1
|
Low Pathogenicity H7N3 Avian Influenza Viruses Have Higher Within-Host Genetic Diversity Than a Closely Related High Pathogenicity H7N3 Virus in Infected Turkeys and Chickens. Viruses 2022; 14:v14030554. [PMID: 35336961 PMCID: PMC8951284 DOI: 10.3390/v14030554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Within-host viral diversity offers a view into the early stages of viral evolution occurring after a virus infects a host. In recent years, advances in deep sequencing have allowed for routine identification of low-frequency variants, which are important sources of viral genetic diversity and can potentially emerge as a major virus population under certain conditions. We examined within-host viral diversity in turkeys and chickens experimentally infected with closely related H7N3 avian influenza viruses (AIVs), specifically one high pathogenicity AIV (HPAIV) and two low pathogenicity AIV (LPAIVs) with different neuraminidase protein stalk lengths. Consistent with the high mutation rates of AIVs, an abundance of intra-host single nucleotide variants (iSNVs) at low frequencies of 2–10% was observed in all samples collected. Furthermore, a small number of common iSNVs were observed between turkeys and chickens, and between directly inoculated and contact-exposed birds. Notably, the LPAIVs have significantly higher iSNV diversities and frequencies of nonsynonymous changes than the HPAIV in both turkeys and chickens. These findings highlight the dynamics of AIV populations within hosts and the potential impact of genetic changes, including mutations in the hemagglutinin gene that confers the high pathogenicity pathotype, on AIV virus populations and evolution.
Collapse
|
2
|
Van Egeren D, Novokhodko A, Stoddard M, Tran U, Zetter B, Rogers M, Pentelute BL, Carlson JM, Hixon M, Joseph-McCarthy D, Chakravarty A. Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS One 2021; 16:e0250780. [PMID: 33909660 PMCID: PMC8081162 DOI: 10.1371/journal.pone.0250780] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The spike protein receptor-binding domain (RBD) of SARS-CoV-2 is the molecular target for many vaccines and antibody-based prophylactics aimed at bringing COVID-19 under control. Such a narrow molecular focus raises the specter of viral immune evasion as a potential failure mode for these biomedical interventions. With the emergence of new strains of SARS-CoV-2 with altered transmissibility and immune evasion potential, a critical question is this: how easily can the virus escape neutralizing antibodies (nAbs) targeting the spike RBD? To answer this question, we combined an analysis of the RBD structure-function with an evolutionary modeling framework. Our structure-function analysis revealed that epitopes for RBD-targeting nAbs overlap one another substantially and can be evaded by escape mutants with ACE2 affinities comparable to the wild type, that are observed in sequence surveillance data and infect cells in vitro. This suggests that the fitness cost of nAb-evading mutations is low. We then used evolutionary modeling to predict the frequency of immune escape before and after the widespread presence of nAbs due to vaccines, passive immunization or natural immunity. Our modeling suggests that SARS-CoV-2 mutants with one or two mildly deleterious mutations are expected to exist in high numbers due to neutral genetic variation, and consequently resistance to vaccines or other prophylactics that rely on one or two antibodies for protection can develop quickly -and repeatedly- under positive selection. Predicted resistance timelines are comparable to those of the decay kinetics of nAbs raised against vaccinal or natural antigens, raising a second potential mechanism for loss of immunity in the population. Strategies for viral elimination should therefore be diversified across molecular targets and therapeutic modalities.
Collapse
Affiliation(s)
- Debra Van Egeren
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Stem Cell Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Alexander Novokhodko
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States of America
| | | | - Uyen Tran
- Fractal Therapeutics, Cambridge, MA, United States of America
| | - Bruce Zetter
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Michael Rogers
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | | | - Mark Hixon
- Mark S. Hixon Consulting, LLC, San Diego, CA, United States of America
| | | | | |
Collapse
|
3
|
Mailly L, Wrensch F, Heydmann L, Fauvelle C, Brignon N, Zeisel MB, Pessaux P, Keck ZY, Schuster C, Fuerst TR, Foung SKH, Baumert TF. In vivo combination of human anti-envelope glycoprotein E2 and -Claudin-1 monoclonal antibodies for prevention of hepatitis C virus infection. Antiviral Res 2018; 162:136-141. [PMID: 30599173 DOI: 10.1016/j.antiviral.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022]
Abstract
Despite the development of direct-acting antivirals (DAAs), hepatitis C virus (HCV) infection remains a major cause for liver disease and cancer worldwide. Entry inhibitors block virus host cell entry and, therefore, prevent establishment of chronic infection and liver disease. Due to their unique mechanism of action, entry inhibitors provide an attractive antiviral strategy in organ transplantation. In this study, we developed an innovative approach in preventing HCV infection using a synergistic combination of a broadly neutralizing human monoclonal antibody (HMAb) targeting the HCV E2 protein and a host-targeting anti-claudin 1 (CLDN1) humanized monoclonal antibody. An in vivo proof-of-concept study in human liver-chimeric FRG-NOD mice proved the efficacy of the combination therapy at preventing infection by an HCV genotype 1b infectious serum. While administration of individual antibodies at lower doses only showed a delay in HCV infection, the combination therapy was highly protective. Furthermore, the combination proved to be effective in preventing infection of primary human hepatocytes by neutralization-resistant HCV escape variants selected during liver transplantation, suggesting that a combination therapy is suited for the neutralization of difficult-to-treat variants. In conclusion, our findings suggest that the combination of two HMAbs targeting different steps of virus entry improves treatment efficacy while simultaneously reducing treatment duration and costs. Our approach not only provides a clinical perspective to employ HMAb combination therapies to prevent graft re-infection and its associated liver disease but may also help to alleviate the urgent demand for organ transplants by allowing the transplantation of organs from HCV-positive donors.
Collapse
Affiliation(s)
- Laurent Mailly
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Catherine Fauvelle
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Nicolas Brignon
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France
| | - Thomas R Fuerst
- University of Maryland Institute for Bioscience and Biotechnology Research, Rockville, MD, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000, Strasbourg, France; Université de Strasbourg, 67000, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
4
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|