of caspase-3 and TUNEL assay in the hippocampus. The results suggest that exposure to arsenite can significantly decrease learning ability and accelerate memory impairment. Potential mechanisms are related to enhancement of homocysteine and ER stress-induced apoptosis in the hippocampus.
Collapse
Affiliation(s)
- Hongna Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanmei Yang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hanwen Shao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Weiwei Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Muyu Gu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Hui Wang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lixin Jiang
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Lisha Qu
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Dianjun Sun
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China
| | - Yanhui Gao
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical UniversityHarbin, China.,Institution of Environmentally Related Diseases, Harbin Medical UniversityHarbin, China
| |
Collapse
|
9
|
Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget 2017; 7:18736-49. [PMID: 26934650 PMCID: PMC4951325 DOI: 10.18632/oncotarget.7702] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023] Open
Abstract
Survival of cancer cells relies on the unfolded protein response (UPR) to resist stress triggered by the accumulation of misfolded proteins within the endoplasmic reticulum (ER). The IRE1α-XBP1 pathway, a key branch of the UPR, is activated in many cancers. Here, we show that the expression of both mature and spliced forms of XBP1 (XBP1s) is up-regulated in acute myeloid leukemia (AML) cell lines and AML patient samples. IRE1α RNase inhibitors [MKC-3946, 2-hydroxy-1-naphthaldehyde (HNA), STF-083010 and toyocamycin] blocked XBP1 mRNA splicing and exhibited cytotoxicity against AML cells. IRE1α inhibition induced caspase-dependent apoptosis and G1 cell cycle arrest at least partially by regulation of Bcl-2 family proteins, G1 phase controlling proteins (p21cip1, p27kip1 and cyclin D1), as well as chaperone proteins. Xbp1 deleted murine bone marrow cells were resistant to growth inhibition by IRE1α inhibitors. Combination of HNA with either bortezomib or AS2O3 was synergistic in AML cytotoxicity associated with induction of p-JNK and reduction of p-PI3K and p-MAPK. Inhibition of IRE1α RNase activity increased expression of many miRs in AML cells including miR-34a. Inhibition of miR-34a conferred cellular resistance to HNA. Our results strongly suggest that targeting IRE1α driven pro-survival pathways represent an exciting therapeutic approach for the treatment of AML.
Collapse
|
10
|
Wang H, Liu Z, Gou Y, Qin Y, Xu Y, Liu J, Wu JZ. Apoptosis and necrosis induced by novel realgar quantum dots in human endometrial cancer cells via endoplasmic reticulum stress signaling pathway. Int J Nanomedicine 2015; 10:5505-12. [PMID: 26357474 PMCID: PMC4560518 DOI: 10.2147/ijn.s83838] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Realgar (AS4S4) has been used in traditional medicines for malignancy, but the poor water solubility is still a major hindrance to its clinical use. Realgar quantum dots (RQDs) were therefore synthesized with improved water solubility and bioavailability. Human endometrial cancer JEC cells were exposed to various concentrations of RQDs to evaluate their anticancer effects and to explore mechanisms by the MTT assay, transmission electron microscopy (TEM), flow cytometry, real-time reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. Results revealed that the highest photoluminescence quantum yield of the prepared RQDs was up to approximately 70%, with the average size of 5.48 nm. RQDs induced antipro-liferative activity against JEC cells in a concentration-dependent manner. In light microscopy and TEM examinations, RQDs induced vacuolization and endoplasmic reticulum (ER) dilation in JEC cells in a concentration-dependent manner. ER stress by RQDs were further confirmed by increased expression of GADD153 and GRP78 at both mRNA and protein levels. ER stress further led to JEC cell apoptosis and necrosis, as evidenced by flow cytometry and mitochondrial membrane potential detection. Our findings demonstrated that the newly synthesized RQDs were effective against human endometrial cancer cells. The underlying mechanism appears to be, at least partly, due to ER stress leading to apoptotic cell death and necrosis.
Collapse
Affiliation(s)
- Huan Wang
- Research Center for Medicine and Biology, Zunyi Medical College, Zunyi, People's Republic of China ; Guizhou Provincial College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical College, Zunyi, People's Republic of China ; Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Zhengyun Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Ying Gou
- Department of Microbiolog, Zunyi Medical College, Zunyi, People's Republic of China y
| | - Yu Qin
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Yaze Xu
- Pharmacy School, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi, People's Republic of China
| | - Jin-Zhu Wu
- Department of Chemistry, School of Science, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|