1
|
Li MD, Chen LH, Xiang HX, Jiang YL, Lv BB, Xu DX, Zhao H, Fu L. Benzo[a]pyrene evokes epithelial-mesenchymal transition and pulmonary fibrosis through AhR-mediated Nrf2-p62 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134560. [PMID: 38759404 DOI: 10.1016/j.jhazmat.2024.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Li-Hong Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui-Xian Xiang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
3
|
Environmental Exposures and Lung Aging: Molecular Mechanisms and Implications for Improving Respiratory Health. Curr Environ Health Rep 2021; 8:281-293. [PMID: 34735706 PMCID: PMC8567983 DOI: 10.1007/s40572-021-00328-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Inhaled environmental exposures cause over 12 million deaths per year worldwide. Despite localized efforts to reduce environmental exposures, tobacco smoking and air pollution remain the urgent public health challenges that are contributing to the growing prevalence of respiratory diseases. The purpose of this review is to describe the mechanisms through which inhaled environmental exposures accelerate lung aging and cause overt lung disease. RECENT FINDINGS Environmental exposures related to fossil fuel and tobacco combustion and occupational exposures related to silica and coal mining generate oxidative stress and inflammation in the lungs. Sustained oxidative stress causes DNA damage, epigenetic instability, mitochondrial dysfunction, and cell cycle arrest in key progenitor cells in the lung. As a result, critical repair mechanisms are impaired, leading to premature destruction of the lung parenchyma. Inhaled environmental exposures accelerate lung aging by injuring the lungs and damaging the cells responsible for wound healing. Interventions that minimize exposure to noxious antigens are critical to improve lung health, and novel research is required to expand our knowledge of therapies that may slow or prevent premature lung aging.
Collapse
|
4
|
Sahoo MM. Significance between air pollutants, meteorological factors, and COVID-19 infections: probable evidences in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40474-40495. [PMID: 33638789 PMCID: PMC7912974 DOI: 10.1007/s11356-021-12709-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/25/2021] [Indexed: 04/15/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease represents the causative agent with a potentially fatal risk which is having great global human health concern. Earlier studies suggested that air pollutants and meteorological factors were considered as the risk factors for acute respiratory infection, which carries harmful pathogens and affects the immunity. The study intended to explore the correlation between air pollutants, meteorological factors, and the daily reported infected cases caused by novel coronavirus in India. The daily positive infected cases, concentrations of air pollutants, and meteorological factors in 288 districts were collected from January 30, 2020, to April 23, 2020, in India. Spearman's correlation and generalized additive model (GAM) were applied to investigate the correlations of four air pollutants (PM2.5, PM10, NO2, and SO2) and eight meteorological factors (Temp, DTR, RH, AH, AP, RF, WS, and WD) with COVID-19-infected cases. The study indicated that a 10 μg/m3 increase during (Lag0-14) in PM2.5, PM10, and NO2 resulted in 2.21% (95%CI: 1.13 to 3.29), 2.67% (95% CI: 0.33 to 5.01), and 4.56 (95% CI: 2.22 to 6.90) increase in daily counts of Coronavirus Disease 2019 (COVID 19)-infected cases respectively. However, only 1 unit increase in meteorological factor levels in case of daily mean temperature and DTR during (Lag0-14) associated with 3.78% (95%CI: 1.81 to 5.75) and 1.82% (95% CI: -1.74 to 5.38) rise of COVID-19-infected cases respectively. In addition, SO2 and relative humidity were negatively associated with COVID-19-infected cases at Lag0-14 with decrease of 7.23% (95% CI: -10.99 to -3.47) and 1.11% (95% CI: -3.45 to 1.23) for SO2 and for relative humidity respectively. The study recommended that there are significant correlations between air pollutants and meteorological factors with COVID-19-infected cases, which substantially explain the effect of national lockdown and suggested positive implications for control and prevention of the spread of SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Mrunmayee Manjari Sahoo
- Domain of Environmental and Water Resources Engg, SCE, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
5
|
Miyashita L, Foley G, Gill I, Gillmore G, Grigg J, Wertheim D. Confocal microscopy 3D imaging of diesel particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:30384-30389. [PMID: 33890224 PMCID: PMC8222012 DOI: 10.1007/s11356-021-14025-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/16/2021] [Indexed: 05/06/2023]
Abstract
To date, diesel particulate matter (DPM) has been described as aggregates of spherule particles with a smooth appearing surface. We have used a new colour confocal microscope imaging method to study the 3D shape of diesel particulate matter (DPM); we observed that the particles can have sharp jagged appearing edges and consistent with these findings, 2D light microscopy demonstrated that DPM adheres to human lung epithelial cells. Importantly, the slide preparation and confocal microscopy method applied avoids possible alteration to the particles' surfaces and enables colour 3D visualisation of the particles. From twenty-one PM10 particles, the mean (standard deviation) major axis length was 5.6 (2.25) μm with corresponding values for the minor axis length of 3.8 (1.25) μm. These new findings may help explain why air pollution particulate matter (PM) has the ability to infiltrate human airway cells, potentially leading to respiratory tract, cardiovascular and neurological disease.
Collapse
Affiliation(s)
- Lisa Miyashita
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Gary Foley
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - Ian Gill
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK
| | - Gavin Gillmore
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK
- School of Science, Bath Spa University, Bath, UK
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, UK
| | - David Wertheim
- Faculty of Science, Engineering and Computing, Kingston University, Surrey, KT1 2EE, UK.
| |
Collapse
|
6
|
Shull JG, Pay MT, Lara Compte C, Olid M, Bermudo G, Portillo K, Sellarés J, Balcells E, Vicens-Zygmunt V, Planas-Cerezales L, Badenes-Bonet D, Blavia R, Rivera-Ortega P, Moreno A, Sans J, Perich D, Barril S, Esteban L, Garcia-Bellmunt L, Esplugas J, Suarez-Cuartin G, Bordas-Martinez J, Castillo D, Jolis R, Salvador I, Eizaguirre Anton S, Villar A, Robles-Perez A, Cardona MJ, Barbeta E, Silveira MG, Guevara C, Dorca J, Rosell A, Luburich P, Llatjós R, Jorba O, Molina-Molina M. Mapping IPF helps identify geographic regions at higher risk for disease development and potential triggers. Respirology 2020; 26:352-359. [PMID: 33167075 DOI: 10.1111/resp.13973] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/30/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE The relationship between IPF development and environmental factors has not been completely elucidated. Analysing geographic regions of idiopathic pulmonary fibrosis (IPF) cases could help identify those areas with higher aggregation and investigate potential triggers. We hypothesize that cross-analysing location of IPF cases and areas of consistently high air pollution concentration could lead to recognition of environmental risk factors for IPF development. METHODS This retrospective study analysed epidemiological and clinical data from 503 patients registered in the Observatory IPF.cat from January 2017 to June 2019. Incident and prevalent IPF cases from the Catalan region of Spain were graphed based on their postal address. We generated maps of the most relevant air pollutant PM2.5 from the last 10 years using data from the CALIOPE air quality forecast system and observational data. RESULTS In 2018, the prevalence of IPF differed across provinces; from 8.1 cases per 100 000 habitants in Barcelona to 2.0 cases per 100 000 in Girona. The ratio of IPF was higher in some areas. Mapping PM2.5 levels illustrated that certain areas with more industry, traffic and shipping maintained markedly higher PM2.5 concentrations. Most of these locations correlated with higher aggregation of IPF cases. Compared with other risk factors, PM2.5 exposure was the most frequent. CONCLUSION In this retrospective study, prevalence of IPF is higher in areas of elevated PM2.5 concentration. Prospective studies with targeted pollution mapping need to be done in specific geographies to compile a broader profile of environmental factors involved in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jessica Germaine Shull
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Maria Teresa Pay
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Carla Lara Compte
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Miriam Olid
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Guadalupe Bermudo
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Karina Portillo
- ILD Multidisciplinary Unit, University Hospital Trias i Pujol, Badalona, Spain
| | - Jacobo Sellarés
- ILD Multidisciplinary Unit, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Eva Balcells
- Respiratory Medicine Department, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
| | - Vanesa Vicens-Zygmunt
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Lurdes Planas-Cerezales
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Diana Badenes-Bonet
- Respiratory Medicine Department, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain.,School of Health & Life Sciences, Pompeu Fabra University (UPF), Barcelona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Rosana Blavia
- Respiratory Department, Hospital Moises Broggi, San Joan Despi, Spain
| | - Pilar Rivera-Ortega
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Amalia Moreno
- Respiratory Department, Hospital Parc Taulí, Sabadell, Spain
| | - Jordi Sans
- Respiratory Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Damià Perich
- Respiratory Department, Consorci Sanitari de Terrassa, Terrassa, Spain
| | - Silvia Barril
- Respiratory Department, Hospital Arnau de Vilanova, Lleida, Spain
| | | | | | - Jordi Esplugas
- Respiratory Department, Hospital de Martorell, Barcelonès, Spain
| | - Guillermo Suarez-Cuartin
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jaume Bordas-Martinez
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Diego Castillo
- ILD Multidisciplinary Unit, Hospital Sant Pau i Santa Creu, Barcelona, Spain
| | - Rosa Jolis
- Respiratory Department, Hospital de Figueres, Figueres, Spain
| | - Inma Salvador
- Respiratory Department, Hospital de Tortosa, Tortosa, Spain
| | | | - Ana Villar
- ILD Multidisciplinary Unit, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | - Enric Barbeta
- Respiratory Department, Hospital de Granollers, Granollers, Spain
| | | | - Claudia Guevara
- Respiratory Department, Hospital Sant Camil, Vilanova, Spain
| | - Jordi Dorca
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Antoni Rosell
- ILD Multidisciplinary Unit, University Hospital Trias i Pujol, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Translational Respiratory Research Group, Institut de Recerca Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Patricio Luburich
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Roger Llatjós
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - Oriol Jorba
- Barcelona Supercomputing Center, BSC, c/Jordi Girona, 29,, Barcelona, Spain
| | - Maria Molina-Molina
- ILD Multidisciplinary Unit, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
7
|
Mäkelä K, Mäyränpää MI, Sihvo HK, Bergman P, Sutinen E, Ollila H, Kaarteenaho R, Myllärniemi M. Artificial intelligence identifies inflammation and confirms fibroblast foci as prognostic tissue biomarkers in idiopathic pulmonary fibrosis. Hum Pathol 2020; 107:58-68. [PMID: 33161029 DOI: 10.1016/j.humpath.2020.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022]
Abstract
A large number of fibroblast foci (FF) predict mortality in idiopathic pulmonary fibrosis (IPF). Other prognostic histological markers have not been identified. Artificial intelligence (AI) offers a possibility to quantitate possible prognostic histological features in IPF. We aimed to test the use of AI in IPF lung tissue samples by quantitating FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with a deep convolutional neural network (CNN). Lung tissue samples of 71 patients with IPF from the FinnishIPF registry were analyzed by an AI model developed in the Aiforia® platform. The model was trained to detect tissue, air spaces, FF, interstitial mononuclear inflammation, and intra-alveolar macrophages with 20 samples. For survival analysis, cut-point values for high and low values of histological parameters were determined with maximally selected rank statistics. Survival was analyzed using the Kaplan-Meier method. A large area of FF predicted poor prognosis in IPF (p = 0.01). High numbers of interstitial mononuclear inflammatory cells and intra-alveolar macrophages were associated with prolonged survival (p = 0.01 and p = 0.01, respectively). Of lung function values, low diffusing capacity for carbon monoxide was connected to a high density of FF (p = 0.03) and a high forced vital capacity of predicted was associated with a high intra-alveolar macrophage density (p = 0.03). The deep CNN detected histological features that are difficult to quantitate manually. Interstitial mononuclear inflammation and intra-alveolar macrophages were novel prognostic histological biomarkers in IPF. Evaluating histological features with AI provides novel information on the prognostic estimation of IPF.
Collapse
Affiliation(s)
- Kati Mäkelä
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland.
| | - Mikko I Mäyränpää
- Pathology, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland
| | | | - Paula Bergman
- Biostatistics Consulting, Department of Public Health, University of Helsinki and Helsinki University Hospital, FI-00290, Helsinki, Finland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland
| | - Hely Ollila
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland
| | - Riitta Kaarteenaho
- Research Unit of Internal Medicine, University of Oulu and Medical Research Center Oulu, Oulu University Hospital, FI-90014, Oulu, Finland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki and Heart and Lung Center, Helsinki University Hospital, FI-00290, Helsinki, Finland
| |
Collapse
|
8
|
Huang Z, Wang S, Liu Y, Fan L, Zeng Y, Han H, Zhang H, Yu X, Zhang Y, Huang D, Wu Y, Jiang W, Zhu P, Zhu X, Yi X. GPRC5A reduction contributes to pollutant benzo[a]pyrene injury via aggravating murine fibrosis, leading to poor prognosis of IIP patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139923. [PMID: 32758941 DOI: 10.1016/j.scitotenv.2020.139923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Air pollution exposure is recently reported to be one of the drivers of exacerbation in idiopathic pulmonary fibrosis (IPF). But there was a lack of direct evidence between pollution and lung fibrosis. Here, our data show effects of pollutant benzo[a]pyrene (BaP) and protein G-protein-coupled receptor family C group 5 type A (GPRC5A) on pulmonary fibrosis, which might help limit potential pollutant injury and disease progression. We cross-referenced epithelial differentially-expressed-genes (DEGs) from pollutant injury and published experimental fibrosis and IPF patients' data, top common-DEG (CO-DEG) GPRC5A was identified as a potential link between exposure-damage and fibrogenesis. The role of GPRC5A was evaluated under BaP exposure, in idiopathic interstitial pneumonia (IIP) tissue-array and via CRISPR/Cas9 knockout mice (Gprc5a-/-). BaP exposure enhanced bleomycin (BLM)-induced murine pulmonary fibrosis with increased Fibronectin and α-SMA expression in primary fibroblasts, thickened respiratory membrane and damaged alveolar type II cell, combined with Gprc5a decline in fibrotic mass. GPRC5A mRNA reduced after 10-14 days' BaP exposure in human epithelial cell A549. GPRC5A protein was further found to decrease in IIP epithelium, especially hyperplastic regions. A high epithelial GPRC5A expression score was positively associated with long survival time (R = 0.34) while negatively with high age (R = -0.4) and IIP type IPF (R = -0.5). Low GPRC5A expression predicts poor prognosis (HR = 4.5). Gprc5a depletion aggravated mortality rate (50%) with increased collagen deposition and myofibroblast activation under BLM treatment and exacerbated BaP injury in lung remodeling. Vitamin metabolic imbalance and Mitofusion2 (Mfn2) or Opa1-regulated mitochondrial dynamics were deduced to contribute to Gprc5a depletion and fibrogenesis. Pollutant BaP exposure worsens murine fibrosis and myofibroblast activation via GPRC5A reduction in the damaged epithelium. GPRC5A deficiency was first confirmed to contribute to both poor prognosis of IIP patients and fibrogenesis in murine model; thus, GPRC5A could serve as a novel therapeutic target in pollutant injury and pulmonary fibrosis.
Collapse
Affiliation(s)
- Ziling Huang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Tongji University School of Medicine, Tongji University, Shanghai 200092, China
| | - Siqi Wang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yuting Liu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Lichao Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yu Zeng
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hongxiu Han
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Haoyang Zhang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Xiaoting Yu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yudong Zhang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Dandan Huang
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yunjin Wu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wenxia Jiang
- Department of Pathology, Tongji University School of Medicine, Tongji University, Shanghai 200092, China
| | - Peipei Zhu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Xuyou Zhu
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.
| | - Xianghua Yi
- Department of Pathology, Tongji University Affiliated Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China; Tongji University School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Ranzieri S, Illica Magrini E, Mozzoni P, Andreoli R, Pelà G, Bertorelli G, Corradi M. Idiopathic pulmonary fibrosis and occupational risk factors. LA MEDICINA DEL LAVORO 2019; 110:407-436. [PMID: 31846447 PMCID: PMC7809935 DOI: 10.23749/mdl.v110i6.8970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease of unknown origin that rapidly leads to death. However, the rate of disease progression varies from one individual to another and is still difficult to predict. The prognosis of IPF is poor, with a median survival of three to five years after diagnosis, without curative therapies other than lung transplantation. The factors leading to disease onset and progression are not yet completely known. The current disease paradigm is that sustained alveolar epithelial micro-injury caused by environmental triggers (e.g., cigarette smoke, microaspiration of gastric content, particulate dust, viral infections or lung microbial composition) leads to alveolar damage resulting in fibrosis in genetically susceptible individuals. Numerous epidemiological studies and case reports have shown that occupational factors contribute to the risk of developing IPF. In this perspective, we briefly review the current understanding of the pathophysiology of IPF and the importance of occupational factors in the pathogenesis and prognosis of the disease. Prompt identification and elimination of occult exposure may represent a novel treatment approach in patients with IPF.
Collapse
Affiliation(s)
- Silvia Ranzieri
- Dipartimento di Medicina e Chirurgia - Università di Parma .
| | | | | | | | | | | | | |
Collapse
|