1
|
Amodio V, Vitiello PP, Bardelli A, Germano G. DNA repair-dependent immunogenic liabilities in colorectal cancer: opportunities from errors. Br J Cancer 2024; 131:1576-1590. [PMID: 39271762 PMCID: PMC11554791 DOI: 10.1038/s41416-024-02848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the major causes of cancer death worldwide. Chemotherapy continues to serve as the primary treatment modality, while immunotherapy is largely ineffective for the majority of CRC patients. Seminal discoveries have emphasized that modifying DNA damage response (DDR) mechanisms confers both cell-autonomous and immune-related vulnerabilities across various cancers. In CRC, approximately 15% of tumours exhibit alterations in the mismatch repair (MMR) machinery, resulting in a high number of neoantigens and the activation of the type I interferon response. These factors, in conjunction with immune checkpoint blockades, collectively stimulate anticancer immunity. Furthermore, although less frequently, somatic alterations in the homologous recombination (HR) pathway are observed in CRC; these defects lead to genome instability and telomere alterations, supporting the use of poly (ADP-ribose) polymerase (PARP) inhibitors in HR-deficient CRC patients. Additionally, other DDR inhibitors, such as Ataxia Telangiectasia and Rad3-related protein (ATR) inhibitors, have shown some efficacy both in preclinical models and in the clinical setting, irrespective of MMR proficiency. The aim of this review is to elucidate how preexisting or induced vulnerabilities in DNA repair pathways represent an opportunity to increase tumour sensitivity to immune-based therapies in CRC.
Collapse
Affiliation(s)
- V Amodio
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - P P Vitiello
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy
| | - A Bardelli
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Oncology, Molecular Biotechnology Center, University of Torino, 10126, Turin, Italy.
| | - G Germano
- IFOM ETS - The AIRC Institute of Molecular Oncology, 20139, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine, University of Milano, 20133, Milan, Italy.
| |
Collapse
|
2
|
Han Y, Sheng W, Liu X, Liu H, Jia X, Li H, Wang C, Wang B, Hu T, Ma Y. Glycyrrhizin ameliorates colorectal cancer progression by regulating NHEJ pathway through inhibiting HMGB1-induced DNA damage response. Sci Rep 2024; 14:24948. [PMID: 39438689 PMCID: PMC11496679 DOI: 10.1038/s41598-024-76155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
As one of the most common malignancies, colorectal cancer (CRC) usually starts with a benign lesion and accumulates DNA damage as it progresses to full-fledged cancer. Glycyrrhizin (GL) has been found to alleviate tumor growth and inflammation, while the role of GL influences DNA damage response (DDR) in colorectal cancer remains unclear. GL exposure significantly reduced cell colony formation and viability with a concomitant increase in DNA fragmentation in CRC, meanwhile GL induced apoptosis by activating caspase-3. Moreover, GL induced cell cycle arrest in CRC cells at S phase, which was associated with decreased cyclin D1 in vitro. GL treatment significantly ameliorated tumor growth and promoted DDR in vivo. Mechanism analysis revealed that GL significantly downregulated the NHEJ pathway via inhibiting HMGB1. Finally, the expression of HMGB1 was abnormal regulated in CRC tissue than in adjacent normal tissues and associated with TNM stage and overall survival. Our findings indicate that HMGB1 may be a novel therapeutic target in CRC, a result that GL may serve as a promising drug for CRC treatment.
Collapse
Affiliation(s)
- Yuhui Han
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Wenjiong Sheng
- Department of Radiotherapy, Yantaishan Hospital, Affiliated Hospital of Binzhou Medical University, 10087 Science and Technology Avenue, Yantai, 264003, Shandong, China
| | - Xiuxin Liu
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Haide Liu
- Department of Radiotherapy, Yantaishan Hospital, Affiliated Hospital of Binzhou Medical University, 10087 Science and Technology Avenue, Yantai, 264003, Shandong, China
| | - Xinyu Jia
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Honghui Li
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Changyuan Wang
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Bin Wang
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Yanchao Ma
- Department of Immunology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, China.
| |
Collapse
|
3
|
Voutsadakis IA. CDX2-Suppressed Colorectal Cancers Possess Potentially Targetable Alterations in Receptor Tyrosine Kinases and Other Colorectal-Cancer-Associated Pathways. Diseases 2024; 12:234. [PMID: 39452477 PMCID: PMC11506651 DOI: 10.3390/diseases12100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Colorectal cancer, a prevalent gastrointestinal carcinoma, has a high risk for recurrence when locally advanced and remains lethal when in an advanced stage. Prognostic biomarkers may help in better delineating the aggressiveness of this disease in individual patients and help to tailor appropriate therapies. CDX2, a transcription factor of gastrointestinal differentiation, has been proposed as a biomarker for good outcomes and could also be a marker of specific sub-types amenable to targeted therapies. METHODS Colorectal cancers from The Cancer Genome Atlas (TCGA) colorectal cohort and colon cancers from the Sidra-LUMC AC-ICAM cohort were categorized according to their expressions of CDX2 mRNA. Groups with CDX2 suppression were compared with cancers showing no suppression regarding their clinical and genomic characteristics. RESULTS CDX2-suppressed colorectal cancers showed a high prevalence of Microsatellite Instability (MSI) and a lower prevalence of chromosomal Instability (CIN) compared to non-CDX2-suppressed cancers. In addition, CDX2-suppressed cancers had a higher prevalence of mutations in several receptor tyrosine kinase genes, including EGFR, ERBB3, ERBB4, RET, and ROS1. In contrast, CDX2-suppressed cancers displayed lower mutation frequencies than non-CDX2-suppressed cancers in the genes encoding for the two most frequently mutated tumor suppressors, APC and TP53, and the most frequently mutated colorectal cancer oncogene, KRAS. However, CDX2-suppressed colorectal cancers had a higher prevalence of mutations in alternative genes of the WNT/APC/β-catenin and KRAS/BRAF/MEK pathways. In addition, they showed frequent mutations in DNA damage response (DDR) genes, such as BRCA2 and ATM. CONCLUSION CDX2-suppressed colorectal cancers constitute a genomically distinct subset of colon and rectal cancers that have a lower prevalence of KRAS, APC, and TP53 mutations, but a high prevalence of mutations in less commonly mutated colorectal cancer genes. These alterations could serve as targets for personalized therapeutics in this subset.
Collapse
Affiliation(s)
- Ioannis A. Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, ON P6B 0A8, Canada; or
- Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
4
|
Pan D, Wang Q, Shen A, Qi Z, Zheng C, Hu B. When DNA damage responses meet tumor immunity: From mechanism to therapeutic opportunity. Int J Cancer 2024; 155:384-399. [PMID: 38655783 DOI: 10.1002/ijc.34954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
DNA damage is a prevalent phenomenon in the context of cancer progression. Evidence suggests that DNA damage responses (DDR) are pivotal in overcoming tumor immune evasion. Alternatively, traditional radiotherapy and chemotherapy operate by inducing DNA damage, consequently stimulating the immune system to target tumors. The intricate interplay between signaling pathways involved in DDR and immune activation underscores the significance of considering both factors in developing improved immunotherapies. By delving deeper into the mechanisms underlying immune activation brought on by DNA damage, it becomes possible to identify novel treatment approaches that boost the anticancer immune response while minimizing undesirable side effects. This review explores the mechanisms behind DNA damage-induced antitumor immune responses, the importance of DNA damage in antitumor immunity, and potential therapeutic approaches for cancer immunotherapy targeting DDR. Additionally, we discuss the challenges of combination therapy and strategies for integrating DNA damage-targeting therapies with current cancer immunotherapy. In summary, this review highlights the critical role of DNA damage in tumor immunology, underscoring the potential of DDR inhibitors as promising therapeutic modalities for cancer treatment.
Collapse
Affiliation(s)
- Dong Pan
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Qi Wang
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aihua Shen
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Qi
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Burong Hu
- Department of Radiation Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Watershed Sciences and Health, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic Science and Translational Research of Radiation Oncology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Majumder B, Nataraj NB, Maitreyi L, Datta S. Mismatch repair-proficient tumor footprints in the sands of immune desert: mechanistic constraints and precision platforms. Front Immunol 2024; 15:1414376. [PMID: 39100682 PMCID: PMC11294168 DOI: 10.3389/fimmu.2024.1414376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 08/06/2024] Open
Abstract
Mismatch repair proficient (MMRp) tumors of colorectal origin are one of the prevalent yet unpredictable clinical challenges. Despite earnest efforts, optimal treatment modalities have yet to emerge for this class. The poor prognosis and limited actionability of MMRp are ascribed to a low neoantigen burden and a desert-like microenvironment. This review focuses on the critical roadblocks orchestrated by an immune evasive mechanistic milieu in the context of MMRp. The low density of effector immune cells, their weak spatiotemporal underpinnings, and the high-handedness of the IL-17-TGF-β signaling are intertwined and present formidable challenges for the existing therapies. Microbiome niche decorated by Fusobacterium nucleatum alters the metabolic program to maintain an immunosuppressive state. We also highlight the evolving strategies to repolarize and reinvigorate this microenvironment. Reconstruction of anti-tumor chemokine signaling, rational drug combinations eliciting T cell activation, and reprograming the maladapted microbiome are exciting developments in this direction. Alternative vulnerability of other DNA damage repair pathways is gaining momentum. Integration of liquid biopsy and ex vivo functional platforms provide precision oncology insights. We illustrated the perspectives and changing landscape of MMRp-CRC. The emerging opportunities discussed in this review can turn the tide in favor of fighting the treatment dilemma for this elusive cancer.
Collapse
|
6
|
Giordano G, Pancione M. MHC class III lymphocyte antigens 6 as endogenous immunotoxins: Unlocking immunotherapy in proficient mismatch repair colorectal cancer. WIREs Mech Dis 2024; 16:e1631. [PMID: 37818781 DOI: 10.1002/wsbm.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 08/18/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
A majority of cancers, including colorectal cancer (CRC) with intact DNA mismatch repair, exhibit a paralyzed antitumor immune response and resistance to immune checkpoint inhibitors. Members of MHC class III lymphocyte antigen 6G (LY6G) encode glycosylphosphatidylinositol (GPI) proteins anchored to the membrane. Snake venom neurotoxins and LY6G proteins share a three-finger (3F) folding domain. LY6 proteins such as LY6G6D are gaining a reputation as excellent tumor-associated antigens that can potently inhibit anti-tumor immunity in cancers with proficient mismatch repair. Thus, we called MHC class III LY6G endogenous immunotoxins. Since the discovery of LY6G6D as a tumor-associated antigen, T-cell engagers (TcEs) have been developed to simultaneously bind LY6G6D on cancer cells and CD3 on T cells, improving the treatment of metastatic solid tumors that are resistant to ICIs. We present a current understanding of how alterations in MHC class III genes inhibit antitumor immunity, and how these understandings can be turned into effective treatments for patients who are refractory to standard immunotherapy. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Cancer > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Skouteris N, Papageorgiou G. PARP Inhibitors in Colorectal Malignancies: A 2023 Update. Rev Recent Clin Trials 2024; 19:101-108. [PMID: 38058097 DOI: 10.2174/0115748871260815231116060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is one of the most common malignancies in the Western world, and metastatic disease is associated with a dismal prognosis. Poly-ADpribose polymerase (PARP) inhibitors gain increasing attention in the field of medical oncology, as they lead to synthetic lethality in malignancies with preexisting alterations in the DNA damage repair (DDR) pathway. As those alterations are frequently seen in CRC, a targeted approach through PARP inhibitors is expected to benefit these patients, both alone and in combination with other agents like chemotherapy, immunotherapy, antiangiogenics, and radiation. OBJECTIVE This review article aims to better clarify the role of PARP inhibitors as a treatment option in patients with metastatic CRC with alterations in the DDR pathway. METHODS We used the PubMed database to retrieve journal articles and the inclusion criteria were all human studies that illustrated the effective role of PARP inhibitors in patients with metastatic CRC with homologous repair deficiency (HRD) and the correct line of therapy. RESULTS Current evidence supports the utilization of PARP inhibitors in CRC subgroups, as monotherapy and in combination with other agents. Up to now, data are insufficient to support a formal indication, and further research is needed. CONCLUSION Efforts to precisely define the homologous repair deficiency (HRD) in CRC - and eventually the subgroup of patients that are expected to benefit the most - are also underway.
Collapse
Affiliation(s)
- Nikolaos Skouteris
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, "Metaxa" Cancer Hospital, 51 Botassi Street, 18537 Piraeus, Greece
| | | |
Collapse
|
8
|
Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W, Tang M, Wu J, Mao E, Han L, Liu M, Zhang J, Cao L, Shao J, Shang Y. Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer. Front Oncol 2023; 13:1285508. [PMID: 38023196 PMCID: PMC10680082 DOI: 10.3389/fonc.2023.1285508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent malignancy with diverse molecular characteristics. The NGS-based approach enhances our comprehension of genomic landscape of CRC and may guide future advancements in precision oncology for CRC patients. Method In this research, we conducted an analysis using Next-Generation Sequencing (NGS) on samples collected from 111 individuals who had been diagnosed with CRC. We identified somatic and germline mutations and structural variants across the tumor genomes through comprehensive genomic profiling. Furthermore, we investigated the landscape of driver mutations and their potential clinical implications. Results Our findings underscore the intricate heterogeneity of genetic alterations within CRC. Notably, BRAF, ARID2, KMT2C, and GNAQ were associated with CRC prognosis. Patients harboring BRAF, ARID2, or KMT2C mutations exhibited shorter progression-free survival (PFS), whereas those with BRAF, ARID2, or GNAQ mutations experienced worse overall survival (OS). We unveiled 80 co-occurring and three mutually exclusive significant gene pairs, enriched primarily in pathways such as TP53, HIPPO, RTK/RAS, NOTCH, WNT, TGF-Beta, MYC, and PI3K. Notably, co-mutations of BRAF/ALK, BRAF/NOTCH2, BRAF/CREBBP, and BRAF/FAT1 correlated with worse PFS. Furthermore, germline AR mutations were identified in 37 (33.33%) CRC patients, and carriers of these variants displayed diminished PFS and OS. Decreased AR protein expression was observed in cases with AR germline mutations. A four-gene mutation signature was established, incorporating the aforementioned prognostic genes, which emerged as an independent prognostic determinant in CRC via univariate and multivariate Cox regression analyses. Noteworthy BRAF and ARID2 protein expression decreases detected in patients with their respective mutations. Conclusion The integration of our analyses furnishes crucial insights into CRC's molecular characteristics, drug responsiveness, and the construction of a four-gene mutation signature for predicting CRC prognosis.
Collapse
Affiliation(s)
- Jinwei Yang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Sihui Zhao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Junyan Su
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Siyao Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Zaozao Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ming Tang
- Department of Pathology, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcui Wu
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Erdong Mao
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Han
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Mengyuan Liu
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jiali Zhang
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Lei Cao
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Jingyi Shao
- Department of Reproductive Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yun Shang
- Second Department of General Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
9
|
Shen X, Su Z, Dou Y, Song X. A novel investigation into an E2F transcription factor-related prognostic model with seven signatures for colon cancer patients. IET Syst Biol 2023; 17:187-197. [PMID: 37431829 PMCID: PMC10439494 DOI: 10.1049/syb2.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023] Open
Abstract
The pathogenesis of colon cancer, a common gastrointestinal tumour, involves complicated factors, especially a series of cell cycle-related genes. E2F transcription factors during the cell cycle play an essential role in the occurrence of colon cancer. It is meaningful to establish an efficient prognostic model of colon cancer targeting cellular E2F-associated genes. This has not been reported previously. The authors first aimed to explore the links of E2F genes with the clinical outcomes of colon cancer patients by integrating data from the TCGA-COAD (n = 521), GSE17536 (n = 177) and GSE39582 (n = 585) cohorts. The Cox regression and Lasso modelling approach to identify a novel colon cancer prognostic model involving several hub genes (CDKN2A, GSPT1, PNN, POLD3, PPP1R8, PTTG1 and RFC1) were utilised. Moreover, an E2F-related nomogram that efficiently predicted the survival rates of colon cancer patients was created. Additionally, the authors first identified two E2F tumour clusters, which showed distinct prognostic features. Interestingly, the potential links of E2F-based classification and 'protein secretion' issues of multiorgans and tumour infiltration of 'T-cell regulatory (Tregs)' and 'CD56dim natural killer cell' were detected. The authors' findings are of potential clinical significance for the prognosis assessment and mechanistic exploration of colon cancer.
Collapse
Affiliation(s)
- Xiaoyong Shen
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Zheng Su
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yan Dou
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Xin Song
- National Demonstration Center for Experimental Basic Medicine EducationSchool of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
10
|
Alese OB, Wu C, Chapin WJ, Ulanja MB, Zheng-Lin B, Amankwah M, Eads J. Update on Emerging Therapies for Advanced Colorectal Cancer. Am Soc Clin Oncol Educ Book 2023; 43:e389574. [PMID: 37155942 DOI: 10.1200/edbk_389574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. It is projected to increase by 3.2 million new cases and account for 1.6 million deaths by 2040. Mortality is largely due to limited treatment options for patients who present with advanced disease. Thus, the development of effective and tolerable therapies is crucial. Chemotherapy has been the backbone of systemic treatment of advanced CRC, but utility has been limited because of invariable resistance to therapy, narrow mechanisms of action, and unfavorable toxicity profile. Tumors that are mismatch repair-deficient have demonstrated remarkable response to immune checkpoint inhibitor therapy. However, most CRC tumors are mismatch repair-proficient and represent an unmet medical need. Although ERBB2 amplification occurs only in a few cases, it is associated with left-sided tumors and a higher incidence of brain metastasis. Numerous combinations of HER2 inhibitors have demonstrated efficacy, and antibody-drug conjugates against HER2 represent innovative strategies in this area. The KRAS protein has been classically considered undruggable. Fortunately, new agents targeting KRAS G12C mutation represent a paradigm shift in the management of affected patients and could lead the advancement in drug development for the more common KRAS mutations. Furthermore, aberrant DNA damage response is present in 15%-20% of CRCs, and emerging innovative combinations with poly (ADP-ribose) polymerase (PARP) inhibitors could improve the current therapeutic landscape. Multiple novel biomarker-driven approaches in the management of patients with advanced CRC tumors are reviewed in this article.
Collapse
Affiliation(s)
- Olatunji B Alese
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | - William J Chapin
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mark B Ulanja
- Christus Ochsner St Patrick Hospital, Lake Charles, LA
| | | | | | - Jennifer Eads
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Ren C, Zheng H, Dai J. Effect of polyadenosine diphosphate ribose polymerase inhibitor combined with mfolfox6 regimen on the expression of IL-23 and PTOV1 in colorectal cancer. Minerva Pediatr (Torino) 2023; 75:158-161. [PMID: 36458885 DOI: 10.23736/s2724-5276.22.07102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Chenglei Ren
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, China
| | - Hui Zheng
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, China
| | - Jundi Dai
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Affiliated Hospital of Qingdao University, Yantai, China -
| |
Collapse
|
12
|
Ming H, Li B, Jiang J, Qin S, Nice EC, He W, Lang T, Huang C. Protein degradation: expanding the toolbox to restrain cancer drug resistance. J Hematol Oncol 2023; 16:6. [PMID: 36694209 PMCID: PMC9872387 DOI: 10.1186/s13045-023-01398-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/01/2023] [Indexed: 01/25/2023] Open
Abstract
Despite significant progress in clinical management, drug resistance remains a major obstacle. Recent research based on protein degradation to restrain drug resistance has attracted wide attention, and several therapeutic strategies such as inhibition of proteasome with bortezomib and proteolysis-targeting chimeric have been developed. Compared with intervention at the transcriptional level, targeting the degradation process seems to be a more rapid and direct strategy. Proteasomal proteolysis and lysosomal proteolysis are the most critical quality control systems responsible for the degradation of proteins or organelles. Although proteasomal and lysosomal inhibitors (e.g., bortezomib and chloroquine) have achieved certain improvements in some clinical application scenarios, their routine application in practice is still a long way off, which is due to the lack of precise targeting capabilities and inevitable side effects. In-depth studies on the regulatory mechanism of critical protein degradation regulators, including E3 ubiquitin ligases, deubiquitylating enzymes (DUBs), and chaperones, are expected to provide precise clues for developing targeting strategies and reducing side effects. Here, we discuss the underlying mechanisms of protein degradation in regulating drug efflux, drug metabolism, DNA repair, drug target alteration, downstream bypass signaling, sustaining of stemness, and tumor microenvironment remodeling to delineate the functional roles of protein degradation in drug resistance. We also highlight specific E3 ligases, DUBs, and chaperones, discussing possible strategies modulating protein degradation to target cancer drug resistance. A systematic summary of the molecular basis by which protein degradation regulates tumor drug resistance will help facilitate the development of appropriate clinical strategies.
Collapse
Affiliation(s)
- Hui Ming
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China.
| | - Tingyuan Lang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, People's Republic of China. .,Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, People's Republic of China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
13
|
Zhou J, Lin Y, Yang X, Shen B, Hao J, Wang J, Wang J. Metabolic disorders sensitise endometrial carcinoma through endoplasmic reticulum stress. Cell Mol Biol Lett 2022; 27:110. [PMID: 36526973 PMCID: PMC9756454 DOI: 10.1186/s11658-022-00412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Metabolic disorder is considered a well-established risk factor for endometrial carcinoma (EC). However, the mechanism remains unclear. Insulin resistance and excessive flux of free fatty acids serve as fundamental pathogenic factors in metabolic disorders, including obesity and type 2 diabetes. The aim of this study was to test the correlation between insulin resistance and dyslipidaemia in EC and to determine the effect of insulin and saturated fatty acids on EC cells. METHODS A retrospective study on the medical records of patients with EC and RNA-seq from the TCGA database analysed with edgR and Gene Ontology (GO) were used to assess the correlation of dyslipidaemia and diabetes as well as obesity. Crystal violet assays and CCK-8 assays were used to detect the proliferation of EC cells, and Annexin V-PI was used to examine apoptosis. Transient changes in mitochondrial Ca2+ and reactive oxygen species (ROS) were monitored via confocal microscopy. DNA damage was assessed by comet assays. Changes in signalling pathways were detected via phospho-kinase array. western blotting was used to assess the molecular changes in endoplasmic reticulum (ER) stress and DNA damage. RESULTS We found that glucose metabolism disorders accompanied dyslipidaemia in patients with EC. As a key regulator of glucose metabolism disorders, insulin promoted DNA damage, ROS and Ca2+ homoeostasis imbalance in a panel of established EC cell lines. Interestingly, excessive insulin boosted saturated fatty acid-induced pro-apoptotic effects in EC cells. Furthermore, our data showed that insulin synergised with saturated fatty acids to activate the mechanistic target of rapamycin kinase/70 kDa ribosomal protein S6 kinase (mTOR/p70S6K) pathway and ER stress, resulting in Ca2+ release from ER and unfolded protein response (UPR) activation, which contributed to combined insulin and saturated fatty acid treatment-induced apoptosis and tumour progression. CONCLUSIONS Our data are the first to illustrate that impaired glucose metabolism accelerates dyslipidaemia-promoted EC progression, which is attributed to hyperinsulinaemia and saturated fatty acid-induced Ca2+ dyshomoeostasis and UPR activation in EC cells via ER stress.
Collapse
Affiliation(s)
- Jingyi Zhou
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China
| | - Yanying Lin
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China ,grid.256112.30000 0004 1797 9307Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.459516.aFujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Xiao Yang
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China
| | - Boqiang Shen
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China
| | - Juan Hao
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China
| | - Jiaqi Wang
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China
| | - Jianliu Wang
- grid.411634.50000 0004 0632 4559Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, 100044 China ,Beijing Key Laboratory of Female Pelvic Floor Disorders Disease, Beijing, 100044 China
| |
Collapse
|
14
|
Zhong ME, Duan X, Ni-jia-ti MYDL, Qi H, Xu D, Cai D, Li C, Huang Z, Zhu Q, Gao F, Wu X. CT-based radiogenomic analysis dissects intratumor heterogeneity and predicts prognosis of colorectal cancer: a multi-institutional retrospective study. J Transl Med 2022; 20:574. [PMID: 36482390 PMCID: PMC9730572 DOI: 10.1186/s12967-022-03788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to develop a radiogenomic prognostic prediction model for colorectal cancer (CRC) by investigating the biological and clinical relevance of intratumoural heterogeneity. METHODS This retrospective multi-cohort study was conducted in three steps. First, we identified genomic subclones using unsupervised deconvolution analysis. Second, we established radiogenomic signatures to link radiomic features with prognostic subclone compositions in an independent radiogenomic dataset containing matched imaging and gene expression data. Finally, the prognostic value of the identified radiogenomic signatures was validated using two testing datasets containing imaging and survival information collected from separate medical centres. RESULTS This multi-institutional retrospective study included 1601 patients (714 females and 887 males; mean age, 65 years ± 14 [standard deviation]) with CRC from 5 datasets. Molecular heterogeneity was identified using unsupervised deconvolution analysis of gene expression data. The relative prevalence of the two subclones associated with cell cycle and extracellular matrix pathways identified patients with significantly different survival outcomes. A radiogenomic signature-based predictive model significantly stratified patients into high- and low-risk groups with disparate disease-free survival (HR = 1.74, P = 0.003). Radiogenomic signatures were revealed as an independent predictive factor for CRC by multivariable analysis (HR = 1.59, 95% CI:1.03-2.45, P = 0.034). Functional analysis demonstrated that the 11 radiogenomic signatures were predominantly associated with extracellular matrix and immune-related pathways. CONCLUSIONS The identified radiogenomic signatures might be a surrogate for genomic signatures and could complement the current prognostic strategies.
Collapse
Affiliation(s)
- Min-Er Zhong
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.413405.70000 0004 1808 0686Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Duan
- grid.12981.330000 0001 2360 039XSchool of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ma-yi-di-li Ni-jia-ti
- Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashi, Xinjiang China
| | - Haoning Qi
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dongwei Xu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Du Cai
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chenghang Li
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zeping Huang
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiqi Zhu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.507012.10000 0004 1798 304XDepartment of Colorectal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Feng Gao
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Xiaojian Wu
- grid.488525.6Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655 China ,grid.488525.6Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Discovery and Validation of Potential Serum Biomarkers with Pro-Inflammatory and DNA Damage Activities in Ulcerative Colitis: A Comprehensive Untargeted Metabolomic Study. Metabolites 2022; 12:metabo12100997. [PMID: 36295899 PMCID: PMC9609580 DOI: 10.3390/metabo12100997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ulcerative colitis is a type of non-specific inflammatory bowel disease with unclear etiology. It is considered a progressive disease with risks of bowel motility disorders, anorectal dysfunction, and even colorectal cancer. Commonly used diagnostic markers have poor specificity and cannot predict the development of ulcerative colitis. In this study, 77 serum samples (31 patients, 46 healthy controls) were analyzed using high performance liquid chromatography-quadrupole time-of-flight mass spectrometry and 31 metabolites with significant level changes were found, revealing the relationship of ulcerative colitis to disturbed glutathione metabolism and caffeine metabolism. In addition, pyroglutamic acid, a biomarker of cervical cancer and gastric cancer, was identified with elevated levels in the serum of ulcerative colitis patients. The role of pyroglutamic acid was further analyzed, and the results indicated its positive correlation with the upregulation of inflammatory factors and increased levels of phosphorylated histone H2AX (γH2AX) in IEC-6 cells, which are related to DNA damage. All these results suggest that pyroglutamic acid is not only a biomarker for distinguishing ulcerative colitis status, but that it is also a potential effective metabolite that promotes the transformation of ulcerative colitis to colorectal cancer.
Collapse
|
16
|
Durinikova E, Reilly NM, Buzo K, Mariella E, Chilà R, Lorenzato A, Dias JML, Grasso G, Pisati F, Lamba S, Corti G, Degasperi A, Cancelliere C, Mauri G, Andrei P, Linnebacher M, Marsoni S, Siena S, Sartore-Bianchi A, Nik-Zainal S, Di Nicolantonio F, Bardelli A, Arena S. Targeting the DNA Damage Response Pathways and Replication Stress in Colorectal Cancer. Clin Cancer Res 2022; 28:3874-3889. [PMID: 35881546 PMCID: PMC9433963 DOI: 10.1158/1078-0432.ccr-22-0875] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022]
Abstract
PURPOSE Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.
Collapse
Affiliation(s)
| | - Nicole M. Reilly
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Kristi Buzo
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Elisa Mariella
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Rosaria Chilà
- Department of Oncology, University of Torino, Candiolo, Italy
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Annalisa Lorenzato
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - João M. L. Dias
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gaia Grasso
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | | | - Simona Lamba
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Andrea Degasperi
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Gianluca Mauri
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Pietro Andrei
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Silvia Marsoni
- IFOM ETS - The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Salvatore Siena
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Andrea Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Serena Nik-Zainal
- Department of Medical Genetics, University of Cambridge, Cambridge, United Kingdom
- Early Cancer Institute, University of Cambridge, Cambridge, United Kingdom
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Italy
| |
Collapse
|
17
|
Wang M, Xie C. DNA Damage Repair and Current Therapeutic Approaches in Gastric Cancer: A Comprehensive Review. Front Genet 2022; 13:931866. [PMID: 36035159 PMCID: PMC9412963 DOI: 10.3389/fgene.2022.931866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
DNA in cells is frequently damaged by endogenous and exogenous agents. However, comprehensive mechanisms to combat and repair DNA damage have evolved to ensure genomic stability and integrity. Improper DNA damage repair may result in various diseases, including some types of tumors and autoimmune diseases. Therefore, DNA damage repair mechanisms have been proposed as novel antitumor drug targets. To date, numerous drugs targeting DNA damage mechanisms have been developed. For example, PARP inhibitors that elicit synthetic lethality are widely used in individualized cancer therapies. In this review, we describe the latent DNA damage repair mechanisms in gastric cancer, the types of DNA damage that can contribute to the development of gastric cancer, and new therapeutic approaches for gastric cancer that target DNA damage repair pathways.
Collapse
Affiliation(s)
| | - Chuan Xie
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
19
|
Komatsu Y, Shigeyasu K, Yano S, Takeda S, Takahashi K, Hata N, Umeda H, Yoshida K, Mori Y, Yasui K, Yoshida R, Kondo Y, Kishimoto H, Teraishi F, Umeda Y, Kagawa S, Michiue H, Tazawa H, Goel A, Fujiwara T. RNA editing facilitates the enhanced production of neoantigens during the simultaneous administration of oxaliplatin and radiotherapy in colorectal cancer. Sci Rep 2022; 12:13540. [PMID: 35941214 PMCID: PMC9360398 DOI: 10.1038/s41598-022-17773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/30/2022] [Indexed: 11/09/2022] Open
Abstract
Most cases of colorectal cancers (CRCs) are microsatellite stable (MSS), which frequently demonstrate lower response rates to immune checkpoint inhibitors (ICIs). RNA editing produces neoantigens by altering amino acid sequences. In this study, RNA editing was induced artificially by chemoradiation therapy (CRT) to generate neoantigens in MSS CRCs. Altogether, 543 CRC specimens were systematically analyzed, and the expression pattern of ADAR1 was investigated. In vitro and in vivo experiments were also performed. The RNA editing enzyme ADAR1 was upregulated in microsatellite instability-high CRCs, leading to their high affinity for ICIs. Although ADAR1 expression was low in MSS CRC, CRT including oxaliplatin (OX) treatment upregulated RNA editing levels by inducing ADAR1. Immunohistochemistry analyses showed the upregulation of ADAR1 in patients with CRC treated with CAPOX (capecitabine + OX) radiation therapy relative to ADAR1 expression in patients with CRC treated only by surgery (p < 0.001). Compared with other regimens, CRT with OX effectively induced RNA editing in MSS CRC cell lines (HT29 and Caco2, p < 0.001) via the induction of type 1 interferon-triggered ADAR1 expression. CRT with OX promoted the RNA editing of cyclin I, a neoantigen candidate. Neoantigens can be artificially induced by RNA editing via an OX-CRT regimen. CRT can promote proteomic diversity via RNA editing.
Collapse
Affiliation(s)
- Yasuhiro Komatsu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Sho Takeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazutaka Takahashi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Nanako Hata
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hibiki Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiro Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshitaka Kondo
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Fuminori Teraishi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yuzo Umeda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama University, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, City of Hope Biomedical Research Center, Monrovia, CA, USA.,City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
20
|
Mao D, Zhang X, Wang Z, Xu G, Zhang Y. TMEM97 is transcriptionally activated by YY1 and promotes colorectal cancer progression via the GSK-3β/β-catenin signaling pathway. Hum Cell 2022; 35:1535-1546. [PMID: 35907137 DOI: 10.1007/s13577-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Transmembrane protein 97 (TMEM97) is a conserved integral membrane protein highly expressed in various human cancers, including colorectal cancer (CRC), and it exhibits pro-tumor roles in breast cancer, gastric cancer, and glioma. However, whether TMEM97 participates in CRC progression is not fully understood. The expression of mRNA and protein was evaluated by real-time qPCR, western blotting, immunofluorescent, and immunohistochemical staining. TMEM97 functions in cell proliferation, apoptosis, migration, and invasion were assessed by CCK-8, flow cytometry, and transwell assays. The roles of TMEM97 in CRC cells in vivo was investigated using a subcutaneous xenograft model. The transcriptional regulation of TMEM97 was explored by luciferase reporter and ChIP assays. The silencing of TMEM97 inhibited migration and invasion of CRC cells in vitro and led to suppressed growth and enhanced apoptosis in CRC cells and xenografts, whereas overexpression of TMEM97 displayed opposite effects. Mechanistically, TMEM97 knockdown caused a reduction of the proliferating marker PCNA and an increase of pro-apoptotic proteins (cleaved caspase 8/3/7 and cleaved PARP) in CRC cells. TMEM97 also positively regulated the β-catenin signaling pathway in CRC cells and xenografts by modulating the phosphorylated-GSK-3β and active (non-phospho) β-catenin levels. Interestingly, YY1, a well-recognized oncogenic transcription factor, was identified to bind to the TMEM97 promoter and enhance its transcriptional activity, and silencing of TMEM97 abolished YY1-mediated pro-tumor effects on CRC cells. Our results suggest that TMEM97 is transcriptionally activated by YY1 and promotes CRC progression via the GSK-3β/β-catenin signaling pathway, providing that TMEM97 might be a novel therapeutic target for preventing CRC development.
Collapse
Affiliation(s)
- Dong Mao
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Jinzhou, Liaoning Province, China
| | - Xiaowei Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Jinzhou, Liaoning Province, China
| | - Zhaoping Wang
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Jinzhou, Liaoning Province, China
| | - Guannan Xu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Jinzhou, Liaoning Province, China
| | - Yun Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, The Fifth Section of Renmin Street, Jinzhou, Liaoning Province, China.
| |
Collapse
|
21
|
Chen S, Dong R, Li Y, Zheng N, Peng G, Lu F, Qiu Q, Wen H, Wang Y, Wu H, Liu M. m 7G-Related DNA Damage Repair Genes are Potential Biomarkers for Predicting Prognosis and Immunotherapy Effectiveness in Colon Cancer Patients. Front Genet 2022; 13:918159. [PMID: 35754841 PMCID: PMC9218807 DOI: 10.3389/fgene.2022.918159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: m7G is a post-transcriptional modification modality, however, limited research has been conducted on its role in colon cancer. DNA damage repair (DDR) is an important factor that contributes to colon cancer development, growth and chemoresistance. This study aimed to explore whether m7G-related DNA damage repair genes may be used as biomarkers to predict the prognosis of colon cancer patients. Methods: We use non-negative matrix factorization (NMF) to type CRC patients into. Risk models were constructed using different expression genes in two clusters. We assessed the reliability of risk models with DCA curves, and a Nomogram. Meanwhile, The receiver operating characteristic and C-index curves were used to compare the predictive significance of the constructed risk models with other studies. In additional, we examined the significance of risk models on patients' immunity microenvironment and response to immune therapy. Finally, we used a series of cellular experiments to validate the effect of model genes on the malignant progression of CRC cells. Results: Twenty-eight m7G genes were obtained from the GSEA database. Multivariate Cox and LASSO Cox regression analysis was performed and eleven m7G-related DDR genes were identified for constructing the risk model. Survival and stage of CRC patients were worser in the high-risk group than in the low-risk group for both the training and test sets. Additionally, the different immune microenvironment status of patients in the high- and low-risk groups, suggesting that patients in the low-risk group may be more sensitive to immunotherapy, particularly immune checkpoint inhibitors. Finally, we found that depletion of ATP2A1, one of the risk genes in our model, influence the biologic behaviour of CRC cells significantly. Conclusion: The m7G-related DDR genes can be used as important markers for predicting patient prognosis and immunotherapy response. Our data suggest that ATP2A1 may promote the proliferation of colon cancer cells. These findings may provide new therapeutic targets for the treatment of colon cancer.
Collapse
Affiliation(s)
- Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ni Zheng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Guisen Peng
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Fei Lu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Quanwei Qiu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yitong Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Mulin Liu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.,School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
22
|
Chou J, Kaller M, Jaeckel S, Rokavec M, Hermeking H. AP4 suppresses DNA damage, chromosomal instability and senescence via inducing MDC1/Mediator of DNA damage Checkpoint 1 and repressing MIR22HG/miR-22-3p. Mol Cancer 2022; 21:120. [PMID: 35624466 PMCID: PMC9137087 DOI: 10.1186/s12943-022-01581-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
Background AP4 (TFAP4) encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor and is a direct target gene of the oncogenic transcription factor c-MYC. Here, we set out to determine the relevance of AP4 in human colorectal cancer (CRC) cells. Methods A CRISPR/Cas9 approach was employed to generate AP4-deficient CRC cell lines with inducible expression of c-MYC. Colony formation, β-gal staining, immunofluorescence, comet and homologous recombination (HR) assays and RNA-Seq analysis were used to determine the effects of AP4 inactivation. qPCR and qChIP analyses was performed to validate differentially expressed AP4 targets. Expression data from CRC cohorts was subjected to bioinformatics analyses. Immunohistochemistry was used to evaluate AP4 targets in vivo. Ap4-deficient APCmin/+ mice were analyzed to determine conservation. Immunofluorescence, chromosome and micronuclei enumeration, MTT and colony formation assays were used to determine the effects of AP4 inactivation and target gene regulation on chromosomal instability (CIN) and drug sensitivity. Results Inactivation of AP4 in CRC cell lines resulted in increased spontaneous and c-MYC-induced DNA damage, chromosomal instability (CIN) and cellular senescence. AP4-deficient cells displayed increased expression of the long non-coding RNA MIR22HG, which encodes miR-22-3p and was directly repressed by AP4. Furthermore, Mediator of DNA damage Checkpoint 1 (MDC1), a central component of the DNA damage response and a known target of miR-22-3p, displayed decreased expression in AP4-deficient cells. Accordingly, MDC1 was directly induced by AP4 and indirectly by AP4-mediated repression of miR-22-3p. Adenomas and organoids from Ap4-deficient APCmin/+ mice displayed conservation of these regulations. Inhibition of miR-22-3p or ectopic MDC1 expression reversed the increased senescence, DNA damage, CIN and defective HR observed in AP4-deficient CRC cells. AP4-deficiency also sensitized CRC cells to 5-FU treatment, whereas ectopic AP4 conferred resistance to 5-FU in a miR-22-3p and MDC1-dependent manner. Conclusions In summary, AP4, miR-22-3p and MDC1 form a conserved and coherent, regulatory feed-forward loop to promote DNA repair, which suppresses DNA damage, senescence and CIN, and contributes to 5-FU resistance. These findings explain how elevated AP4 expression contributes to development and chemo-resistance of colorectal cancer after c-MYC activation. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01581-1.
Collapse
Affiliation(s)
- Jinjiang Chou
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Stephanie Jaeckel
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-University, Thalkirchner Strasse 36, 80337, Munich, Germany. .,German Cancer Consortium (DKTK), Partner site Munich, Munich, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
23
|
Puccini A, Poorman K, Catalano F, Seeber A, Goldberg RM, Salem ME, Shields AF, Berger MD, Battaglin F, Tokunaga R, Naseem M, Zhang W, Philip PA, Marshall JL, Korn WM, Lenz HJ. Molecular profiling of signet-ring-cell carcinoma (SRCC) from the stomach and colon reveals potential new therapeutic targets. Oncogene 2022; 41:3455-3460. [PMID: 35618879 DOI: 10.1038/s41388-022-02350-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Signet ring cell carcinoma (SRCC) is rare: about 10% of gastric cancer (GC) and 1% of colorectal cancer (CRC). SRCC is associated with poor prognosis, however the underlying molecular characteristics are unknown. SRCCs were analyzed using NGS, immunohistochemistry, and in situ hybridization. Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous missense mutations, and microsatellite instability (MSI) was evaluated by NGS of known MSI loci. A total of 8500 CRC and 1100 GC were screened. Seventy-six SRCC were identified from the CRC cohort (<1%) and 98 from the GC cohort (9%). The most frequently mutated genes in CRC-SRCC were TP53 (47%), ARID1A (26%), APC (25%); in GC-SRCC were TP53 (42%), ARID1A (27%), CDH1 (11%). When compared to non-SRCC histology (N = 3522), CRC-SRCC (N = 37) more frequently had mutations in BRCA1 (11% vs 1%, P < 0.001) and less frequently mutations in APC (19% vs 78%, P < 0.001), KRAS (22% vs 51%, P = 0.001) and TP53 (47% vs 73%, P = 0.001). Among the GC cohort, SRCC (N = 54) had a higher frequency of mutations in CDH1, BAP1, and ERBB2, compared to non-SRCC (N = 540). Our data suggest that SRCCs harbor a similar molecular profile, regardless of the tumor location. Tailored therapy may become available for these patients.
Collapse
Affiliation(s)
- Alberto Puccini
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,University of Genoa, Ospedale Policlinico San Martino-IRCCS, Genova, Italy
| | | | - Fabio Catalano
- University of Genoa, Ospedale Policlinico San Martino-IRCCS, Genova, Italy
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Martin D Berger
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Battaglin
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ryuma Tokunaga
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Madiha Naseem
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wu Zhang
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - John L Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | | | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Li H, Gong L, Cheng H, Wang H, Zhang X, Rao C, Song Z, Wang D, Lou H, Lou F, Cao S, Pan H, Fang Y. Comprehensive Molecular Profiling of Colorectal Cancer With Situs Inversus Totalis by Next-Generation Sequencing. Front Oncol 2022; 12:813253. [PMID: 35530355 PMCID: PMC9067615 DOI: 10.3389/fonc.2022.813253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent malignances worldwide. However, CRC with situs inversus totalis (SCRC) is extremely rare, and molecular characterization of this disease has never been investigated. Methods Tumor tissue samples from 8 patients with SCRC and 33 CRC patients without situs inversus totalis (NSCRC) were subjected to multigene next-generation sequencing. Results The most frequently mutated genes in SCRC were APC, TP53, CHEK2, MDC1, GNAQ, KRAS, and SMAD4. A high frequency of SCRC tumors had mutations in DNA damage repair genes. Single amino acid substitutions in the DNA damage repair genes caused by continuous double base substitution was identified in the majority of this population. Furthermore, mutational profiles showed notable differences between the SCRC and NSCRC groups. In particular, CHEK2, MDC1, GNAQ, SMAD4, BRCA1, HLA-B, LATS2, and NLRC5 mutations were more frequently observed in SCRC patients. The mutation loci distributions of KRAS in the SCRC cohort differed from that of the NSCRC cohort. Additionally, differences in the targeted genomic profiles and base substitution patterns were observed between the two groups. Conclusions These findings comprehensively revealed a molecular characterization of SCRC, which will contribute to the development of personalized therapy and improved clinical management of SCRC patients.
Collapse
Affiliation(s)
- Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liu Gong
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanqing Cheng
- Prenatal Diagnosis Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuangzhou Rao
- Department of Radiotherapy and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhangfa Song
- Department of Anorectal Surgical, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Da Wang
- Department of Anorectal Surgical, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haizhou Lou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
25
|
Schirris Y, Gavves E, Nederlof I, Horlings HM, Teuwen J. DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer. Med Image Anal 2022; 79:102464. [DOI: 10.1016/j.media.2022.102464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
26
|
Targeting DNA Damage Response and Immune Checkpoint for Anticancer Therapy. Int J Mol Sci 2022; 23:ijms23063238. [PMID: 35328658 PMCID: PMC8952261 DOI: 10.3390/ijms23063238] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Deficiency in DNA damage response (DDR) genes leads to impaired DNA repair functions that will induce genomic instability and facilitate cancer development. However, alterations of DDR genes can serve as biomarkers for the selection of suitable patients to receive specific therapeutics, such as immune checkpoint blockade (ICB) therapy. In addition, certain altered DDR genes can be ideal therapeutic targets through adapting the mechanism of synthetic lethality. Recent studies indicate that targeting DDR can improve cancer immunotherapy by modulating the immune response mediated by cGAS-STING-interferon signaling. Investigations of the interplay of DDR-targeting and ICB therapies provide more effective treatment options for cancer patients. This review introduces the mechanisms of DDR and discusses their crucial roles in cancer therapy based on the concepts of synthetic lethality and ICB. The contemporary clinical trials of DDR-targeting and ICB therapies in breast, colorectal, and pancreatic cancers are included.
Collapse
|
27
|
de Paiva IM, Vakili MR, Soleimani AH, Tabatabaei Dakhili SA, Munira S, Paladino M, Martin G, Jirik FR, Hall DG, Weinfeld M, Lavasanifar A. Biodistribution and Activity of EGFR Targeted Polymeric Micelles Delivering a New Inhibitor of DNA Repair to Orthotopic Colorectal Cancer Xenografts with Metastasis. Mol Pharm 2022; 19:1825-1838. [PMID: 35271294 PMCID: PMC9175178 DOI: 10.1021/acs.molpharmaceut.1c00918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The disruption of polynucleotide kinase/phosphatase (PNKP) in colorectal cancer (CRC) cells deficient in phosphatase and tensin homolog (PTEN) is expected to lead to the loss of cell viability by a process known as synthetic lethality. In previous studies, we have reported on the encapsulation of a novel inhibitor of PNKP, namely, A83B4C63, in polymeric micelles and its activity in slowing the growth of PTEN-deficient CRC cells as well as subcutaneous xenografts. In this study, to enhance drug delivery and specificity to CRC tumors, the surface of polymeric micelles carrying A83B4C63 was modified with GE11, a peptide targeting epidermal growth factor receptor (EGFR) overexpressed in about 70% of CRC tumors. Using molecular dynamics (MD) simulations, we assessed the binding site and affinity of GE11 for EGFR. The GE11-modified micelles, tagged with a near-infrared fluorophore, showed enhanced internalization by EGFR-overexpressing CRC cells in vitro and a trend toward increased primary tumor homing in an orthotopic CRC xenograft in vivo. In line with these observations, the GE11 modification of polymeric micelles was shown to positively contribute to the improved therapeutic activity of encapsulated A83B4C63 against HCT116-PTEN-/- cells in vitro and that of orthotopic CRC xenograft in vivo. In conclusion, our results provided proof of principle evidence for the potential benefit of EGFR targeted polymeric micellar formulations of A83B4C63 as monotherapeutics for aggressive and metastatic CRC tumors but at the same time highlighted the need for the development of EGFR ligands with improved physiological stability and EGFR binding.
Collapse
Affiliation(s)
- Igor Moura de Paiva
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Amir Hasan Soleimani
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | | | - Sirazum Munira
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada
| | - Marco Paladino
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | | - Dennis G Hall
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Michael Weinfeld
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2EZ, Canada.,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada
| |
Collapse
|
28
|
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S, Puccini A. Targeting the DNA Damage Response Pathway as a Novel Therapeutic Strategy in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061388. [PMID: 35326540 PMCID: PMC8946235 DOI: 10.3390/cancers14061388] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date, disappointing results have been obtained in different clinical trials mainly due to poor molecular selection of patients. Several challenges must be overcome before these compounds may have an impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been validated to select patients. Moreover, different DDR alterations may not equally confer platinum sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients. Abstract Major advances have been made in CRC treatment in recent years, especially in molecularly driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer patients do not benefit from these treatments and their prognosis remains poor. The landscape of DNA damage response (DDR) alterations is emerging as a novel target for treatment in different cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are available, especially in CRC patients. In this review, we report preclinical and clinical data currently available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC patients and the therapeutic opportunities with novel DDR inhibitors.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andrea Boutros
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0105553301 (ext.3302); Fax: +39-0105555141
| |
Collapse
|
29
|
Efficacy of Retreatment with Oxaliplatin-Based Regimens in Metastatic Colorectal Cancer Patients: The RETROX-CRC Retrospective Study. Cancers (Basel) 2022; 14:cancers14051197. [PMID: 35267504 PMCID: PMC8909235 DOI: 10.3390/cancers14051197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Background: oxaliplatin with fluoropyrimidine is a “mainstay” regarding the upfront treatment of metastatic colorectal cancer (mCRC). In contrast, the efficacy and safety of oxaliplatin-based regimens in late-care settings have been poorly reported. Methods: we identified a real-world mCRC patient cohort who were re-treated with oxaliplatin, and in which clinicopathological features were retrospectively analyzed to identify efficacy–predictive determinants (RETROX-CRC study). Results: of 2606 patients, 119 fulfilled the eligibility criteria. Oxaliplatin retreatment response rate (RR) and disease control rate (DCR) were 21.6% (CI 14.4–31.0%), and 57.8% (CI 47.7–67.4). A trend towards better RR and DCR was observed among patients who had first oxaliplatin in an adjuvant setting; a poorer outcome was observed if two or more intervening treatments were delivered. Median progression-free survival (PFS) was 5.1 months (95%CI 4.3–6.1), reducing to 4.0 months (95%CI 3.07–5.13) if oxaliplatin was readministered beyond third-line (HR 2.02; 1.25–3.25; p = 0.004). Safety data were retrieved in 65 patients (54.6%); 18.5% (12/65) and 7.7% (5/65) had G3–4 toxicities. Toxicities led to discontinuation in 34/119 (28.6%). Conclusions: oxaliplatin retreatment produced further RR in around one-fifth of patients and DCR 57.8%. Efficacy decreased in more pre-treated patients and around one-third of patients discontinued treatment due to adverse events. Translational studies improving patient selection are warranted.
Collapse
|
30
|
The role of PARP inhibitors in gastrointestinal cancers. Crit Rev Oncol Hematol 2022; 171:103621. [PMID: 35124199 DOI: 10.1016/j.critrevonc.2022.103621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022] Open
Abstract
The use of BReast CAncer (BRCA) mutations as biomarkers for sensitivity to DNA damage response (DDR) targeted drugs and platinum agents is well documented in breast and gynaecological cancers. More recently the successful use DDR targeted therapies including poly (ADP-ribose) polymerases (PARP) inhibitors has been shown to extend to other germline and somatic deficiencies within the homologous recombination (HR) pathway1-3. Gastrointestinal (GI) cancers are lagging behind other tumour types when it comes to personalising treatment with targeted therapies. Current methods of identifying PARP-inhibitor sensitivity in gastrointestinal cancers are based on analogies from other cancer types despite there being a lack of uniformity in determining HR status between tumour types. There is an urgent clinical need to better understand the treatment implications of DDR alterations in gastrointestinal cancers. We have reviewed PARP-inhibitor use in pancreatic, gastroesophageal, hepatobiliary and colorectal cancers and explored HRD as a biomarker for sensitivity to PARP-inhibitors.
Collapse
|
31
|
Papageorgiou GI, Fergadis E, Skouteris N, Christakos E, Tsakatikas SA, Lianos E, Kosmas C. Case Report: Combination of Olaparib With Chemotherapy in a Patient With ATM-Deficient Colorectal Cancer. Front Oncol 2022; 11:788809. [PMID: 35004311 PMCID: PMC8728007 DOI: 10.3389/fonc.2021.788809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Poly-ADP ribose polymerase (PARP) inhibitors are constantly increasing in their indications for use as anti-cancer treatment in various neoplasms, the majority of which are linked with BRCA deficiency. Preclinical data support the investigation of PARP inhibitors in other neoplasms exhibiting “BRCAness” or homologous recombination deficiency (HRD) as monotherapy as well as in combination with chemotherapy. With the current report we present the case of a heavily pretreated 55-year-old male patient diagnosed with stage IV ATM-deficient CRC, who was effectively treated with an off-label olaparib-irinotecan combination after exhaustion of all available treatment choices; furthermore, we discuss the existing data providing evidence for the use of PARP inhibitors in ATM-deficient CRC and encourage the implementation of next-generation sequencing (NGS) in patients with no other available treatment options.
Collapse
Affiliation(s)
- Georgios I Papageorgiou
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Evangelos Fergadis
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Nikos Skouteris
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Evridiki Christakos
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Sergios A Tsakatikas
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Evangelos Lianos
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| | - Christos Kosmas
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, ''Metaxa'' Cancer Hospital, Piraeus, Greece
| |
Collapse
|
32
|
Molecular characteristics and clinical outcomes of patients with Neurofibromin 1-altered metastatic colorectal cancer. Oncogene 2022; 41:260-267. [PMID: 34728807 PMCID: PMC8738154 DOI: 10.1038/s41388-021-02074-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
Loss-of-function alterations of Neurofibromin 1 (NF1) activate RAS, a driver of colorectal cancer. However, the clinical implications of NF1 alterations are largely unknown. We performed a comprehensive molecular profiling of NF1-mutant colorectal cancer using data from 8150 patients included in a dataset of commercial CLIA-certified laboratory (Caris Life Sciences). In addition, NF1 expression levels were tested for associations with clinical outcomes using data from 431 patients in the CALGB/SWOG 80405 trial. In the Caris dataset, 2.2% of patients had pathogenic or presumed pathogenic NF1 mutations. NF1-mutant tumors more frequently harbored PIK3CA (25.0% vs. 16.7%) and PTEN mutations (24.0% vs. 4.2%) than wild type tumors. Gene set enrichment analysis revealed that MAPK and PI3K pathway signatures were enriched in NF1-mutant tumors. In the CALGB/SWOG 80405 cohort, low NF1 expression was associated with poor prognosis, and high NF1 expression was associated with better efficacy of cetuximab than bevacizumab. Together, we revealed concurrent genetic alterations in the PI3K pathways in NF1-mutant tumors, suggesting the need to simultaneously block MAPK and PI3K pathways in treatment. The potential of NF1 alteration as a novel biomarker for targeted therapy was highlighted, warranting further investigations in clinical settings.
Collapse
|
33
|
Abstract
ABSTRACT DNA damage response and repair (DDR) is responsible for ensuring genomic integrity. It is composed of intricate, complex pathways that detect various DNA insults and then activate pathways to restore DNA fidelity. Mutations in this network are implicated in many malignancies but can also be exploited for cancer therapies. The advent of inhibitors of poly(ADP-ribose) polymerase has led to the investigation of other DDR inhibitors and combinations to address high unmet needs in cancer therapeutics. Specifically, regimens, often in combination with chemotherapy, radiation, or other DDR inhibitors, are being investigated. This review will focus on 4 main DDR pathways-ATR/CHK1, ATM/CHK2, DNA-PKcs, and polymerase θ-and the current state of clinical research and use of the inhibitors of these pathways with other DDR inhibitors.
Collapse
|
34
|
Eefsen RL, Simonsen KS, Grundtvig P, Klarskov L, Chen IM, Høgdall D, Jensen BV, Lorentzen T, Poulsen TS, Theile S, Nielsen D, Høgdall E. Genomic landscape of treatment refractory metastatic colorectal cancer. Acta Oncol 2021; 60:1621-1628. [PMID: 34606390 DOI: 10.1080/0284186x.2021.1984575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Metastatic colorectal cancer (mCRC) is a complex and heterogeneous disease with few standard and targeted treatment options. Next-generation sequencing of tumor tissue was performed to identify cancer driver mutations to discover possible personalized treatment options, as targeted treatment possibilities are limited for this patient population. Results of genomic sequencing in patients with treatment-refractory mCRC are described in this retrospective analysis. MATERIAL AND METHODS Clinico-pathological characteristics and genomic sequence results of consecutive patients with refractory mCRC, referred to the Experimental Cancer Therapy Unit (ECTU) at Department of Oncology, Herlev & Gentofte Hospital in the period from 1 October 2015 to 14 December 2018 were reviewed in this retrospective analysis. Tumor tissue from the patients was analyzed by next-generation sequencing using the Oncomine Comprehensive primer panel to detect actionable variants of cancer driver mutations and microsatellite instability status. From August 2018 tumor mutational burden was also analyzed. RESULTS A total of 80 patients with treatment-refractory mCRC and in a fairly good performance were referred to the ECTU during this period. Genomic sequencing of tumor tissue was performed for all 80 patients and a cancer driver mutation was identified in 90% (n = 72) of the patients. A total of 31.3% (n = 25) of the patients received therapy either as targetable therapy outside an available trial (n = 2), FDA approved therapy (n = 2), or treatment in phase 1 or 2 trials, independent of the genomic signature 26.3% (n = 21). CONCLUSION Most mCRC patients refractory to standard anti-neoplastic therapies, presented with a cancer driver mutation, however, only a few of these mutations gave rise to matched therapies as only 2.5% of the patients from this period received targeted therapy.
Collapse
Affiliation(s)
- R. L. Eefsen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - K. S. Simonsen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - P. Grundtvig
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - L. Klarskov
- Department of Pathology, Herlev Gentofte Hospital, Herlev, Denmark
| | - I. M. Chen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - D. Høgdall
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - B. V. Jensen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - T. Lorentzen
- Department of Surgery, Herlev Gentofte Hospital, Herlev, Denmark
| | - T. S. Poulsen
- Department of Pathology, Herlev Gentofte Hospital, Herlev, Denmark
| | - S. Theile
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - D. Nielsen
- Department of Oncology, Herlev Gentofte Hospital, Herlev, Denmark
| | - E. Høgdall
- Department of Pathology, Herlev Gentofte Hospital, Herlev, Denmark
| |
Collapse
|
35
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
36
|
Romeo MA, Gilardini Montani MS, Benedetti R, Arena A, Maretto M, Bassetti E, Caiazzo R, D'Orazi G, Cirone M. Anticancer effect of AZD2461 PARP inhibitor against colon cancer cells carrying wt or dysfunctional p53. Exp Cell Res 2021; 408:112879. [PMID: 34653407 DOI: 10.1016/j.yexcr.2021.112879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Colon cancer is one of the most common cancers, currently treated with traditional chemotherapies or alternative therapies. However, these treatments are still not enough effective and induce several side effects, so that the search of new therapeutic strategies is needed. The use of Poly-(ADP-ribose)-polymerase (PARP) inhibitors, although originally approved against BRCA-1 or BRCA-2 mutated cancers, has been extended, particularly in combination with other treatments, to cure cancers that do not display defects in DNA repair signaling pathways. The role of p53 oncosuppressor in the regulating the outcome of PARP inhibitor treatment remains an open issue. In this study, we addressed this topic by using a well-tolerated PARP 1/2/3 inhibitor, namely AZD2461, against colon cancer cell lines with different p53 status. We found that AZD2461 reduced cell proliferation in wtp53 and p53-/- cancer cells by increasing ROS and DNA damage, while R273H mutant (mut) p53 counteracted these effects. Moreover, AZD2461 improved the reduction of cell proliferation by low dose radiation (IR) in wtp53 cancer cells, in which a down-regulation of BRCA-1 occurred. AZD2461 did not affect cell proliferation of mutp53 colon cancer cells also in combination with low dose radiation, suggesting that only wt p53 or p53 null colon cancer cells could benefit AZD2461 treatment.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Maria Saveria Gilardini Montani
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Mara Maretto
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy
| | - Erica Bassetti
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Rossella Caiazzo
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Gabriella D'Orazi
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio" Chieti, Italy; Department of Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Italy. Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
37
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
38
|
Moretto R, Elliott A, Zhang J, Arai H, Germani MM, Conca V, Xiu J, Stafford P, Oberley M, Abraham J, Spetzler D, Rossini D, Antoniotti C, Marshall J, Shields A, Lopes G, Lonardi S, Pietrantonio F, Tomasello G, Passardi A, Tamburini E, Santini D, Aprile G, Masi G, Falcone A, Lenz HJ, Korn M, Cremolini C. Homologous Recombination Deficiency Alterations in Colorectal Cancer: Clinical, Molecular, and Prognostic Implications. J Natl Cancer Inst 2021; 114:271-279. [PMID: 34469533 DOI: 10.1093/jnci/djab169] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tumors with homologous recombination (HR) deficiency (HRD) show high sensitivity to platinum salts and PARP-inhibitors in several malignancies. In colorectal cancer (CRC), the role of HRD alterations is mostly unknown. METHODS Next generation sequencing, whole transcriptome sequencing and whole exome sequencing were conducted using CRC samples submitted to a commercial Clinical Laboratory Improvement Amendments (CLIA) certified laboratory. Tumors with pathogenic/presumed pathogenic mutations in 33 genes involved in the HR pathway were considered HRD, the others HR proficient (HRP). Furthermore, tumor samples from patients enrolled in the phase III TRIBE2 study comparing upfront FOLFOXIRI/bevacizumab versus FOLFOX/bevacizumab were analyzed with next generation sequencing. The analyses were separately conducted in microsatellite stable/proficient mismatch repair (MSS/pMMR) and microsatellite instable-high/deficient mismatch repair (MSI-H/dMMR) groups. All statistical tests were 2-sided. RESULTS Of 9321 CRC tumors, 1270 (13.6%) and 8051 (86.4%) were HRD and HRP, respectively. HRD tumors were more frequent among MSI-H/dMMR than MSS/pMMR tumors (73.4% vs 9.5%, p and q < 0.001). In MSS/pMMR group, HRD tumors were more frequently tumor mutational burden high (8.1% vs 2.2% P and q < 0.001) and PD-L1 positive (5.0% vs 2.4%, P and q = 0.001), enriched in all immune cell and fibroblast populations, and genomic loss of heterozygosity-high (16.2% vs 9.5%, P = .03). In the TRIBE2 study, patients with MSS/pMMR and HRD tumors (10.7%) showed longer overall survival compared to MSS/pMMR and HRP ones (40.2 vs 23.8 months; hazard ratio = 0.66; 95% confidence interval = 0.45-0.98, P = .04). Consistent results were reported in the multivariable model (hazard ratio = 0.67; 95% confidence ratio = 0.45-1.02, P = .07). No interaction effect was evident between HR groups and treatment arm. CONCLUSIONS HRD tumors are a distinctive subgroup of MSS/pMMR CRCs with specific molecular and prognostic characteristics. The potential efficacy of agents targeting the HR system and immune check-point inhibitors in this subgroup is worth of clinical investigation.
Collapse
Affiliation(s)
- Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Andrew Elliott
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Jian Zhang
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Hiroyuki Arai
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Veronica Conca
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Joanne Xiu
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Phillip Stafford
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Matthew Oberley
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Jim Abraham
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - David Spetzler
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Daniele Rossini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - John Marshall
- Division of Hematology/Oncology, Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C, ., USA
| | - Anthony Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Gilberto Lopes
- Division of Medical Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Sara Lonardi
- Early Phase Clinical Trial Unit, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Medical Oncology Unit 1, Department of Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology and Hemato-oncology Department, University of Milan, Milan, Italy
| | - Gianluca Tomasello
- Oncology Unit, Oncology Department, ASST of Cremona, Cremona, Italy.,UOC Medical Oncology, IRCCS Foundation Ca' Granda Maggiore Hospital Policlinic, Milan, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Emiliano Tamburini
- Department of Oncology and Palliative Care, Cardinale G Panico, Tricase City Hospital, Tricase, Italy
| | - Daniele Santini
- Department of Medical Oncology, University Campus Biomedico, Rome, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Michael Korn
- Clinical & Translational Research, Medical Affairs, Caris Life Sciences, Phoenix, AZ, USA
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Precision oncology in metastatic colorectal cancer - from biology to medicine. Nat Rev Clin Oncol 2021; 18:506-525. [PMID: 33864051 DOI: 10.1038/s41571-021-00495-z] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Remarkable progress has been made in the development of biomarker-driven targeted therapies for patients with multiple cancer types, including melanoma, breast and lung tumours, although precision oncology for patients with colorectal cancer (CRC) continues to lag behind. Nonetheless, the availability of patient-derived CRC models coupled with in vitro and in vivo pharmacological and functional analyses over the past decade has finally led to advances in the field. Gene-specific alterations are not the only determinants that can successfully direct the use of targeted therapy. Indeed, successful inhibition of BRAF or KRAS in metastatic CRCs driven by activating mutations in these genes requires combinations of drugs that inhibit the mutant protein while at the same time restraining adaptive resistance via CRC-specific EGFR-mediated feedback loops. The emerging paradigm is, therefore, that the intrinsic biology of CRC cells must be considered alongside the molecular profiles of individual tumours in order to successfully personalize treatment. In this Review, we outline how preclinical studies based on patient-derived models have informed the design of practice-changing clinical trials. The integration of these experiences into a common framework will reshape the future design of biology-informed clinical trials in this field.
Collapse
|
40
|
Maccaroni E, Giampieri R, Lenci E, Scortichini L, Bianchi F, Belvederesi L, Brugiati C, Pagliaretta S, Ambrosini E, Berardi R. BRCA mutations and gastrointestinal cancers: When to expect the unexpected? World J Clin Oncol 2021; 12:565-580. [PMID: 34367929 PMCID: PMC8317649 DOI: 10.5306/wjco.v12.i7.565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
BRCA1/2 pathogenic variants are widely known as major risk factors mainly for breast and ovarian cancer, while their role in gastrointestinal (GI) malignancies such as colorectal cancer (CRC), gastric cancer and oesophageal cancer (OeC) is still not well established. The main objective of this review is to summarise the available evidence on this matter. The studies included in the review were selected from PubMed/GoogleScholar/ScienceDirect databases to identify published articles where BRCA1/2 pathogenic variants were assessed either as a risk factor or a prognostic/predictive factor in these malignancies. Our review suggests that BRCA1/2 might have a role as a risk factor for colorectal, gastric and OeC, albeit with differences among these diseases: In particular BRCA1 seems to be much more frequently mutated in CRC whereas BRCA2 appears to be much more closely associated with gastric and OeC. Early-onset cancer seems to be also associated with BRCA1/2 mutations and a few studies suggest a positive prognostic role of these mutations. The assessment of a potentially predictive role of these mutations is hampered by the fact that most patients with these diseases have been treated with platinum compounds, where it is expected that a higher probability of response should be seen. A few clinical trials focused on poly (ADP-ribose) polymerase inhibitors use in GI cancers are currently ongoing.
Collapse
Affiliation(s)
- Elena Maccaroni
- Department of Oncology, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| | - Riccardo Giampieri
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| | - Edoardo Lenci
- Department of Oncology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Laura Scortichini
- Department of Oncology, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Francesca Bianchi
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Laura Belvederesi
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Cristiana Brugiati
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Silvia Pagliaretta
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Elisa Ambrosini
- Molecular and Clinical Science Department, Università Politecnica delle Marche, Ancona 60126, Italy
| | - Rossana Berardi
- Department of Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti di Ancona, Ancona 60126, Italy
| |
Collapse
|
41
|
Natural Merosesquiterpenes Activate the DNA Damage Response via DNA Strand Break Formation and Trigger Apoptotic Cell Death in p53-Wild-type and Mutant Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133282. [PMID: 34209047 PMCID: PMC8268692 DOI: 10.3390/cancers13133282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bowel cancer is a serious disease, which affects many people worldwide. Unfortunately, the disease is often diagnosed in an advanced stage, which impairs the chance of survival. Furthermore, resistance to therapy occurs frequently. Thus, novel therapeutic approaches are required to improve cancer therapy. Here, we studied whether merosesquiterpenes might be useful for cancer treatment. These compounds occur in marine sponges and were isolated by our group. We were able to identify three compounds with potent cytotoxic activity in different cell lines established from human large bowel cancer. Our experiments provided evidence that the compounds cause DNA damage and trigger cell death, so-called mitochondrial apoptosis, which was attested in cancer cells with expression of wild-type and mutated p53 tumor suppressor. Finally, we show that merosesquiterpenes also kill intestinal tumor organoids, an ex vivo model of large bowel cancer. Abstract Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.
Collapse
|
42
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
43
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
44
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
45
|
Patelli G, Tosi F, Amatu A, Mauri G, Curaba A, Patanè DA, Pani A, Scaglione F, Siena S, Sartore-Bianchi A. Strategies to tackle RAS-mutated metastatic colorectal cancer. ESMO Open 2021; 6:100156. [PMID: 34044286 PMCID: PMC8167159 DOI: 10.1016/j.esmoop.2021.100156] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
The RAS oncogene is among the most commonly mutated in cancer. RAS mutations are identified in about half of patients diagnosed with metastatic colorectal cancer (mCRC), conferring poor prognosis and lack of response to anti-epidermal growth factor receptor (EGFR) antibodies. In the last decades, several investigational attempts failed in directly targeting RAS mutations, thus RAS was historically regarded as 'undruggable'. Recently, novel specific KRASG12C inhibitors showed promising results in different solid tumors, including mCRC, renewing interest in this biomarker as a target. In this review, we discuss different strategies of RAS targeting in mCRC, according to literature data in both clinical and preclinical settings. We recognized five main strategies focusing on those more promising: direct RAS targeting, targeting the mitogen-activated protein kinase (MAPK) pathway, harnessing RAS through immunotherapy combinations, RAS targeting through metabolic pathways, and finally other miscellaneous approaches. Direct KRASG12C inhibition is emerging as the most promising strategy in mCRC as well as in other solid malignancies. However, despite good disease control rates, tumor response and duration of response are still limited in mCRC. At this regard, combinational approaches with anti-epidermal growth factor receptor drugs or checkpoint inhibitors have been proposed to enhance treatment efficacy, based on encouraging results achieved in preclinical studies. Besides, concomitant therapies increasing metabolic stress are currently under evaluation and expected to also provide remarkable results in RAS codon mutations apart from KRASG12C. In conclusion, based on hereby reported efforts of translational research, RAS mutations should no longer be regarded as 'undruggable' and future avenues are now opening for translation in the clinic in mCRC.
Collapse
Affiliation(s)
- G Patelli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - A Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - G Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Curaba
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - D A Patanè
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Pani
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - F Scaglione
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy; Clinical Pharmacology Unit, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - S Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy
| | - A Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano (La Statale), Milan, Italy.
| |
Collapse
|
46
|
Di Franco S, Parrino B, Gaggianesi M, Pantina VD, Bianca P, Nicotra A, Mangiapane LR, Lo Iacono M, Ganduscio G, Veschi V, Brancato OR, Glaviano A, Turdo A, Pillitteri I, Colarossi L, Cascioferro S, Carbone D, Pecoraro C, Fiori ME, De Maria R, Todaro M, Screpanti I, Cirrincione G, Diana P, Stassi G. CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin. iScience 2021; 24:102664. [PMID: 34169240 PMCID: PMC8209271 DOI: 10.1016/j.isci.2021.102664] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless of the mutational background, microsatellite stability, and consensus molecular subtype. Synergistic combination of NORA234 and CHK1 (rabusertib) targeting is synthetic lethal inducing death of both CD44v6-negative and CD44v6-positive CRC stem cell fractions, aside from Wnt pathway activity. These data could provide a rational basis to develop an effective strategy for the treatment of patients with CRC. CR-CSCs acquire a long-term resistance to the NORA234 treatment Replicative and genotoxic stress induces the activation of CHK1 Adaptive response to NORA234 is associated with high expression levels of CHK1 NORA234 together with targeting of CHK1 leads to depletion of CR-CSC compartment
Collapse
Affiliation(s)
- Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Paola Bianca
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Annalisa Nicotra
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Gloria Ganduscio
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Ornella Roberta Brancato
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Irene Pillitteri
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| | - Lorenzo Colarossi
- Pathology Unit, Mediterranean Institute of Oncology, Viagrande, Catania, Italy
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Micol Eleonora Fiori
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy.,Policlinico A Gemelli, Lazio, Roma, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | | | - Girolamo Cirrincione
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
47
|
Wang K, Liu M, Wang HW, Jin KM, Yan XL, Bao Q, Xu D, Wang LJ, Liu W, Wang YY, Li J, Liu LJ, Zhang XY, Yang CH, Jin G, Xing BC. Mutated DNA Damage Repair Pathways Are Prognostic and Chemosensitivity Markers for Resected Colorectal Cancer Liver Metastases. Front Oncol 2021; 11:643375. [PMID: 33869034 PMCID: PMC8045762 DOI: 10.3389/fonc.2021.643375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 12/24/2022] Open
Abstract
Deficiency of the DNA damage repair (DDR) signaling pathways is potentially responsible for genetic instability and oncogenesis in tumors, including colorectal cancer. However, the correlations of mutated DDR signaling pathways to the prognosis of colorectal cancer liver metastasis (CRLM) after resection and other clinical applications have not been fully investigated. Here, to test the potential correlation of mutated DDR pathways with survival and pre-operative chemotherapy responses, tumor tissues from 146 patients with CRLM were collected for next-generation sequencing with a 620-gene panel, including 68 genes in 7 DDR pathways, and clinical data were collected accordingly. The analyses revealed that 137 of 146 (93.8%) patients had at least one mutation in the DDR pathways. Mutations in BER, FA, HRR and MMR pathways were significantly correlated with worse overall survival than the wild-types (P < 0.05), and co-mutated DDR pathways showed even more significant correlations (P < 0.01). The number of mutated DDR pathways was also proved an independent stratifying factor of overall survival by Cox multivariable analysis with other clinical factors and biomarkers (hazard ratio = 9.14; 95% confidence interval, 1.21–68.9; P = 0.032). Additionally, mutated FA and MMR pathways were positively and negatively correlated with the response of oxaliplatin-based pre-operative chemotherapy (P = 0.0095 and 0.048, respectively). Mutated DDR signaling pathways can predict pre-operative chemotherapy response and post-operative survival in CRLM patients.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Ming Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Hong-Wei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Ke-Min Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Luan Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Quan Bao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Li-Jun Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Wei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Yan-Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Juan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Li-Juan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| | - Xiao-Yu Zhang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Chun-He Yang
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Ge Jin
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd., Shanghai, China
| | - Bao-Cai Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
48
|
Wang XQ, Xu SW, Wang W, Piao SZ, Mao XL, Zhou XB, Wang Y, Wu WD, Ye LP, Li SW. Identification and Validation of a Novel DNA Damage and DNA Repair Related Genes Based Signature for Colon Cancer Prognosis. Front Genet 2021; 12:635863. [PMID: 33719345 PMCID: PMC7943631 DOI: 10.3389/fgene.2021.635863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Colorectal cancer (CRC) with high incidence, has the third highest mortality of tumors. DNA damage and repair influence a variety of tumors. However, the role of these genes in colon cancer prognosis has been less systematically investigated. Here, we aim to establish a corresponding prognostic signature providing new therapeutic opportunities for CRC. Method: After related genes were collected from GSEA, univariate Cox regression was performed to evaluate each gene's prognostic relevance through the TCGA-COAD dataset. Stepwise COX regression was used to establish a risk prediction model through the training sets randomly separated from the TCGA cohort and validated in the remaining testing sets and two GEO datasets (GSE17538 and GSE38832). A 12-DNA-damage-and-repair-related gene-based signature able to classify COAD patients into high and low-risk groups was developed. The predictive ability of the risk model or nomogram were evaluated by different bioinformatics- methods. Gene functional enrichment analysis was performed to analyze the co-expressed genes of the risk-based genes. Result: A 12-gene based prognostic signature established within 160 significant survival-related genes from DNA damage and repair related gene sets performed well with an AUC of ROC 0.80 for 5 years in the TCGA-CODA dataset. The signature includes CCNB3, ISY1, CDC25C, SMC1B, MC1R, LSP1P4, RIN2, TPM1, ELL3, POLG, CD36, and NEK4. Kaplan-Meier survival curves showed that the prognosis of the risk status owns more significant differences than T, M, N, and stage prognostic parameters. A nomogram was constructed by LASSO regression analysis with T, M, N, age, and risk as prognostic parameters. ROC curve, C-index, Calibration analysis, and Decision Curve Analysis showed the risk module and nomogram performed best in years 1, 3, and 5. KEGG, GO, and GSEA enrichment analyses suggest the risk involved in a variety of important biological processes and well-known cancer-related pathways. These differences may be the key factors affecting the final prognosis. Conclusion: The established gene signature for CRC prognosis provides a new molecular tool for clinical evaluation of prognosis, individualized diagnosis, and treatment. Therapies based on targeted DNA damage and repair mechanisms may formulate more sensitive and potential chemotherapy regimens, thereby expanding treatment options and potentially improving the clinical outcome of CRC patients.
Collapse
Affiliation(s)
- Xue-quan Wang
- Laboratory of Cellular and Molecular Radiation Oncology, Department of Radiation Oncology, Radiation Oncology Institute of Enze Medical Health Academy, Affiliated Taizhou Hospital of Wenzhou Medical University, Taizhou, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Shi-wen Xu
- Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Wenzhou Medical University, Wenzhou, China
| | - Song-zhe Piao
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yi Wang
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wei-dan Wu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Li-ping Ye
- Wenzhou Medical University, Wenzhou, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
49
|
Sari AN, Elwakeel A, Dhanjal JK, Kumar V, Sundar D, Kaul SC, Wadhwa R. Identification and Characterization of Mortaparib Plus-A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers (Basel) 2021; 13:cancers13040835. [PMID: 33671256 PMCID: PMC7921971 DOI: 10.3390/cancers13040835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
p53 has an essential role in suppressing the carcinogenesis process by inducing cell cycle arrest/apoptosis/senescence. Mortalin/GRP75 is a member of the Hsp70 protein family that binds to p53 causing its sequestration in the cell cytoplasm. Hence, p53 cannot translocate to the nucleus to execute its canonical tumour suppression function as a transcription factor. Abrogation of mortalin-p53 interaction and subsequent reactivation of p53's tumour suppression function has been anticipated as a possible approach in developing a novel cancer therapeutic drug candidate. A chemical library was screened in a high-content screening system to identify potential mortalin-p53 interaction disruptors. By four rounds of visual assays for mortalin and p53, we identified a novel synthetic small-molecule triazole derivative (4-[(1E)-2-(2-phenylindol-3-yl)-1-azavinyl]-1,2,4-triazole, henceforth named MortaparibPlus). Its activities were validated using multiple bioinformatics and experimental approaches in colorectal cancer cells possessing either wild-type (HCT116) or mutant (DLD-1) p53. Bioinformatics and computational analyses predicted the ability of MortaparibPlus to competitively prevent the interaction of mortalin with p53 as it interacted with the p53 binding site of mortalin. Immunoprecipitation analyses demonstrated the abrogation of mortalin-p53 complex formation in MortaparibPlus-treated cells that showed growth arrest and apoptosis mediated by activation of p21WAF1, or BAX and PUMA signalling, respectively. Furthermore, we demonstrate that MortaparibPlus-induced cytotoxicity to cancer cells is mediated by multiple mechanisms that included the inhibition of PARP1, up-regulation of p73, and also the down-regulation of mortalin and CARF proteins that play critical roles in carcinogenesis. MortaparibPlus is a novel multimodal candidate anticancer drug that warrants further experimental and clinical attention.
Collapse
Affiliation(s)
- Anissa Nofita Sari
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Ahmed Elwakeel
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
| | - Jaspreet Kaur Dhanjal
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110-016, India; (V.K.); (D.S.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- Correspondence: (S.C.K.); (R.W.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 5-41, Tsukuba 305-8565, Japan; (A.N.S.); (A.E.); (J.K.D.)
- School of Integrative & Global Majors (SIGMA), University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence: (S.C.K.); (R.W.)
| |
Collapse
|
50
|
Guo E, Wu C, Ming J, Zhang W, Zhang L, Hu G. The Clinical Significance of DNA Damage Repair Signatures in Clear Cell Renal Cell Carcinoma. Front Genet 2021; 11:593039. [PMID: 33488669 PMCID: PMC7820869 DOI: 10.3389/fgene.2020.593039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
DNA damage repair plays an important role in cancer’s initiation and progression, and in therapeutic resistance. The prognostic potential of damage repair indicators was studied in the case of clear cell renal cell carcinoma (ccRCC). Gene expression profiles of the disease were downloaded from cancer genome databases and gene ontology was applied to the DNA repair-related genes. Twenty-six differentially expressed DNA repair genes were identified, and regression analysis was used to identify those with prognostic potential and to construct a risk model. The model accurately predicted patient outcomes and distinguished among patients with different expression levels of immune evasion genes. The data indicate that DNA repair genes can be valuable for predicting the progression of clear cell renal cell carcinoma and the clinical benefits of immunotherapy.
Collapse
Affiliation(s)
- Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| | - Jun Ming
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| | - Wei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan
| |
Collapse
|