1
|
Zhao Y, Zhao C, Deng Y, Pan M, Mo G, Liao Z, Zhang X, Zhang D, Li H. PMAIP1 promotes J subgroup avian leukosis virus replication by regulating mitochondrial function. Poult Sci 2024; 103:103617. [PMID: 38547674 PMCID: PMC11180372 DOI: 10.1016/j.psj.2024.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 06/05/2024] Open
Abstract
Avian leukosis virus Subgroup J (ALV-J) exhibits high morbidity and pathogenicity, affecting approximately 20% of poultry farms. It induces neoplastic diseases and immunosuppression. Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a proapoptotic mitochondrial protein in the B-cell lymphoma-2 (Bcl-2) family, plays a role in apoptosis in cancer cells. However, the connection between the PMAIP1 gene and ALV-J pathogenicity remains unexplored. This study investigates the potential impact of the PMAIP1 gene on ALV-J replication and its regulatory mechanisms. Initially, we examined PMAIP1 expression using quantitative real-time PCR (qRT-PCR) in vitro and in vivo. Furthermore, we manipulated PMAIP1 expression in chicken fibroblast cells (DF-1) and assessed its effects on ALV-J infection through qRT-PCR, immunofluorescence assay (IFA), and western blotting (WB). Our findings reveal a significant down-regulation of PMAIP1 in the spleen, lung, and kidney, coupled with an up-regulation in the bursa and liver of ALV-J infected chickens compared to uninfected ones. Additionally, DF-1 cells infected with ALV-J displayed a notable up-regulation of PMAIP1 at 6, 12, 24, 48, 74, and 108 h. Over-expression of PMAIP1 enhanced ALV-J replication, interferon expression, and proinflammatory factors. Conversely, interference led to contrasting results. Furthermore, we observed that PMAIP1 promotes virus replication by modulating mitochondrial function. In conclusion, the PMAIP1 gene facilitates virus replication by regulating mitochondrial function, thereby enriching our understanding of mitochondria-related genes and their involvement in ALV-J infection, offering valuable insights for avian leukosis disease resistance strategies.
Collapse
Affiliation(s)
- Yongxia Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Changbin Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Yuelin Deng
- Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China; Department of Animal Nutrition System, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Guodong Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Zhiying Liao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Hongmei Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong, 510642 China.
| |
Collapse
|
2
|
Abdelaziz K, Helmy YA, Yitbarek A, Hodgins DC, Sharafeldin TA, Selim MSH. Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery. Vaccines (Basel) 2024; 12:134. [PMID: 38400118 PMCID: PMC10893217 DOI: 10.3390/vaccines12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
Collapse
Affiliation(s)
- Khaled Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University Poole Agricultural Center, Jersey Ln #129, Clemson, SC 29634, USA
- Clemson University School of Health Research (CUSHR), Clemson, SC 29634, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA;
| | - Alexander Yitbarek
- Department of Animal & Food Sciences, University of Delaware, 531 S College Ave, Newark, DE 19716, USA;
| | - Douglas C. Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Tamer A. Sharafeldin
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| | - Mohamed S. H. Selim
- Department of Veterinary Biomedical Science, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA; (T.A.S.); (M.S.H.S.)
| |
Collapse
|
3
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals (Basel) 2023; 13:2358. [PMID: 37508135 PMCID: PMC10376345 DOI: 10.3390/ani13142358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Avian leukosis viruses (ALVs) have been virtually eradicated from commercial poultry. However, some niches remain as pockets from which this group of viruses may reemerge and induce economic losses. Such is the case of fancy, hobby, backyard chickens and indigenous or native breeds, which are not as strictly inspected as commercial poultry and which have been found to harbor ALVs. In addition, the genome of both poultry and of several gamebird species contain endogenous retroviral sequences. Circumstances that support keeping up surveillance include the detection of several ALV natural recombinants between exogenous and endogenous ALV-related sequences which, combined with the well-known ability of retroviruses to mutate, facilitate the emergence of escape mutants. The subgroup most prevalent nowadays, ALV-J, has emerged as a multi-recombinant which uses a different receptor from the previously known subgroups, greatly increasing its cell tropism and pathogenicity and making it more transmissible. In this review we describe the ALVs, their different subgroups and which receptor they use to infect the cell, their routes of transmission and their presence in different bird collectivities, and the immune response against them. We analyze the different systems to control them, from vaccination to the progress made editing the bird genome to generate mutated ALV receptors or selecting certain haplotypes.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
- Research Group, "Animal Viruses" of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Wang M, Liu J, Zhao Y, Li H, Zhou J, Cheng Z, Qiu J, Wang Y, Guo H. TRIM25 participates in the fibrous tissue hyperplasia induced by ALV-J infection in chickens by targeting 14-3-3σ protein. Res Vet Sci 2023; 155:126-136. [PMID: 36682337 DOI: 10.1016/j.rvsc.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
ALV-J-SD1005 strain was subcutaneously inoculated into the necks of 1-day-old HY-Line Brown chickens and caused severe growth retardation, viremia and subcutaneous fibrosarcomas in the necks of all infected chickens from 14 days post inoculation (DPI) to 21 DPI, and also significantly increased the expressions of TRIM25, P53, etc., but significantly decreased the expressions of 14-3-3σ, etc. Overexpression of chicken TRIM25 (chTRIM25) significantly promoted cell proliferation and improved the expressions of P53, CDC2, and CDK2 tumor factors; and significantly inhibited the expression of 14-3-3σ in ALV-J-SD1005-infected DF1 cells; but knockdown of chTRIM25 caused the opposite effects. The results of co-immunoprecipitation (Co-IP) and confocal microscopy confirmed that chTRIM25 can recognize and bind 14-3-3σ protein in ALV-J-SD1005-infected cells, and they were co-located in the cytoplasm. It can be concluded that chTRIM25 participates in the fibrous tissue hyperplasia induced by ALV-J-SD1005 infections in chickens by binding 14-3-3σ protein and regulating the expressions of 14-3-3σ, P53, CDC2, and CDK2.
Collapse
Affiliation(s)
- Moyu Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Junhong Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yue Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hongmei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianhua Qiu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Huijun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Mo G, Wei P, Hu B, Nie Q, Zhang X. Advances on genetic and genomic studies of ALV resistance. J Anim Sci Biotechnol 2022; 13:123. [PMID: 36217167 PMCID: PMC9550310 DOI: 10.1186/s40104-022-00769-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Avian leukosis (AL) is a general term for a variety of neoplastic diseases in avian caused by avian leukosis virus (ALV). No vaccine or drug is currently available for the disease. Therefore, the disease can result in severe economic losses in poultry flocks. Increasing the resistance of poultry to ALV may be one effective strategy. In this review, we provide an overview of the roles of genes associated with ALV infection in the poultry genome, including endogenous retroviruses, virus receptors, interferon-stimulated genes, and other immune-related genes. Furthermore, some methods and techniques that can improve ALV resistance in poultry are discussed. The objectives are willing to provide some valuable references for disease resistance breeding in poultry.
Collapse
Affiliation(s)
- Guodong Mo
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ping Wei
- Institute for Poultry Science and Health, Guangxi University, Nanning, 530001, Guangxi, China
| | - Bowen Hu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China. .,Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China. .,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
6
|
Zhou JR, Liu JH, Li HM, Zhao Y, Cheng Z, Hou YM, Guo HJ. Regulatory effects of chicken TRIM25 on the replication of ALV-A and the MDA5-mediated type I interferon response. Vet Res 2020; 51:145. [PMID: 33298177 PMCID: PMC7724733 DOI: 10.1186/s13567-020-00870-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
This study focuses on the immunoregulatory effects of chicken TRIM25 on the replication of subgroup A of avian leukosis virus (ALV-A) and the MDA5-mediated type I interferon response. The ALV-A-SDAU09C1 strain was inoculated into DF1 cells and 1-day-old SPF chickens, and the expression of TRIM25 was detected at different time points after inoculation. A recombinant overexpression plasmid containing the chicken TRIM25 gene (TRIM25-GFP) was constructed and transfected into DF1 cells to analyse the effects of the overexpression of chicken TRIM25 on the replication of ALV-A and the expression of MDA5, MAVS and IFN-β. A small interfering RNA targeting chicken TRIM25 (TRIM25-siRNA) was prepared and transfected into DF1 cells to assess the effects of the knockdown of chicken TRIM25 on the replication of ALV-A and the expression of MDA5, MAVS and IFN-β. The results showed that chicken TRIM25 was significantly upregulated at all time points both in ALV-A-infected cells and in ALV-A-infected chickens. Overexpression of chicken TRIM25 in DF1 cells dramatically decreased the antigenic titres of ALV-A in the cell supernatant and upregulated the relative expression of MDA5, MAVS and IFN-β induced by ALV-A or by poly(I:C); in contrast, knockdown of chicken TRIM25 significantly increased the antigenic titres of ALV-A and downregulated the relative expression of MDA5, MAVS and IFN-β. It can be concluded that chicken TRIM25 can inhibit the replication of ALV-A and upregulate the MDA5 receptor-mediated type I interferon response in chickens. This study can help improve the understanding of the antiviral activities of chicken TRIM25 and enrich the knowledge of antiviral responses in chickens.
Collapse
Affiliation(s)
- Jin-Run Zhou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Jun-Hong Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong-Mei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yue Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Ziqiang Cheng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan-Meng Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China.,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China
| | - Hui-Jun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, 271018, China. .,College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
Yan ZY, Li HM, Wang CC, Qiu J, Pan Y, Zhang D, Hu W, Guo HJ. Preparation of a new monoclonal antibody against subgroup A of avian leukosis virus and identifying its antigenic epitope. Int J Biol Macromol 2019; 156:1234-1242. [PMID: 31759029 DOI: 10.1016/j.ijbiomac.2019.11.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
Abstract
This study focuses on preparing the monoclonal antibody (MAb) against subgroup A of avian leukosis virus (ALV-A) and identifying its antigenic epitope. The ALV-A gp85 gene with a size of 1005bp was amplified and expressed into a recombinant protein with a size of 46KD in E.coli. The products expressed after purification were inoculated into BALB/c mice for preparing antibody-secreting splenic lymphocytes and further obtaining hybridoma cells. Finally, one new hybridoma cell (A18GH) secreting MAb against ALV-A was screened, and the MAb was able to detect ALV-A/K strains in an indirect immunofluorescence assay (IFA), but not ALV-B/J strains. A total of 14 overlapping truncated ALV-A gp85 protein segments were expressed and eight peptides containing different antigenic amino acids were artificially synthesized for analyzing the antigenic epitope of the MAb using a western blot or an ELISA, and the results indicate that the antigenic epitope consists of seven amino acids within the 146-ATRFLLR -152 region of the ALV-A gp85 protein. A biological information analysis shows that the antigenic epitope has a high antigenic index and develops a curved linear spatial structure. Further, its 7 amino acids are completely within the 17 representative ALV-A strains, 4 are within the 11 ALV-K strains, and fewer are within the ALV-B/J/E strains. This study will significantly assist in a further understanding of the protein structure and function of ALV-A, and in the establishment of specific ALV-A detection methods.
Collapse
Affiliation(s)
- Ze-Yi Yan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hong-Mei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng-Cheng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianhua Qiu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yao Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Dandan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Weiguo Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hui-Jun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
8
|
Role of cytosine-phosphate-guanosine-Oligodeoxynucleotides (CpG ODNs) as adjuvant in poultry vaccines. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933918000508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Comparison of Viremia, Cloacal Virus Shedding, Antibody Responses and Pathological Lesions in Adult Chickens, Quails, and Pigeons Infected with ALV-A. Sci Rep 2019; 9:3027. [PMID: 30816316 PMCID: PMC6395611 DOI: 10.1038/s41598-019-39980-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/07/2019] [Indexed: 11/24/2022] Open
Abstract
Subgroup A of the avian leukosis virus (ALV-A) can cause severe pathological lesions and death in infected chickens, and its reported hosts have increased recently. To assess the susceptibility of adult chickens, quails, and pigeons to ALV-A, three sets of 250-day-old birds were intraperitoneally inoculated with ALV-A. Viremia and cloacal virus shedding were dynamically detected using an immunofluorescence assay (IFA), ALV-P27 antigen ELISA or RT-PCR; pathological lesions were assessed using tissue sections; ALV-A in tissues was detected by IFA; and ALV-A antibody responses were detected using antibody ELISA kits and an immune diffusion test. The results indicated that persistent viremia occurred in 80% (8/10) of infected chickens, and transient viremia occurred in 17% (2/12) of infected quails, but no viremia occurred in infected pigeons. Cloacal virus shedding occurred intermittently in 80% (8/10) of infected chickens and in 8% (1/12) of infected quails but did not occur in infected pigeons. Severe inflammatory pathological lesions occurred in the visceral tissues of most infected chickens, and mild lesions occurred in a few of the infected quails, but no pathological lesions occurred in the infected pigeons. The ALV-A virus was detected in the visceral tissues of most infected chickens but not in the infected quails and pigeons. Obviously different ALV-A antibody responses occurred in the infected chickens, quails and pigeons. It can be concluded that adult chickens, quails and pigeons have dramatically different susceptibilities to ALV-A. This is the first report on artificial infection by ALV-A in different birds.
Collapse
|
10
|
Immunoprotection induced by CpG-ODN/Poly(I:C) combined with recombinant gp90 protein in chickens against reticuloendotheliosis virus infection. Antiviral Res 2017; 147:1-10. [PMID: 28465147 DOI: 10.1016/j.antiviral.2017.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/11/2017] [Accepted: 04/28/2017] [Indexed: 11/20/2022]
Abstract
The present study is focused on investigating the immunoprotective effects of CpG-ODN/Poly(I:C) combined with the viral glycoprotein gp90 protein against reticuloendotheliosis virus (REV) infection in chickens. REV's gp90 gene was amplified from the REV-infected cells and expressed in Escherichia coli (E.coli). The expressed products, upon purification, were inoculated into 7-day-old chickens with PBS, CpG-ODN or Poly(I:C) adjuvant; Two booster inoculations were then conducted, and then each chicken was challenged. The presence of REV-antibodies in serum was determined weekly after the first vaccination. The viremia and immunosuppressive effects of REV infection were also monitored after the challenge. The neutralizing effects of the antisera were tested in vitro. The results showed that the recombinant gene containing REV gp90 gene was expressed into the recombinant protein with a size of 51 Kilo Dalton (KD), which could be recognized by a monoclonal antibody (MAb) against the gp90 protein. The viremia and immunosuppressive effects of avian influenza virus (AIV) vaccine caused by REV challenge in CpG-ODN group and in Poly(I:C) group were dramatically decreased. REV antibody with low titers was induced in gp90 group and the inoculated chickens were partly protected. Compared with those in gp90 group, the titers and the positive ratios of REV antibody in CpG+gp90 group were significantly increased, whereas the viremia and immunosuppressive effects of AIV vaccine caused by REV infection were significantly decreased. In the Poly(I:C) +gp90 group, the viremia and immunosuppressive effects caused by REV infection were also dramatically decreased, although REV antibody responses were softly increased. The diluted antisera from the vaccinated chickens in both groups could completely inhibit the replication of REV in chick fibroblast cells (CEF). Hence, it can be concluded that CpG-ODN or the Poly(I:C) adjuvant can enhance the antiviral effects of the REV subunit vaccine against REV infection, which may result from different mechanisms.
Collapse
|
11
|
Feng M, Zhang X. Immunity to Avian Leukosis Virus: Where Are We Now and What Should We Do? Front Immunol 2016; 7:624. [PMID: 28066434 PMCID: PMC5174080 DOI: 10.3389/fimmu.2016.00624] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022] Open
Abstract
Avian leukosis virus (ALV) is an avian oncogenic retrovirus causing enormous economic losses in the global poultry industry. Although ALV-related research has lasted for more than a century, there are no vaccines to protect chickens from ALV infection. The interaction between chickens and ALV remains not fully understood especially with regard to the host immunity. The current review provides an overview of our current knowledge of innate and adaptive immunity induced by ALV infection. More importantly, we have pointed out the unknown area involved in ALV-related studies, which is worthy of our serious exploring in future.
Collapse
Affiliation(s)
- Min Feng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|