1
|
Wang Q, Wang X, Ding J, Huang L, Wang Z. Structural insight of cell surface sugars in viral infection and human milk glycans as natural antiviral substance. Int J Biol Macromol 2024; 277:133867. [PMID: 39009265 DOI: 10.1016/j.ijbiomac.2024.133867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/24/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Viral infections are caused by the adhesion of viruses to host cell receptors, including sialylated glycans, glycosaminoglycans, and human blood group antigens (HBGAs). Atomic-level structural information on the interactions between viral particles or proteins with glycans can be determined to provide precise targets for designing antiviral drugs. Milk glycans, existing as free oligosaccharides or glycoconjugates, have attracted increasing attention; milk glycans protect infants against infectious diseases, particularly poorly manageable viral infections. Furthermore, several glycans containing structurally distinct sialic acid/fucose/sulfate modifications in human milk acting as a "receptor decoy" and serving as the natural antiviral library, could interrupt virus-receptor interaction in the first line of defense for viral infection. This review highlights the basis of virus-glycan interactions, presents specific glycan receptor binding by gastroenterovirus viruses, including norovirus, enteroviruses, and the breakthroughs in the studies on the antiviral properties of human milk glycans, and also elucidates the role of glycans in respiratory viruses infection. In addition, recent advances in methods for performing virus/viral protein-glycan interactions were reported. Finally, we discuss the prospects and challenges of the studies on the clinical application of human milk glycan for viral interventions.
Collapse
Affiliation(s)
- Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jieqiong Ding
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Kramer E, Patil K, Triantis V, Bastiaans JAH, Mazzon M, Ramani S, Lambers TT. MFGM-enriched whey displays antiviral activity against common pediatric viruses in vitro. Front Nutr 2024; 11:1416352. [PMID: 39149543 PMCID: PMC11325482 DOI: 10.3389/fnut.2024.1416352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/02/2024] [Indexed: 08/17/2024] Open
Abstract
Background Among the most common mucosal viral infections in infants are rotavirus, one of the main causes of severe gastroenteritis in infants and children up to 5 years, and respiratory syncytial virus (RSV), one of the leading causes of lower respiratory tract infections. Both human milk and bovine milk derived factors may provide protection against mucosal viral infections. More recently, a similar activity of milk derived proteins was suggested for SARS-CoV-2. The goal of the current study was to test antiviral activity of the bovine milkfat globule membrane (MFGM) against rotavirus, RSV and SARS-CoV-2 and to further characterize MFGM-enriched whey to identify which components in MFGM-enriched whey may contribute to the inhibitory activity. Methods The effects of MFGM-enriched whey, its whey protein isolate counterpart (WPI, obtained from the same production process) and a conventional whey protein concentrate (WPC) on rotavirus (strains Wa and SA114F), RSV (strain RSV-A2) and SARS-CoV-2 (Alpha variant) infectivity were determined using MA104 cells, human alveolar basal epithelial (A549) cells and monkey kidney (Vero E6) cells, respectively. The compounds were characterized in detail by LC-MS/MS and 31P-NMR to determine protein and phospholipid composition, respectively. Results Relative to its WPI counterpart, MFGM-enriched whey demonstrated a dose-dependent inhibition for both rotavirus and RSV whereas for SARS-CoV-2 inhibition was only observed at the highest concentration tested. Label-free quantification (LFQ) and intensity based absolute quantification (iBAQ) of identified proteins revealed a clear difference between MFGM-enriched whey and its controls including enrichment of known MFGM proteins and non-MFGM proteins that are enriched simultaneously, some of which have previously been demonstrated to display anti-viral activity. Although not completely absent from other whey protein preparations, MFGM-enriched whey had the highest specific and total phospholipid levels. Conclusion MFGM-enriched whey displayed antiviral activity against multiple viruses of clinical importance. This study provides insights into the active components in MFGM-enriched whey and may contribute to previous clinical observations with MFGM-enriched formula demonstrating reduced respiratory and gastrointestinal infections in formula fed infants.
Collapse
Affiliation(s)
| | - Ketki Patil
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | | | | | | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | | |
Collapse
|
3
|
Kaczyńska K, Jampolska M, Wojciechowski P, Sulejczak D, Andrzejewski K, Zając D. Potential of Lactoferrin in the Treatment of Lung Diseases. Pharmaceuticals (Basel) 2023; 16:192. [PMID: 37259341 PMCID: PMC9960651 DOI: 10.3390/ph16020192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 11/07/2023] Open
Abstract
Lactoferrin (LF) is a multifunctional iron-binding glycoprotein that exhibits a variety of properties, such as immunomodulatory, anti-inflammatory, antimicrobial, and anticancer, that can be used to treat numerous diseases. Lung diseases continue to be the leading cause of death and disability worldwide. Many of the therapies currently used to treat these diseases have limited efficacy or are associated with side effects. Therefore, there is a constant pursuit for new drugs and therapies, and LF is frequently considered a therapeutic agent and/or adjunct to drug-based therapies for the treatment of lung diseases. This article focuses on a review of the existing and most up-to-date literature on the contribution of the beneficial effects of LF on the treatment of lung diseases, including asthma, viral infections, cystic fibrosis, or lung cancer, among others. Although in vitro and in vivo studies indicate significant potency of LF in the treatment of the listed diseases, only in the case of respiratory tract infections do human studies seem to confirm them by demonstrating the effectiveness of LF in reducing episodes of illness and shortening the recovery period. For lung cancer, COVID-19 and sepsis, the reports are conflicting, and for other diseases, there is a paucity of human studies conclusively confirming the beneficial effects of LF.
Collapse
Affiliation(s)
- Katarzyna Kaczyńska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Monika Jampolska
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Kryspin Andrzejewski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Dominika Zając
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P. An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 2022; 36:417-436. [PMID: 35920949 PMCID: PMC9362590 DOI: 10.1007/s10534-022-00427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
5
|
Berthon BS, Williams LM, Williams EJ, Wood LG. Effect of Lactoferrin Supplementation on Inflammation, Immune Function, and Prevention of Respiratory Tract Infections in Humans: A Systematic Review and Meta-analysis. Adv Nutr 2022; 13:1799-1819. [PMID: 35481594 PMCID: PMC9526865 DOI: 10.1093/advances/nmac047] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 01/28/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein present in human and bovine milk with antimicrobial and immune-modulating properties. This review aimed to examine the evidence for the effect of Lf supplementation on inflammation, immune function, and respiratory tract infections (RTIs) in humans. Online databases were searched up to December 2020 to identify relevant, English-language articles that examined the effect of Lf supplementation in human subjects of all ages, on either inflammation, immune cell populations or activity, or the incidence, duration, or severity of respiratory illness or RTIs. Twenty-five studies (n = 20 studies in adults) were included, of which 8 of 13 studies (61%) in adults reported a decrease in at least 1 systemic inflammatory biomarker. Immune function improved in 6 of 8 studies (75%) in adults, with changes in immune cell populations in 2 of 6 studies (33%), and changes in immune cell activity in 2 of 5 studies (40%). RTI outcomes were reduced in 6 of 10 studies (60%) (n = 5 in adults, n = 5 in children), with decreased incidence in 3 of 9 studies (33%), and either decreased frequency (2/4, 50%) or duration (3/6, 50%) in 50% of studies. In adults, Lf reduced IL-6 [mean difference (MD): -24.9 pg/mL; 95% CI: -41.64, -8.08 pg/mL], but not C-reactive protein (CRP) [standardized mean difference: -0.09; 95% CI: -0.82, 0.65], or NK cell cytotoxicity [MD: 4.84%; 95% CI: -3.93, 13.60%]. RTI incidence was reduced in infants and children (OR: 0.78; 95% CI: 0.61, 0.98) but not in adults (OR: 1.00; 95% CI: 0.76, 1.32). Clinical studies on Lf supplementation are limited, although findings show 200 mg Lf/d reduces systemic inflammation, while formulas containing 35-833 mg Lf/d may reduce RTI incidence in infants and children, suggesting improved immune function. Future research is required to determine optimal supplementation strategies and populations most likely to benefit from Lf supplementation. This trial was registered at PROSPERO (https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021232186) as CRD42021232186.
Collapse
Affiliation(s)
| | - Lily M Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Evan J Williams
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| |
Collapse
|
6
|
Gallo V, Giansanti F, Arienzo A, Antonini G. Antiviral properties of whey proteins and their activity against SARS-CoV-2 infection. J Funct Foods 2022; 89:104932. [PMID: 35003332 PMCID: PMC8723829 DOI: 10.1016/j.jff.2022.104932] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 01/02/2022] [Indexed: 12/16/2022] Open
Abstract
Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Valentina Gallo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
| | - Francesco Giansanti
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila I-67100, Italy
| | - Alyexandra Arienzo
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| | - Giovanni Antonini
- Department of Sciences, Roma Tre University, Rome 00146, Italy
- Interuniversity Consortium INBB - Biostructures and Biosystems National Institute, Rome 00136, Italy
| |
Collapse
|
7
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeda L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Valenti P, Bianchi L. Lactoferrin Against SARS-CoV-2: In Vitro and In Silico Evidences. Front Pharmacol 2021; 12:666600. [PMID: 34220505 PMCID: PMC8242182 DOI: 10.3389/fphar.2021.666600] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Lactoferrin (Lf) is a cationic glycoprotein synthetized by exocrine glands and is present in all human secretions. It is also secreted by neutrophils in infection and inflammation sites. This glycoprotein possesses antimicrobial activity due to its capability to chelate two ferric ions per molecule, as well as to interact with bacterial and viral anionic surface components. The cationic features of Lf bind to cells, protecting the host from bacterial and viral injuries. Its anti-inflammatory activity is mediated by the ability to enter inside the nucleus of host cells, thus inhibiting the synthesis of proinflammatory cytokine genes. In particular, Lf down-regulates the synthesis of IL-6, which is involved in iron homeostasis disorders and leads to intracellular iron overload, favoring viral replication and infection. The well-known antiviral activity of Lf has been demonstrated against DNA, RNA, and enveloped and naked viruses and, therefore, Lf could be efficient in counteracting also SARS-CoV-2 infection. For this purpose, we performed in vitro assays, proving that Lf exerts an antiviral activity against SARS-COV-2 through direct attachment to both SARS-CoV-2 and cell surface components. This activity varied according to concentration (100/500 μg/ml), multiplicity of infection (0.1/0.01), and cell type (Vero E6/Caco-2 cells). Interestingly, the in silico results strongly supported the hypothesis of a direct recognition between Lf and the spike S glycoprotein, which can thus hinder viral entry into the cells. These in vitro observations led us to speculate a potential supplementary role of Lf in the management of COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Federico Iacovelli
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Alice Romeo
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | - Mattia Falconi
- Department of Biology, Structural Bioinformatics Group, University of Rome "Tor Vergata", Rome, Italy
| | | | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, Rome, Italy
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Coppeda
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, Rome, Italy
| | | | | | | | | | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, Rome, Italy
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, Naples, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
8
|
Srivastava A, Gupta RC, Doss RB, Lall R. Trace Minerals, Vitamins and Nutraceuticals in Prevention and Treatment of COVID-19. J Diet Suppl 2021; 19:395-429. [PMID: 33682615 DOI: 10.1080/19390211.2021.1890662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Coronavirus disease 2019 (COVID-19) was first officially diagnosed in the city of Wuhan, China in January 2020. In reality, the disease was identified in December 2019 in the same city where patients began showing symptoms of pneumonia of unidentified origin. Very soon the disease became a global pandemic due to the suppression of information in the country of origin and inadequate testing for the COVID-19 virus. Currently, > 101 million people have been found positive for this virus and > 2.17 million people have died. There are no signs that COVID-19 is slowing down. This deadly virus affects multiple vital organs (lungs, heart, nervous system, blood, and immune system), yet its exact mechanism of pathophysiology remains obscure. Depending on the viral load, sick people often show symptoms of fever, cough, shortness of breath, coagulopathy, cardiac abnormalities, fatigue, and death. Great strides have been made in COVID-19 testing, thereby allowing timely therapeutic intervention. Currently, vaccines are on the market from Pfizer, Moderna and Astra Zeneca with limited supply. Phase III clinical trials are also underway from other manufacturers. In the current scenario, nutraceuticals and other phyto-mineral supplements appear to be promising alternative solutions for the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
| | - Ramesh C Gupta
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | - Robin B Doss
- Breathitt Veterinary Center, Toxicology Department, Murray State University, Hopkinsville, KY, USA
| | | |
Collapse
|
9
|
Niaz B, Saeed F, Ahmed A, Imran M, Maan AA, Khan MKI, Tufail T, Anjum FM, Hussain S, Suleria HAR. Lactoferrin (LF): a natural antimicrobial protein. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1666137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bushra Niaz
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Awais Ahmed
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet & Nutritional Sciences, University of Lahore, Lahore, Pakistan
| | - Abid Aslam Maan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University, Faisalabad, Pakistan
| | | | - Shahzad Hussain
- College of Food and Agricultural Sciences, King Saud, University, Riyadh, Saudi Arabia
| | | |
Collapse
|
10
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
11
|
Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the Herpes Simplex Virus 1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions. J Virol 2016; 90:8115-31. [PMID: 27384650 PMCID: PMC5008079 DOI: 10.1128/jvi.00821-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.
Collapse
|
12
|
Abstract
Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe3+-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity.
Collapse
Affiliation(s)
- Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China,
| | | | | | | | | | | | | |
Collapse
|
13
|
Nasopharyngeal bacterial burden and antibiotics: Influence on inflammatory markers and disease severity in infants with respiratory syncytial virus bronchiolitis. J Infect 2015; 71:458-69. [PMID: 26149186 DOI: 10.1016/j.jinf.2015.06.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Animal studies suggest that RSV increases nasopharyngeal (NP) bacterial colonization facilitating bacterial infections. We investigated the influence of antibiotic treatment and colonization with potentially pathogenic bacteria on inflammatory markers and disease severity in RSV-infected in infants. METHODS Healthy young infants hospitalized with RSV bronchiolitis (n = 136) and age-matched healthy controls (n = 23) were enrolled and NP samples cultured for potentially pathogenic bacteria including: Gram-positive bacteria (GPB): Staphylococcus aureus, Streptococcus pneumoniae, β-hemolytic Streptococcus; and Gram-negative bacteria (GNB): Moraxella catarrhalis and Haemophilus influenzae. Clinical parameters and plasma IL-8, IL-6 and TNF-α concentrations were compared according to the bacterial class and antibiotic treatment. RESULTS Antibiotic treatment decreased by 10-fold NP bacterial recovery. Eighty-one percent of RSV infants who did not receive antibiotics before sample collection were colonized with pathogenic bacteria. Overall, GNB were identified in 21% of patients versus 4% of controls who were mostly colonized with GPB. Additionally, in RSV patients NP white blood cell counts (p = 0.026), and blood neutrophils (p = 0.02) were higher in those colonized with potentially pathogenic bacteria versus respiratory flora. RSV patients colonized with GNB had higher plasma IL-8 (p = 0.01) and IL-6 (p < 0.01) concentrations than controls, and required longer duration of oxygen (p = 0.049). CONCLUSIONS Infants with RSV bronchiolitis colonized with potentially pathogenic bacteria had increased numbers of mucosal and systemic inflammatory cells. Specifically, colonization with GNB was associated with higher concentrations of proinflammatory cytokines and a trend towards increased disease severity.
Collapse
|
14
|
Galectin-9 ameliorates respiratory syncytial virus-induced pulmonary immunopathology through regulating the balance between Th17 and regulatory T cells. Virus Res 2014; 195:162-71. [PMID: 25451068 DOI: 10.1016/j.virusres.2014.10.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022]
Abstract
Respiratory syncytial virus (RSV) infections are characterized by lung inflammation, mucus hypersecretion, and hyperresponsiveness. CD4+ T cells play a pivotal role in the development of RSV-induced lung pathology. Thus targeting the activation of CD4+ T cell subsets and enhancing regulatory functions of CD4+ T cells could be an effectively therapeutic approach. In the present study, we showed that RSV-induced lung inflammation can be suppressed by lectin family member Galectin-9 (Gal-9), which is identified as a T-cell immunoglobulin- and mucindomain-containing molecule-3 (Tim-3) ligand (L) and the Gal-9/Tim-3 interaction acts as a specific inhibitor of T helper(Th)1 and Th17 immune responses. Tim-3 expression was up-regulated in RSV-infected mice compared to non-infected controls. Therefore, we constructed a recombinant adenoviral (rAAV) 9-Gal-9 adenoviral plasmid, and administered it intranasally into RSV-infected mice for five times at every other day until day 8 post-infection. We found that Gal-9 administration significantly decreased viral load, inhibited mucus production, and diminished severity of lung pathology which were all induced by RSV infection. Complicated mechanisms were involved in these inhibitory effects, including inhibition of Th17 cell production, induction of regulatory cell expansion, as well as alteration of CD8 T-cell apoptosis. Our findings suggest that regulating the function of the Gal-9/Tim-3 pathway will be an effective and safe approach to treat RSV infection in lungs.
Collapse
|
15
|
Redwan EM, Uversky VN, El-Fakharany EM, Al-Mehdar H. Potential lactoferrin activity against pathogenic viruses. C R Biol 2014; 337:581-95. [PMID: 25282173 DOI: 10.1016/j.crvi.2014.08.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Lactoferrin (LF) is an 80-kDa globular glycoprotein with high affinity for metal ions, particularly for iron. This protein possesses many biological functions, including the binding and release of iron and serves as one of the important components of the innate immune system, where it acts as a potent inhibitor of several pathogens. LF has efficacious antibacterial and antiviral activities against a wide range of Gram-positive and Gram-negative bacteria and against both naked and enveloped DNA and RNA viruses. In its antiviral pursuit, LF acts predominantly at the acute phase of the viral infection or even at the intracellular stage, as in hepatitis C virus infection. LF inhibits the entry of viral particles into host cells, either by direct attachment to the viral particles or by blocking their cellular receptors. This wide range of activities may be attributed to the capacity of LF to bind iron and its ability to interfere with the cellular receptors of both hosts and pathogenic microbes.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, New Borg EL-Arab 21394, Alexandria, Egypt.
| | - Vladimir N Uversky
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| | - Esmail M El-Fakharany
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technological Applications, New Borg EL-Arab 21394, Alexandria, Egypt.
| | - Hussein Al-Mehdar
- Biology Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother 2014; 20:666-71. [PMID: 25182867 DOI: 10.1016/j.jiac.2014.08.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 12/24/2022]
Abstract
Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions.
Collapse
Affiliation(s)
| | - Hirotsugu Oda
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd., Japan
| | - Koji Yamauchi
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd., Japan
| | - Fumiaki Abe
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd., Japan
| |
Collapse
|