1
|
Hernández-Serda MA, Vázquez-Valadez VH, Aguirre-Vidal P, Markarian NM, Medina-Franco JL, Cardenas-Granados LA, Alarcón-López AY, Martínez-Soriano PA, Velázquez-Sánchez AM, Falfán-Valencia RE, Angeles E, Abrahamyan L. In Silico Identification of Potential Inhibitors of SARS-CoV-2 Main Protease (M pro). Pathogens 2024; 13:887. [PMID: 39452758 PMCID: PMC11510711 DOI: 10.3390/pathogens13100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The ongoing Coronavirus Disease 19 (COVID-19) pandemic has had a profound impact on the global healthcare system. As the SARS-CoV-2 virus, responsible for this pandemic, continues to spread and develop mutations in its genetic material, new variants of interest (VOIs) and variants of concern (VOCs) are emerging. These outbreaks lead to a decrease in the efficacy of existing treatments such as vaccines or drugs, highlighting the urgency of new therapies for COVID-19. Therefore, in this study, we aimed to identify potential SARS-CoV-2 antivirals using a virtual screening protocol and molecular dynamics simulations. These techniques allowed us to predict the binding affinity of a database of compounds with the virus Mpro protein. This in silico approach enabled us to identify twenty-two chemical structures from a public database (QSAR Toolbox Ver 4.5 ) and ten promising molecules from our in-house database. The latter molecules possess advantageous qualities, such as two-step synthesis, cost-effectiveness, and long-lasting physical and chemical stability. Consequently, these molecules can be considered as promising alternatives to combat emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Manuel Alejandro Hernández-Serda
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Víctor H. Vázquez-Valadez
- Departamento de Ciencias Biológicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico;
- QSAR Analytics S.A. de C.V. Coatepec 7, Cumbria, Cuautitlán Izcalli, Ciudad de México 54750, Mexico
| | - Pablo Aguirre-Vidal
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Nathan M. Markarian
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
- Faculté de Pharmacie, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, Av. Universidad 3000, Ciudad de México 04510, Mexico;
| | - Luis Alfonso Cardenas-Granados
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Aldo Yoshio Alarcón-López
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Pablo A. Martínez-Soriano
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Ana María Velázquez-Sánchez
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Rodolfo E. Falfán-Valencia
- Laboratorio de Química Medicinal y Teórica FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Campo 1 Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (P.A.-V.); (L.A.C.-G.); (R.E.F.-V.)
| | - Enrique Angeles
- Departamento de Ciencias Químicas FES Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Av. 1 de Mayo SN Cuautitlán Izcalli, Mexico City 54750, Mexico; (M.A.H.-S.); (A.Y.A.-L.); (P.A.M.-S.); (A.M.V.-S.); (E.A.)
| | - Levon Abrahamyan
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
2
|
Liu M, Wang B, Liu H, Xia H, Ding L. Molecular docking, 3D-QASR and molecular dynamics simulations of benzimidazole Pin1 inhibitors. Phys Chem Chem Phys 2024; 26:4643-4656. [PMID: 38251755 DOI: 10.1039/d3cp05658a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Pin1 (protein interacting with never-in-mitosis akinase-1) is a member of the family of peptidylprolyl cis-trans isomerases (PPIases) that specifically recognize and isomerize substrates containing phosphorylated Ser/Thr-Pro sequences. Pin1 is involved in many cellular processes and plays a key role in the cell cycle, transcriptional regulation, cell metabolism, proliferation and differentiation, and its abnormalities lead to degenerative and neoplastic diseases. Pin1 is highly expressed in human cancers and promotes the development of tumors by activating multiple oncogenes and inactivating multiple tumor suppressor genes, making it an attractive target for cancer therapy. In this study, we investigated the binding mechanism and conformational relationship between benzimidazole Pin1 inhibitors and Pin1 proteins by molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, binding free energy calculations and decomposition, and molecular dynamics simulations. Molecular docking and molecular dynamics simulations disclosed the most likely binding pose of benzimidazoles with the Pin1 protein. The results of 3D-QSAR modeling indicated that electrostatic fields, hydrophobic fields and hydrogen bonding play important roles in the binding process of inhibitors to proteins. The binding free energy calculations and energy decomposition indicated that Lys63, Arg69, Cys113, Leu122, Met130, and Ser154 may be key residues in the binding of benzimidazole-based inhibitors to the Pin1 protein. This study provides an important theoretical basis for the design and optimization of benzimidazole compounds.
Collapse
Affiliation(s)
- Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Bingli Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Huan Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Haolun Xia
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China.
| |
Collapse
|
3
|
Zang J, Liu M, Liu H, Ding L. A molecular simulation study of hepatitis B virus core protein and the nuclear protein allosteric modulators of phthalazinone derivatives. Phys Chem Chem Phys 2022; 24:23209-23225. [PMID: 36129214 DOI: 10.1039/d2cp02946d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hepatitis B virus, causing hepatitis, cirrhosis, liver failure, and liver cancer, poses a serious threat to human health, and the currently approved drugs still cannot eliminate the virus completely. HBV core protein allosteric modulators (CpAMs) with a phthalazinone structure which targets the HBV core (HBc) protein have been seen as a new kind of drug because of their excellent antiviral effects. This study explores the structure-activity relationship and binding mechanism of phthalazinone molecules through three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics, and binding free energy calculation and decomposition studies. In addition, CoMFA and CoMSIA models revealed that the steric field, the hydrophobic field, and the hydrogen bond acceptor field may play important roles in the binding process. The molecular docking and dynamics disclosed the most likely binding pose of phthalazinone derivatives with the HBc protein. The binding free energy calculation and decomposition analysis indicated that the van der Waals force was the driving force and that ValE124, ThrD109, ThrE128, LeuD140, IleD105, PheD110, ThrD33, and TrpD102 were the key residues. This study provides an important theoretical basis for the design and optimization of phthalazinone compounds.
Collapse
Affiliation(s)
- Jieying Zang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Huan Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Lina Ding
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
4
|
Xie D, He S, Han L, Wu L, Huang H, Tao H, Zhou P, Shi X, Bai H, Bo X. Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs. Brief Bioinform 2022; 23:bbac047. [PMID: 35238349 PMCID: PMC9116211 DOI: 10.1093/bib/bbac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.
Collapse
Affiliation(s)
- Dafei Xie
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China, 100850
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China, 300072
| | - Hai Huang
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Huan Tao
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Xunlong Shi
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Hui Bai
- BioMap (Beijing) Intelligence Technology Limited, Beijing, China, 100005
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| |
Collapse
|
5
|
Remington JM, McKay KT, Ferrell JB, Schneebeli ST, Li J. Enhanced sampling protocol to elucidate fusion peptide opening of SARS-CoV-2 spike protein. Biophys J 2021; 120:2848-2858. [PMID: 34087207 PMCID: PMC8169235 DOI: 10.1016/j.bpj.2021.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
Large-scale conformational transitions in the spike protein S2 domain are required during host-cell infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although conventional molecular dynamics simulations have been extensively used to study therapeutic targets of SARS-CoV-2, it is still challenging to gain molecular insight into the key conformational changes because of the size of the spike protein and the long timescale required to capture these transitions. In this work, we have developed an efficient simulation protocol that leverages many short simulations, a dynamic selection algorithm, and Markov state models to interrogate the structural changes of the S2 domain. We discovered that the conformational flexibility of the dynamic region upstream of the fusion peptide in S2 is coupled to the proteolytic cleavage state of the spike protein. These results suggest that opening of the fusion peptide likely occurs on a submicrosecond timescale after cleavage at the S2' site. Building on the structural and dynamical information gained to date about S2 domain dynamics, we provide proof of principle that a small molecule bound to a seam neighboring the fusion peptide can slow the opening of the fusion peptide, leading to a new inhibition strategy for experiments to confirm. In aggregate, these results will aid the development of drug cocktails to inhibit infections caused by SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
| | - Kyle T McKay
- Department of Chemistry, University of Vermont, Burlington, Vermont
| | | | | | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, Vermont.
| |
Collapse
|
6
|
Andoh Y, Ichikawa SI, Sakashita T, Yoshii N, Okazaki S. Algorithm to minimize MPI communications in the parallelized fast multipole method combined with molecular dynamics calculations. J Comput Chem 2021; 42:1073-1087. [PMID: 33780021 DOI: 10.1002/jcc.26524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
In the era of exascale supercomputers, large-scale, and long-time molecular dynamics (MD) calculations are expected to make breakthroughs in various fields of science and technology. Here, we propose a new algorithm to improve the parallelization performance of message passing interface (MPI)-communication in the MPI-parallelized fast multipole method (FMM) combined with MD calculations under three-dimensional periodic boundary conditions. Our approach enables a drastic reduction in the amount of communication data, including the atomic coordinates and multipole coefficients, both of which are required to calculate the electrostatic interaction by using the FMM. In communications of multipole coefficients, the reduction rate of communication data in the new algorithm relative to the amount of data in the conventional one increases as both the number of FMM levels and the number of MPI processes increase. The aforementioned rate increase could exceed 50% as the number of MPI processes becomes larger for very large systems. The proposed algorithm, named the minimum-transferred data (MTD) method, should enable large-scale and long-time MD calculations to be calculated efficiently, under the condition of massive MPI-parallelization on exascale supercomputers.
Collapse
Affiliation(s)
- Yoshimichi Andoh
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shin-Ichi Ichikawa
- Computational Science Division, Technical Computing Business Unit, Fujitsu Limited, Chiba, Japan
| | - Tatsuya Sakashita
- Department of Information and Communication Technology, College of Engineering, Tamagawa University, Machida, Tokyo, Japan
| | - Noriyuki Yoshii
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
7
|
Wagner JR, Churas CP, Liu S, Swift RV, Chiu M, Shao C, Feher VA, Burley SK, Gilson MK, Amaro RE. Continuous Evaluation of Ligand Protein Predictions: A Weekly Community Challenge for Drug Docking. Structure 2019; 27:1326-1335.e4. [PMID: 31257108 DOI: 10.1016/j.str.2019.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/14/2019] [Accepted: 05/30/2019] [Indexed: 12/19/2022]
Abstract
Docking calculations can accelerate drug discovery by predicting the bound poses of ligands for a targeted protein. However, it is not clear which docking methods work best. Furthermore, predicting poses requires steps outside the docking algorithm itself, such as preparation of the protein and ligand, and it is not known which components are most in need of improvement. The Continuous Evaluation of Ligand Protein Predictions (CELPP) is a blinded prediction challenge designed to address these issues. Participants create a workflow to predict protein-ligand binding poses, which is then tasked with predicting 10-100 new protein-ligand crystal structures each week. CELPP evaluates the accuracy of each workflow's predictions and posts the scores online. The results can be used to identify the strengths and weaknesses of current approaches, help map docking problems to the algorithms most likely to overcome them, and illuminate areas of unmet need in structure-guided drug design.
Collapse
Affiliation(s)
- Jeffrey R Wagner
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher P Churas
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Shuai Liu
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert V Swift
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Chiu
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Chenghua Shao
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Victoria A Feher
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen K Burley
- RCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Michael K Gilson
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Rommie E Amaro
- Drug Design Data Resource, University of California San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Xie R, Liu M, Li S. Emodin weakens liver inflammatory injury triggered by lipopolysaccharide through elevating microRNA-145 in vitro and in vivo. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1877-1887. [PMID: 31079494 DOI: 10.1080/21691401.2019.1614015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- RuiJin Xie
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - Mei Liu
- Department of Gastroenterology, Jining No.1 People’s Hospital, Jining, China
| | - ShuJie Li
- Department of Rheumatology and Immunology, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
9
|
Molecular mechanisms of tetrahydropyrrolo[1,2-c]pyrimidines as HBV capsid assembly inhibitors. Arch Biochem Biophys 2019; 663:1-10. [DOI: 10.1016/j.abb.2018.12.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/22/2022]
|
10
|
Tu J, Li JJ, Shan ZJ, Zhai HL. Exploring the binding mechanism of Heteroaryldihydropyrimidines and Hepatitis B Virus capsid combined 3D-QSAR and molecular dynamics. Antiviral Res 2017; 137:151-164. [DOI: 10.1016/j.antiviral.2016.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 02/08/2023]
|
11
|
Block TM, Alter HJ, London WT, Bray M. A historical perspective on the discovery and elucidation of the hepatitis B virus. Antiviral Res 2016; 131:109-23. [PMID: 27107897 DOI: 10.1016/j.antiviral.2016.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
The discovery in 1965 of the "Australia antigen," subsequently identified as the hepatitis B virus surface antigen (HBsAg), was such a watershed event in virology that it is often thought to mark the beginning of hepatitis research, but it is more accurately seen as a critical breakthrough in a long effort to understand the pathogenesis of infectious hepatitis. A century earlier, Virchow provided an authoritative explanation of "catarrhal jaundice," which did not consider an infectious etiology, but the transmission of jaundice by human serum was clearly identified in two outbreaks in 1885, and the distinction between "infectious" and "serum" hepatitis was recognized by the early 1920s. The inability to culture a virus or reproduce either syndrome in laboratory animals led to numerous studies in human volunteers; by the end of World War II, it was known that the diseases were caused by different filterable agents, and the terms "hepatitis A" and "B" were introduced in 1947 (though some long-incubation cases then designated B must in retrospect have been hepatitis C). The development of a number of liver function tests during the 1950s led to the recognition of anicteric infections and the existence of chronic carriers, but little more could be done until an infectious agent had been identified. Once Blumberg and colleagues had found a specific viral marker, the vast amount of accumulated epidemiologic and clinical data, together with huge numbers of stored serum samples, enabled rapid progress in understanding hepatitis B, and revealed the existence of a vast population of chronically infected people in Asia, Oceania and Africa. In this article, we place the identification of the Australia antigen within the historical context of research on viral hepatitis. Following a chronological review from 1865 to 1965, we summarize how the discovery led to improved safety of blood transfusion, the development of a highly effective vaccine and the eventual identification of the hepatitis C, D and E viruses. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for chronic hepatitis B."
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| | - Harvey J Alter
- Department of Transfusion Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Mike Bray
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|