1
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
2
|
Canino F, Moscetti L, Borghi V, Dominici M, Piacentini F. Palbociclib in a patient with HR+/HER2- advanced breast cancer and HIV1 infection: a case report. BREAST CANCER MANAGEMENT 2021. [DOI: 10.2217/bmt-2021-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The use of drugs that affect the cell cycle represents one of the common strategies for the control of some unrelated pathologies, such as chronic viral HIV infections or cancer. The authors report the case of a patient followed for a hormone receptor-positive (HR+)/HER2 negative (HER2-) advanced breast cancer, treated with hormone therapy and CDK 4/6 inhibitors, and a concomitant HIV infection under antiretroviral treatment. The authors consider the function of the sterile alpha motif and HD domain-containing protein-1 (SAMHD1) enzyme, its implications in the control of viral replication and the correlation between its activity and the mechanism of action of the CDK 4/6 inhibitor palbociclib.
Collapse
Affiliation(s)
- Fabio Canino
- Division of Oncology, Department of Oncology & Hematology, University Hospital of Modena, Modena, Italy
| | - Luca Moscetti
- Division of Oncology, Department of Oncology & Hematology, University Hospital of Modena, Modena, Italy
| | - Vanni Borghi
- Division of Infectious Diseases, Department of Specialized Medicine, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical & Surgical Sciences for Children & Adults, University Hospital of Modena, Italy
| | - Federico Piacentini
- Division of Oncology, Department of Medical & Surgical Sciences for Children & Adults, University Hospital of Modena, Italy
| |
Collapse
|
3
|
Badia R, Pujantell M, Torres-Torronteras J, Menéndez-Arias L, Martí R, Ruzo A, Pauls E, Clotet B, Ballana E, Esté JA, Riveira-Muñoz E. SAMHD1 is active in cycling cells permissive to HIV-1 infection. Antiviral Res 2017; 142:123-135. [PMID: 28359840 DOI: 10.1016/j.antiviral.2017.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/24/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
SAMHD1 is a triphosphohydrolase that restricts HIV-1 by limiting the intracellular dNTP pool required for reverse transcription. Although SAMHD1 is expressed and active/unphosphorylated in most cell lines, its restriction activity is thought to be relevant only in non-cycling cells. However, an in depth evaluation of SAMHD1 function and relevance in cycling cells is required. Here, we show that SAMHD1-induced degradation by HIV-2 Vpx affects the dNTP pool and HIV-1 replication capacity in the presence of the 3'-azido-3'-deoxythymidine (AZT) in cycling cells. Similarly, in SAMHD1 knockout cells, HIV-1 showed increased replicative capacity in the presence of nucleoside inhibitors, especially AZT, that was reverted by re-expression of wild type SAMHD1. Sensitivity to non-nucleoside inhibitors (nevirapine and efavirenz) or the integrase inhibitor raltegravir was not affected by SAMHD1. Combination of three mutations (S18A, T21A, T25A) significantly prevented SAMHD1 phosphorylation but did not significantly affect HIV-1 replication in the presence of AZT. Our results demonstrate that SAMHD1 is active in HIV-1 permissive cells, does not modify susceptibility to HIV-1 infection but strongly affects sensitivity to nucleoside inhibitors.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Albert Ruzo
- Laboratory of Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eduardo Pauls
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
4
|
Ruiz A, Pauls E, Badia R, Torres-Torronteras J, Riveira-Muñoz E, Clotet B, Martí R, Ballana E, Esté JA. Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 2016; 14:1657-65. [PMID: 25927932 DOI: 10.1080/15384101.2015.1030558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Cyclins control the activation of cyclin-dependent kinases (CDK), which in turn, control the cell cycle and cell division. Intracellular availability of deoxynucleotides (dNTP) plays a fundamental role in cell cycle progression. SAM domain and HD domain-containing protein 1 (SAMHD1) degrades nucleotide triphosphates and controls the size of the dNTP pool. SAMHD1 activity appears to be controlled by CDK. Here, we show that knockdown of cyclin D3 a partner of CDK6 and E2 a partner of CDK2 had a major impact in SAMHD1 phosphorylation and inactivation and led to decreased dNTP levels and inhibition of HIV-1 at the reverse transcription step in primary human macrophages. The effect of cyclin D3 RNA interference was lost after degradation of SAMHD1 by HIV-2 Vpx, demonstrating the specificity of the mechanism. Cyclin D3 inhibition correlated with decreased activation of CDK2. Our results confirm the fundamental role of the CDK6-cyclin D3 pair in controlling CDK2-dependent SAMHD1 phosphorylation and dNTP pool in primary macrophages.
Collapse
Affiliation(s)
- Alba Ruiz
- a AIDS Research Institute-IrsiCaixa and AIDS Unit; Hospital Germans Trias i Pujol; Universitat Autonoma de Barcelona ; Badalona , Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hollenbaugh JA, Montero C, Schinazi RF, Munger J, Kim B. Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology 2016; 491:106-14. [PMID: 26895248 DOI: 10.1016/j.virol.2016.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022]
Abstract
We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC-MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Catherine Montero
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14627, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Health Sciences Research Building, Emory University, 1760 Haygood Drive, Atlanta, GA 30322, USA; Department of Pharmacy, Kyung-Hee University, Seoul, South Korea; Children's Healthcare of Atlanta, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Badia R, Angulo G, Riveira-Muñoz E, Pujantell M, Puig T, Ramirez C, Torres-Torronteras J, Martí R, Pauls E, Clotet B, Ballana E, Esté JA. Inhibition of herpes simplex virus type 1 by the CDK6 inhibitor PD-0332991 (palbociclib) through the control of SAMHD1. J Antimicrob Chemother 2015; 71:387-94. [PMID: 26542306 DOI: 10.1093/jac/dkv363] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/02/2015] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) has been shown to restrict retroviruses and DNA viruses by decreasing the pool of intracellular deoxynucleotides. In turn, SAMHD1 is controlled by cyclin-dependent kinases (CDK) that regulate the cell cycle and cell proliferation. Here, we explore the effect of CDK6 inhibitors on the replication of herpes simplex virus type 1 (HSV-1) in primary monocyte-derived macrophages (MDM). METHODS MDM were treated with palbociclib, a selective CDK4/6 inhibitor, and then infected with a GFP-expressing HSV-1. Intracellular deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS CDK6 inhibitor palbociclib blocked SAMHD1 phosphorylation, intracellular dNTP levels and HSV-1 replication in MDM at subtoxic concentrations. Treatment of MDM with palbociclib reduced CDK2 activation, measured as the phosphorylation of the T-loop at Thr160. The antiviral activity of palbociclib was lost when SAMHD1 was degraded by viral protein X. Similarly, palbociclib did not block HSV-1 replication in SAMHD1-negative Vero cells at subtoxic concentrations, providing further evidence for a role of SAMHD1 in mediating the antiviral effect. CONCLUSIONS SAMHD1-mediated HSV-1 restriction is controlled by CDK and points to a preferential role for CDK6 and CDK2 as mediators of SAMHD1 activation. Similarly, the restricting activity of SAMHD1 against DNA viruses suggests that control of dNTP availability is the major determinant of its antiviral activity. This is the first study describing the anti-HSV-1 activity of palbociclib.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Guillem Angulo
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Cristina Ramirez
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Eduardo Pauls
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute - IrsiCaixa, and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
7
|
Hollenbaugh JA, Schader SM, Schinazi RF, Kim B. Differential regulatory activities of viral protein X for anti-viral efficacy of nucleos(t)ide reverse transcriptase inhibitors in monocyte-derived macrophages and activated CD4(+) T cells. Virology 2015; 485:313-21. [PMID: 26319213 PMCID: PMC4619155 DOI: 10.1016/j.virol.2015.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/27/2015] [Accepted: 08/08/2015] [Indexed: 01/05/2023]
Abstract
Vpx encoded by HIV-2 and SIVsm enhances retroviral reverse transcription in macrophages in vitro by mediating the degradation of the host SAMHD1 protein that hydrolyzes dNTPs and by elevating cellular dNTP levels. Here we employed RT-SHIV constructs (SIV encoding HIV-1 RT) to investigate the contribution of Vpx to the potency of NRTIs, which compete against dNTPs, in monocyte-derived macrophages (MDMs) and activated CD4(+) T cells. Relative to HIV-1, both SIV and RT-SHIV exhibited reduced sensitivities to AZT, 3TC and TDF in MDMs but not in activated CD4(+) T cells. However, when SIV and RT-SHIV constructs not coding for Vpx were utilized, we observed greater sensitivities to all NRTIs tested using activated CD4(+) T cells relative to the Vpx-coding counterparts. This latter phenomenon was observed for AZT only when using MDMs. Our data suggest that Vpx in RT-SHIVs may underestimate the antiviral efficacy of NRTIs in a cell type dependent manner.
Collapse
Affiliation(s)
- Joseph A Hollenbaugh
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Susan M Schader
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Raymond F Schinazi
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; Veterans Affairs Medical Center, Atlanta, GA, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory University, Atlanta, GA, USA; College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
8
|
Ballana E, Esté JA. SAMHD1: at the crossroads of cell proliferation, immune responses, and virus restriction. Trends Microbiol 2015; 23:680-692. [PMID: 26439297 DOI: 10.1016/j.tim.2015.08.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
SAMHD1 is a triphosphohydrolase enzyme that controls the intracellular level of deoxyribonucleoside triphosphates (dNTPs) and plays a role in innate immune sensing and autoimmune disease. SAMHD1 has also been identified as an intrinsic virus restriction factor, inactivated through degradation by HIV-2 Vpx or through a post-transcriptional regulatory mechanism. Phosphorylation of SAMHD1 by cyclin-dependent kinases has been strongly associated with inactivation of the virus restriction mechanism, providing an association between virus replication and cell proliferation. Tight regulation of cell proliferation suggests that viruses, particularly HIV-1 replication, latency, and reactivation, may be similarly controlled by multiple checkpoint mechanisms that, in turn, regulate dNTP levels. In this review, we discuss how SAMHD1 is a viral restriction factor, the mechanism associated with viral restriction, the pathway leading to its inactivation in proliferating cells, and how strategies aimed at controlling virus restriction could lead to a functional cure for HIV.
Collapse
Affiliation(s)
- Ester Ballana
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain.
| |
Collapse
|
9
|
Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity. AIDS 2014; 28:2213-22. [PMID: 25036183 DOI: 10.1097/qad.0000000000000399] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sterile α motif and HD domain-containing protein-1 (SAMHD1) inhibits HIV-1 reverse transcription by decreasing the pool of intracellular deoxynucleotides. SAMHD1 is controlled by cyclin-dependent kinase (CDK)-mediated phosphorylation. However, the exact mechanism of SAMHD1 regulation in primary cells is unclear. We explore the effect of palbociclib, a CDK6 inhibitor, in HIV-1 replication. METHODS Human primary monocytes were differentiated into macrophages with monocyte-colony stimulating factor and CD4 T lymphocytes stimulated with phytohaemagglutinin (PHA)/interleukin-2. Cells were treated with palbociclib and then infected with a Green fluorescent protein-expressing HIV-1 or R5 HIV-1 BaL. Viral DNA was measured by quantitative PCR and infection assessed by flow cytometry. Deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS Pan-CDK inhibitors AT7519, roscovitine and purvalanol A reduced SAMHD1 phosphorylation. HIV-1 replication was blocked by AT7519 (66.4 ± 3.8%; n = 4), roscovitine (47.3 ± 3.9%; n = 4) and purvalanol A (55.7 ± 15.7%; n = 4) at subtoxic concentrations. Palbociclib, a potent and selective CDK6 inhibitor, blocked SAMHD1 phosphorylation, intracellular dNTP levels, HIV-1 reverse transcription and HIV-1 replication in primary macrophages and CD4 T lymphocytes. Notably, treatment of macrophages with palbociclib led to reduced CDK2 activation, measured as the phosphorylation of the T-loop at the Thr160. The antiviral effect was lost when SAMHD1 was degraded by Vpx, providing further evidence for a role of SAMHD1 in mediating the antiretroviral effect. CONCLUSIONS Our results indicate that SAMHD1-mediated HIV-1 restriction is controlled by CDK as previously suggested but point to a preferential role for CDK2 and CDK6 as mediators of SAMHD1 activation. Our study provides a new signaling pathway susceptible for the development of new therapeutic approaches against HIV-1 infection.
Collapse
|
10
|
Ruiz A, Pauls E, Badia R, Riveira-Muñoz E, Clotet B, Ballana E, Esté JA. Characterization of the influence of mediator complex in HIV-1 transcription. J Biol Chem 2014; 289:27665-76. [PMID: 25100719 DOI: 10.1074/jbc.m114.570341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HIV-1 exploits multiple host proteins during infection. siRNA-based screenings have identified new proteins implicated in different pathways of the viral cycle that participate in a broad range of cellular functions. The human Mediator complex (MED) is composed of 28 elements and represents a fundamental component of the transcription machinery, interacting with the RNA polymerase II enzyme and regulating its ability to express genes. Here, we provide an evaluation of the MED activity on HIV replication. Knockdown of 9 out of 28 human MED proteins significantly impaired viral replication without affecting cell viability, including MED6, MED7, MED11, MED14, MED21, MED26, MED27, MED28, and MED30. Impairment of viral replication by MED subunits was at a post-integration step. Inhibition of early HIV transcripts was observed by siRNA-mediated knockdown of MED6, MED7, MED11, MED14, and MED28, specifically affecting the transcription of the nascent viral mRNA transactivation-responsive element. In addition, MED14 and MED30 were shown to have special relevance during the formation of unspliced viral transcripts (p < 0.0005). Knockdown of the selected MED factors compromised HIV transcription induced by Tat, with the strongest inhibitory effect shown by siMED6 and siMED14 cells. Co-immunoprecipitation experiments suggested physical interaction between MED14 and HIV-1 Tat protein. A better understanding of the mechanisms and factors controlling HIV-1 transcription is key to addressing the development of new strategies required to inhibit HIV replication or reactivate HIV-1 from the latent reservoirs.
Collapse
Affiliation(s)
- Alba Ruiz
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eduardo Pauls
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Roger Badia
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Eva Riveira-Muñoz
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Bonaventura Clotet
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Ester Ballana
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - José A Esté
- From the AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
11
|
Riveira-Muñoz E, Ruiz A, Pauls E, Permanyer M, Badia R, Mothe B, Crespo M, Clotet B, Brander C, Ballana E, Esté JA. Increased expression of SAMHD1 in a subset of HIV-1 elite controllers. J Antimicrob Chemother 2014; 69:3057-60. [PMID: 25063780 DOI: 10.1093/jac/dku276] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES SAMHD1 and the CDKN1A (p21) cyclin-dependent kinase inhibitor have been postulated to mediate HIV-1 restriction in CD4+ cells. We have shown that p21 affects HIV replication through its effect on SAMHD1. Thus, we aimed at evaluating the expression of SAMHD1 and p21 in different HIV+ phenotypic groups. PATIENTS AND METHODS We evaluated SAMHD1 and CDKN1A mRNA expression in CD4+ T cells from HIV+ individuals including elite controllers (n = 12), individuals who control HIV without the need for antiretroviral treatment, viraemic progressors (n = 10) and HIV-1 seronegative healthy donors (n = 14). Immunological variables were measured by flow cytometry. RESULTS We show that a subset of HIV+ elite controllers with lower T cell proliferation levels (Ki67+ cells) expressed higher SAMHD1 compared with healthy donors or viraemic progressors. Conversely, there was no difference in p21 expression before or after T cell activation with a bispecific CD3/CD8 antibody. CONCLUSIONS Our results suggest that SAMHD1 may play a role in controlling virus replication in HIV+ individuals and slow the rate of disease progression.
Collapse
Affiliation(s)
- Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Alba Ruiz
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eduardo Pauls
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Permanyer
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Mothe
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Manel Crespo
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Christian Brander
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
12
|
Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menéndez-Arias L, Clotet B, Keppler OT, Martí R, Posas F, Ballana E, Esté JA. Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:1988-97. [PMID: 25015816 DOI: 10.4049/jimmunol.1400873] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proliferating cells are preferentially susceptible to infection by retroviruses. Sterile α motif and HD domain-containing protein-1 (SAMHD1) is a recently described deoxynucleotide phosphohydrolase controlling the size of the intracellular deoxynucleotide triphosphate (dNTP) pool, a limiting factor for retroviral reverse transcription in noncycling cells. Proliferating (Ki67(+)) primary CD4(+) T cells or macrophages express a phosphorylated form of SAMHD1 that corresponds with susceptibility to infection in cell culture. We identified cyclin-dependent kinase (CDK) 6 as an upstream regulator of CDK2 controlling SAMHD1 phosphorylation in primary T cells and macrophages susceptible to infection by HIV-1. In turn, CDK2 was strongly linked to cell cycle progression and coordinated SAMHD1 phosphorylation and inactivation. CDK inhibitors specifically blocked HIV-1 infection at the reverse transcription step in a SAMHD1-dependent manner, reducing the intracellular dNTP pool. Our findings identify a direct relationship between control of the cell cycle by CDK6 and SAMHD1 activity, which is important for replication of lentiviruses, as well as other viruses whose replication may be regulated by intracellular dNTP availability.
Collapse
Affiliation(s)
- Eduardo Pauls
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Alba Ruiz
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Roger Badia
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Marc Permanyer
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Albert Gubern
- Cell Signaling Unit, Department of Experimental Science and Health, Pompeu Fabra University, Barcelona Biomedicine Research Park, 08003 Barcelona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Javier Torres-Torronteras
- Vall d'Hebron Research Institute, Autonomous University of Barcelona and Biomedical Research Centre on Rare Diseases, Health Institute Carlos III, Spain
| | - Mar Alvarez
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Madrid, Spain
| | - Beatriz Mothe
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Christian Brander
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Manel Crespo
- Infectious Diseases Department, Vall d'Hebron University Hospital, 08035 Barcelona, Spain; and
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa" (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Madrid, Spain
| | - Bonaventura Clotet
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - Oliver T Keppler
- Institute of Medical Virology, University of Frankfurt, 60596 Frankfurt, Germany
| | - Ramon Martí
- Vall d'Hebron Research Institute, Autonomous University of Barcelona and Biomedical Research Centre on Rare Diseases, Health Institute Carlos III, Spain
| | - Francesc Posas
- Cell Signaling Unit, Department of Experimental Science and Health, Pompeu Fabra University, Barcelona Biomedicine Research Park, 08003 Barcelona, Spain
| | - Ester Ballana
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain
| | - José A Esté
- AIDS Research Institute-IrsiCaixa and AIDS Unit, Hospital Germans Trias i Pujol, Autonomous University of Barcelona, 08916 Badalona, Spain;
| |
Collapse
|
13
|
SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 58:4804-13. [PMID: 24913159 DOI: 10.1128/aac.03145-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sterile alpha motif and histidine-aspartic domain-containing protein 1 (SAMHD1) is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase recently recognized as an antiviral factor that acts by depleting dNTP availability for viral reverse transcriptase (RT). SAMHD1 restriction is counteracted by the human immunodeficiency virus type 2 (HIV-2) accessory protein Vpx, which targets SAMHD1 for proteosomal degradation, resulting in an increased availability of dNTPs and consequently enhanced viral replication. Nucleoside reverse transcriptase inhibitors (NRTI), one of the most common agents used in antiretroviral therapy, compete with intracellular dNTPs as the substrate for viral RT. Consequently, SAMHD1 activity may be influencing NRTI efficacy in inhibiting viral replication. Here, a panel of different RT inhibitors was analyzed for their different antiviral efficacy depending on SAMHD1. Antiviral potency was measured for all the inhibitors in transformed cell lines and primary monocyte-derived macrophages and CD4(+) T cells infected with HIV-1 with or without Vpx. No changes in sensitivity to non-NRTI or the integrase inhibitor raltegravir were observed, but for NRTI, sensitivity significantly changed only in the case of the thymidine analogs (AZT and d4T). The addition of exogenous thymidine mimicked the change in viral sensitivity observed after Vpx-mediated SAMHD1 degradation, pointing toward a differential effect of SAMHD1 activity on thymidine. Accordingly, sensitivity to AZT was also reduced in CD4(+) T cells infected with HIV-2 compared to infection with the HIV-2ΔVpx strain. In conclusion, reduction of SAMHD1 levels significantly decreases HIV sensitivity to thymidine but not other nucleotide RT analog inhibitors in both macrophages and lymphocytes.
Collapse
|
14
|
Mouse knockout models for HIV-1 restriction factors. Cell Mol Life Sci 2014; 71:3749-66. [PMID: 24854580 PMCID: PMC4160573 DOI: 10.1007/s00018-014-1646-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/24/2014] [Accepted: 05/05/2014] [Indexed: 12/21/2022]
Abstract
Infection of cells with human immunodeficiency virus 1 (HIV-1) is controlled by restriction factors, host proteins that counteract a variety of steps in the life cycle of this lentivirus. These include SAMHD1, APOBEC3G and tetherin, which block reverse transcription, hypermutate viral DNA and prevent progeny virus release, respectively. These and other HIV-1 restriction factors are conserved and have clear orthologues in the mouse. This review summarises studies in knockout mice lacking HIV-1 restriction factors. In vivo experiments in such animals have not only validated in vitro data obtained from cultured cells, but have also revealed new findings about the biology of these proteins. Indeed, genetic ablation of HIV-1 restriction factors in the mouse has provided evidence that restriction factors control retroviruses and other viruses in vivo and has led to new insights into the mechanisms by which these proteins counteract infection. For example, in vivo experiments in knockout mice demonstrate that virus control exerted by restriction factors can shape adaptive immune responses. Moreover, the availability of animals lacking restriction factors opens the possibility to study the function of these proteins in other contexts such as autoimmunity and cancer. Further in vivo studies of more recently identified HIV-1 restriction factors in gene targeted mice are, therefore, justified.
Collapse
|
15
|
p21 regulates the HIV-1 restriction factor SAMHD1. Proc Natl Acad Sci U S A 2014; 111:E1322-4. [PMID: 24610778 DOI: 10.1073/pnas.1322059111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
17
|
Pauls E, Jimenez E, Ruiz A, Permanyer M, Ballana E, Costa H, Nascimiento R, Parkhouse RM, Peña R, Riveiro-Muñoz E, Martinez MA, Clotet B, Esté JA, Bofill M. Restriction of HIV-1 replication in primary macrophages by IL-12 and IL-18 through the upregulation of SAMHD1. THE JOURNAL OF IMMUNOLOGY 2013; 190:4736-41. [PMID: 23526823 DOI: 10.4049/jimmunol.1203226] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monocyte-derived macrophages (MDM) can polarize into different subsets depending on the environment and the activation signal to which they are submitted. Differentiation into macrophages allows HIV-1 strains to infect cells of the monocytic lineage. In this study, we show that culture of monocytes with a combination of IL-12 and IL-18 led to macrophage differentiation that was resistant to HIV-1 infection. In contrast, M-CSF-derived MDM were readily infected by HIV-1. When monocytes were differentiated in the presence of M-CSF and then further treated with IL-12/IL-18, cells became resistant to infection. The restriction on HIV-1 replication was not dependent on virus entry or coreceptor expression, as vesicular stomatitis virus-pseudotyped HIV-1 replication was also blocked by IL-12/IL-18. The HIV-1 restriction factor sterile α motif and HD domain-containing protein-1 (SAMHD1) was significantly overexpressed in IL-12/IL-18 MDM compared with M-CSF MDM, and degradation of SAMHD1 by RNA interference or viral-like particles carrying the lentiviral protein Vpx restored HIV-1 infectivity of IL-12/IL-18 MDM. SAMHD1 overexpression induced by IL-12/IL-18 was not dependent on IFN-γ. Thus, we conclude that IL-12 and IL-18 may contribute to the response against HIV-1 infection through the induction of restriction factors such as SAMHD1.
Collapse
Affiliation(s)
- Eduardo Pauls
- IrsiCaixa, Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|