1
|
Aleem MT, Munir F, Shakoor A, Gao F. mRNA vaccines against infectious diseases and future direction. Int Immunopharmacol 2024; 135:112320. [PMID: 38788451 DOI: 10.1016/j.intimp.2024.112320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Vaccines are used for the control of infectious diseases of animals. Over other types of vaccinations like live attenuated or killed vaccines, mRNA-based vaccines have significant advantages. As only a small portion of the pathogen's genetic material is employed and the dose rate of mRNA-based vaccines is low, there is the least possibility that the pathogen will reverse itself. A carrier or vehicle that shields mRNA-based vaccines from the host's cellular RNases is necessary for their delivery. mRNA vaccines have been shown to be effective and to induce both a cell-mediated immune response and a humoral immune response in clinical trials against various infectious diseases (viral and parasitic) affecting the animals, including rabies, foot and mouth disease, toxoplasmosis, Zikavirus, leishmaniasis, and COVID-19. The current review aims to highlight the use of mRNA-based vaccines both in viral and parasitic diseases of animals.
Collapse
Affiliation(s)
- Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China; Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Clevaland State University, Clevaland, OH 44115, USA.
| | - Furqan Munir
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Amna Shakoor
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Shin S, Kim HW, Ko MK, Park SH, Kim SM, Park JH, Lee MJ. Inactivated vaccine with glycyrrhizic acid adjuvant elicits potent innate and adaptive immune responses against foot-and-mouth disease. Front Microbiol 2023; 14:1289065. [PMID: 38029108 PMCID: PMC10644816 DOI: 10.3389/fmicb.2023.1289065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Foot-and-mouth disease (FMD) is an extremely contagious viral disease that is fatal to young animals and is a major threat to the agricultural economy by reducing production and limiting the movement of livestock. The currently commercially-available FMD vaccine is prepared using an inactivated viral antigen in an oil emulsion, with aluminum hydroxide [Al(OH)3] as an adjuvant. However, oil emulsion-based options possess limitations including slow increases in antibody titers (up to levels adequate for defense against viral infection) and risks of local reactions at the vaccination site. Further, Al(OH)3 only induces a T helper 2 (Th2) cell response. Therefore, novel adjuvants that can address these limitations are urgently needed. Glycyrrhizic acid (extracted from licorice roots) is a triterpenoid saponin and has great advantages in terms of price and availability. Methods To address the limitations of the currently used commercial FMD vaccine, we added glycyrrhizic acid as an adjuvant (immunostimulant) to the FMD bivalent (O PA2 + A YC) vaccine. We then evaluated its efficacy in promoting both innate and adaptive (cellular and humoral) immune reactions in vitro [using murine peritoneal exudate cells (PECs) and porcine peripheral blood mononuclear cells (PBMCs)] and in vivo (using mice and pigs). Results Glycyrrhizic acid has been revealed to induce an innate immune response and enhance early, mid-, and long-term immunity. The studied bivalent vaccine with glycyrrhizic acid increased the expression of immunoregulatory genes such as pattern-recognition receptors (PRRs), cytokines, transcription factors, and co-stimulatory molecules. Conclusion Collectively, glycyrrhizic acid could have utility as a novel vaccine adjuvant that can address the limitations of commercialized FMD vaccines by inducing potent innate and adaptive immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
3
|
Rodríguez-Pulido M, Calvo-Pinilla E, Polo M, Saiz JC, Fernández-González R, Pericuesta E, Gutiérrez-Adán A, Sobrino F, Martín-Acebes MA, Sáiz M. Non-coding RNAs derived from the foot-and-mouth disease virus genome trigger broad antiviral activity against coronaviruses. Front Immunol 2023; 14:1166725. [PMID: 37063925 PMCID: PMC10090856 DOI: 10.3389/fimmu.2023.1166725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 04/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of a potentially severe respiratory disease, the coronavirus disease 2019 (COVID-19), an ongoing pandemic with limited therapeutic options. Here, we assessed the anti-coronavirus activity of synthetic RNAs mimicking specific domains in the non-coding regions of the foot-and-mouth disease virus (FMDV) genome (ncRNAs). These molecules are known to exert broad-spectrum antiviral activity in cell culture, mice and pigs effectively triggering the host innate immune response. The ncRNAs showed potent antiviral activity against SARS-CoV-2 after transfection in human intestinal Caco-2 and lung epithelium Calu-3 2B4 cells. When the in vivo efficacy of the FMDV ncRNAs was assessed in K18-hACE2 mice, administration of naked ncRNA before intranasal SARS-CoV-2 infection significantly decreased the viral load and the levels of pro-inflammatory cytokines in the lungs compared with untreated infected mice. The ncRNAs were also highly efficacious when assayed against common human HCoV-229E and porcine transmissible gastroenteritis virus (TGEV) in hepatocyte-derived Huh-7 and swine testis ST cells, respectively. These results are a proof of concept of the pan-coronavirus antiviral activity of the FMDV ncRNAs including human and animal divergent coronaviruses and potentially enhance our ability to fight future emerging variants.
Collapse
Affiliation(s)
- Miguel Rodríguez-Pulido
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Eva Calvo-Pinilla
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Juan-Carlos Saiz
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Raúl Fernández-González
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Eva Pericuesta
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Animal Reproduction Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (INIA-CSIC), Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Margarita Sáiz,
| |
Collapse
|
4
|
The C3d-fused foot-and-mouth disease vaccine platform overcomes maternally-derived antibody interference by inducing a potent adaptive immunity. NPJ Vaccines 2022; 7:70. [PMID: 35764653 PMCID: PMC9240001 DOI: 10.1038/s41541-022-00496-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
Vaccination prevents and controls foot-and-mouth disease (FMD). However, the current FMD vaccine remains disadvantageous since it cannot overcome maternally-derived antibody (MDA) interference in weeks-old animals, which suppress active immunity via vaccination. To address this, we developed the immune-enhancing O PA2-C3d and A22-C3d FMD vaccine strains that can stimulate receptors on the surface of B cells by inserting C3d (a B cell epitope) into the VP1 region of O PA2 (FMDV type O) and A22 (FMDV type A). We purified inactivated viral antigens from these vaccine strains and evaluated their immunogenicity and host defense against FMDV infection in mice. We also verified its efficacy in inducing an adaptive immune response and overcome MDA interference in MDA-positive (MDA(+), FMD-seropositive) and -negative (MDA(−), FMD-seronegative) pigs. These results suggest a key strategy for establishing novel FMD vaccine platform to overcome MDA interference and induce a robust adaptive immune response.
Collapse
|
5
|
Rodríguez-Pulido M, Polo M, Borrego B, Sáiz M. Use of Foot-and-Mouth Disease Virus Non-coding Synthetic RNAs as Vaccine Adjuvants. Methods Mol Biol 2022; 2465:125-135. [PMID: 35118619 DOI: 10.1007/978-1-0716-2168-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ncRNAs are short RNA transcripts with sequence and structure resembling that of specific domains in the non-coding regions of the foot-and-mouth disease (FMD) virus (FMDV ) genome. These synthetic molecules induce a robust antiviral response and have been shown to enhance the immune response and protection induced by an FMD inactivated vaccine in pigs. Here, we describe the method for ncRNAs synthesis, formulation, and delivery into mice and pigs for studies focused on testing the adjuvant effect of RNA-based strategies in combination with veterinarian vaccines.
Collapse
Affiliation(s)
| | - Miryam Polo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA), INIA-CSIC, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
6
|
Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:71-110. [PMID: 32483657 PMCID: PMC8195316 DOI: 10.1007/82_2020_217] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
mRNA vaccines have become a versatile technology for the prevention of infectious diseases and the treatment of cancers. In the vaccination process, mRNA formulation and delivery strategies facilitate effective expression and presentation of antigens, and immune stimulation. mRNA vaccines have been delivered in various formats: encapsulation by delivery carriers, such as lipid nanoparticles, polymers, peptides, free mRNA in solution, and ex vivo through dendritic cells. Appropriate delivery materials and formulation methods often boost the vaccine efficacy which is also influenced by the selection of a proper administration route. Co-delivery of multiple mRNAs enables synergistic effects and further enhances immunity in some cases. In this chapter, we overview the recent progress and existing challenges in the formulation and delivery technologies of mRNA vaccines with perspectives for future development.
Collapse
Affiliation(s)
- Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Patrick G Walker
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, 43210, Columbus, OH, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Nikunjkumar P, Tamil Selvan RP, Bhanuprakash V. Ribavirin as a curative and prophylactic agent against foot and mouth disease virus infection in C57BL/6 suckling and adult mice model. Virusdisease 2021; 32:737-747. [PMID: 34901324 DOI: 10.1007/s13337-021-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 11/29/2022] Open
Abstract
Despite the availability of control measures for foot-and-mouth disease (FMD), the application of antiviral agents is imperative due to certain limitations in the prevention and control of FMD. This study pertains to systematic in vivo investigation of ribavirin as a prophylactic/curative agent, both in suckling and adult C57BL/6 mice against foot-and-mouth disease virus (FMDV) infection. In the adult mice, antiviral efficacy was assessed based on standard clinical score, body weight, and viral load. Only 13.33 to 33.33% of adult mice exhibited disease-specific symptoms following treatment and infection and vice versa, respectively, indicating the antiviral efficacy of the ribavirin. Further, the distribution of virus in different vital organs following ribavirin treatment and virus infection, and vice versa using SYBR green-based real-time PCR is reported. In the blood sample, the viral RNA was detected as early as two days post-infection and there was a significant reduction in virus titer (1000 to 10,000-folds) in the treatment groups compared to the infection control group. Animals receiving ribavirin had significantly lower organ virus titers at 2, 4, 6, 9, and 14 days post-challenge (dpc) than placebo-treated. In suckling mice, the treatment groups were 100% protected/cured compared to the control group. Thus, our data demonstrate that ribavirin may provide a feasible therapeutic approach to prevent as well as to treat FMDV infection. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00746-8.
Collapse
Affiliation(s)
- Patel Nikunjkumar
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| | - Ramasamy Periyasamy Tamil Selvan
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| | - Veerakyathappa Bhanuprakash
- FMD Vaccine Quality Control Laboratory, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), HA Farm (P.O), Hebbal, Bengaluru, Karnataka 560 024 India
| |
Collapse
|
8
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
9
|
de León P, Cañas-Arranz R, Defaus S, Torres E, Forner M, Bustos MJ, Revilla C, Dominguez J, Andreu D, Blanco E, Sobrino F. Swine T-Cells and Specific Antibodies Evoked by Peptide Dendrimers Displaying Different FMDV T-Cell Epitopes. Front Immunol 2021; 11:621537. [PMID: 33613553 PMCID: PMC7886804 DOI: 10.3389/fimmu.2020.621537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 11/13/2022] Open
Abstract
Dendrimeric peptide constructs based on a lysine core that comprises both B- and T-cell epitopes of foot-and-mouth disease virus (FMDV) have proven a successful strategy for the development of FMD vaccines. Specifically, B2T dendrimers displaying two copies of the major type O FMDV antigenic B-cell epitope located on the virus capsid [VP1 (140–158)], covalently linked to a heterotypic T-cell epitope from either non-structural protein 3A [3A (21–35)] or 3D [3D (56–70)], named B2T-3A and B2T-3D, respectively, elicit high levels of neutralizing antibodies (nAbs) and IFN-γ-producing cells in pigs. To assess whether the inclusion and orientation of T-3A and T-3D T-cell epitopes in a single molecule could modulate immunogenicity, dendrimers with T epitopes juxtaposed in both possible orientations, i.e., constructs B2TT-3A3D and B2TT-3D3A, were made and tested in pigs. Both dendrimers elicited high nAbs titers that broadly neutralized type O FMDVs, although B2TT-3D3A did not respond to boosting, and induced lower IgGs titers, in particular IgG2, than B2TT-3A3D. Pigs immunized with B2, a control dendrimer displaying two B-cell epitope copies and no T-cell epitope, gave no nABs, confirming T-3A and T-3D as T helper epitopes. The T-3D peptide was found to be an immunodominant, as it produced more IFN-γ expressing cells than T-3A in the in vitro recall assay. Besides, in pigs immunized with the different dendrimeric peptides, CD4+ T-cells were the major subset contributing to IFN-γ expression upon in vitro recall, and depletion of CD4+ cells from PBMCs abolished the production of this cytokine. Most CD4+IFN-γ+ cells showed a memory (CD4+2E3−) and a multifunctional phenotype, as they expressed both IFN-γ and TNF-α, suggesting that the peptides induced a potent Th1 pro-inflammatory response. Furthermore, not only the presence, but also the orientation of T-cell epitopes influenced the T-cell response, as B2TT-3D3A and B2 groups had fewer cells expressing both cytokines. These results help understand how B2T-type dendrimers triggers T-cell populations, highlighting their potential as next-generation FMD vaccines.
Collapse
Affiliation(s)
- Patricia de León
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Rodrigo Cañas-Arranz
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elisa Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - María J Bustos
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Concepción Revilla
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Javier Dominguez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Francisco Sobrino
- Microbes in Health and Welfare Unit, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
10
|
Rodríguez Pulido M, H B R, Sáiz M. A Wide-Ranging Antiviral Response in Wild Boar Cells Is Triggered by Non-coding Synthetic RNAs From the Foot-and-Mouth Disease Virus Genome. Front Vet Sci 2020; 7:495. [PMID: 32851049 PMCID: PMC7417647 DOI: 10.3389/fvets.2020.00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 11/30/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious viral disease that affects multiple cloven-hooved hosts including important livestock (pigs, cattle, sheep and goats) as well as several wild animal species. Crossover of FMDV between domestic and wildlife populations may prolong virus circulation during outbreaks. The wild boar (Sus scrofa) is considered a reservoir of various pathogens that can infect other wildlife, domestic animals, and humans. As wild boar and domestic pigs are susceptible to the same pathogens and can infect each other, infected wild boar populations may represent a threat to the pig industry and to international trade. The ncRNAs are synthetic non-coding RNA transcripts, mimicking structural domains in the FMDV genome, known to exert a broad-spectrum antiviral and immunomodulatory effect in swine, bovine and mice cells. Here, we show the type I interferon-dependent, robust and broad range antiviral activity induced by the ncRNAs in a cell line derived from wild boar lung cells (WSL). Transfection of WSL cells with the ncRNAs exerted a protective effect against infection with FMDV, vesicular stomatitis virus (VSV), swine vesicular disease virus (SVDV) and African swine fever virus (ASFV). Our results prove the biological activity of the ncRNAs in cells of an FMDV wild animal host species against a variety of viruses affecting pigs, including relevant viral pathogens of epizootic risk.
Collapse
Affiliation(s)
| | - Ranjitha H B
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
11
|
Cañas-Arranz R, de León P, Forner M, Defaus S, Bustos MJ, Torres E, Andreu D, Blanco E, Sobrino F. Immunogenicity of a Dendrimer B 2T Peptide Harboring a T-Cell Epitope From FMDV Non-structural Protein 3D. Front Vet Sci 2020; 7:498. [PMID: 32851051 PMCID: PMC7433650 DOI: 10.3389/fvets.2020.00498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
Synthetic dendrimer peptides are a promising strategy to develop new FMD vaccines. A dendrimer peptide, termed B2T-3A, which harbors two copies of the major FMDV antigenic B-cell site [VP1 (140–158)], covalently linked to a heterotypic T-cell from the non-structural protein 3A [3A (21–35)], has been shown to protect pigs against viral challenge. Interestingly, the modular design of this dendrimer peptide allows modifications aimed at improving its immunogenicity, such as the replacement of the T-cell epitope moiety. Here, we report that a dendrimer peptide, B2T-3D, harboring a T-cell epitope from FMDV 3D protein [3D (56–70)], when inoculated in pigs, elicited consistent levels of neutralizing antibodies and high frequencies of IFN-γ-producing cells upon in vitro recall with the homologous dendrimers, both responses being similar to those evoked by B2T-3A. Lymphocytes from B2T-3A-immunized pigs were in vitro-stimulated by T-3A peptide and to a lesser extent by B-peptide, while those from B2T-3D- immunized animals preferentially recognized the T-3D peptide, suggesting that this epitope is a potent inducer of IFN-γ producing-cells. These results extend the repertoire of T-cell epitopes efficiently recognized by swine lymphocytes and open the possibility of using T-3D to enhance the immunogenicity and the protection conferred by B2T-dendrimers.
Collapse
Affiliation(s)
| | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Mar Forner
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - María J Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
12
|
Medina GN, de los Santos T, Diaz-San Segundo F. Use of IFN-Based Biotherapeutics to Harness the Host Against Foot-And-Mouth Disease. Front Vet Sci 2020; 7:465. [PMID: 32851039 PMCID: PMC7431487 DOI: 10.3389/fvets.2020.00465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of cloven-hoofed animals that severely constrains international trade of livestock and animal products. Currently, disease control measures include broad surveillance, enforcement of sanitary policy, and use of an inactivated vaccine. While use of these measures has contributed to eliminating foot-and-mouth disease virus (FMDV) from a vast area of the world, the disease remains endemic in three continents, and outbreaks occasionally appear in previously declared FMD-free zones, causing economic and social devastation. Among others, a very fast rate of viral replication and the need for 7 days to achieve vaccine-induced protection are the main limitations in controlling the disease. New fast-acting antiviral strategies targeted to boost the innate immunity of the host to block viral replication are needed. Here we review the knowledge on the multiple strategies FMDV has evolved to block the host innate immunity, with particularly focus on the past and current research toward the development of interferon (IFN)-based biotherapeutics in relevant livestock species.
Collapse
Affiliation(s)
- Gisselle N. Medina
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
- Kansas State University, College of Veterinary Medicine, Manhattan, KS, United States
| | - Teresa de los Santos
- Plum Island Animal Disease Center (PIADC), ARS, USDA, Orient Point, NY, United States
| | | |
Collapse
|
13
|
Lee MJ, Jo H, Park SH, Ko MK, Kim SM, Kim B, Park JH. Advanced Foot-And-Mouth Disease Vaccine Platform for Stimulation of Simultaneous Cellular and Humoral Immune Responses. Vaccines (Basel) 2020; 8:E254. [PMID: 32481687 PMCID: PMC7349985 DOI: 10.3390/vaccines8020254] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Currently available commercial foot-and-mouth disease (FMD) vaccines have various limitations, such as the slow induction and short-term maintenance of antibody titers. Therefore, a novel FMD vaccine that can rapidly induce high neutralizing antibody titers to protect the host in early stages of an FMD virus infection, maintain high antibody titers for long periods after one vaccination dose, and confer full protection against clinical symptoms by simultaneously stimulating cellular and humoral immunity is needed. Here, we developed immunopotent FMD vaccine strains A-3A and A-HSP70, which elicit strong initial cellular immune response and induce humoral immune response, including long-lasting memory response. We purified the antigen (inactivated virus) derived from these immunopotent vaccine strains, and evaluated the immunogenicity and efficacy of the vaccines containing these antigens in mice and pigs. The immunopotent vaccine strains A-3A and A-HSP70 demonstrated superior immunogenicity compared with the A strain (backbone strain) in mice. The oil emulsion-free vaccine containing A-3A and A-HSP70 antigens effectively induced early, mid-term, and long-term immunity in mice and pigs by eliciting robust cellular and humoral immune responses through the activation of co-stimulatory molecules and the secretion of proinflammatory cytokines. We successfully derived an innovative FMD vaccine formulation to create more effective FMD vaccines.
Collapse
Affiliation(s)
- Min Ja Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.J.); (S.H.P.); (M.-K.K.); (S.-M.K.); (B.K.)
| | | | | | | | | | | | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do 39660, Korea; (H.J.); (S.H.P.); (M.-K.K.); (S.-M.K.); (B.K.)
| |
Collapse
|
14
|
Mansilla FC, Turco CS, Miraglia MC, Bessone FA, Franco R, Pérez-Filgueira M, Sala JM, Capozzo AV. The role of viral particle integrity in the serological assessment of foot-and-mouth disease virus vaccine-induced immunity in swine. PLoS One 2020; 15:e0232782. [PMID: 32369529 PMCID: PMC7199947 DOI: 10.1371/journal.pone.0232782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of foot-and-mouth disease virus (FMDV) inactivated vaccines is mainly dependent on the integrity of the whole (146S) viral particles. If the intact capsids disassemble to 12S subunits, antibodies against internal-not protective epitopes, may be induced. Serological correlates with protection may be hampered if antibodies against internal epitopes are measured. Here we compared the performance of different ELISAs with the virus-neutralization test (VNT) that measures antibodies against exposed epitopes. Sera from pigs immunized with one dose of an expired commercial FMDV vaccine were used. This vaccine contained about 50% of O1/Campos and over 90% of A24/Cruzeiro strains total antigen as whole 146S particles. Specific-total antibodies were measured with the standard liquid-phase blocking ELISA (LPBE). We also developed an indirect ELISA (IE) using sucrose gradient purified 146S particles as capture antigen to titrate total antibodies, IgM, IgG1 and IgG2. A good correlation was found between VNT titers and IgG-ELISAs for A24/Cruzeiro, with the lowest correlation coefficient estimated for IgG2 titers. For O1/Campos, however, the presence of antibodies against epitopes different from those of the whole capsid, elicited by the presence of 12S particles in the vaccine, hampered the correlation between LPBE and VNT, which was improved by using purified O1/Campos 146S-particles for the liquid-phase of the LPBE. Interestingly, 146S particles but not 12S were efficiently bound to the ELISA plates, confirming the efficiency of the IE to detect antibodies against exposed epitopes. Our results indicate that any serological test assessing total antibodies or IgG1 against epitopes exposed in intact 146S-particles correlate with the levels of serum neutralizing antibodies in vaccinated pigs, and might potentially replace the VNT, upon validation. We recommend that antigen used for serological assays aimed to measure protective antibodies against FMDV should be controlled to ensure the preservation of 146S viral particles.
Collapse
Affiliation(s)
- Florencia Celeste Mansilla
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Cecilia Soledad Turco
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - María Cruz Miraglia
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | | | - Raúl Franco
- Estación Experimental Agropecuaria "Marcos Juárez", INTA, Marcos Juarez, Córdoba, Argentina
| | - Mariano Pérez-Filgueira
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Juan Manuel Sala
- Estación Experimental Agropecuaria "Mercedes", INTA, Merdeces, Corrientes, Argentina
| | - Alejandra Victoria Capozzo
- IVIT, Instituto de Virología e Innovaciones Tecnológicas, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
15
|
Cañas-Arranz R, Forner M, Defaus S, Rodríguez-Pulido M, de León P, Torres E, Bustos MJ, Borrego B, Sáiz M, Blanco E, Andreu D, Sobrino F. A bivalent B-cell epitope dendrimer peptide can confer long-lasting immunity in swine against foot-and-mouth disease. Transbound Emerg Dis 2020; 67:1614-1622. [PMID: 31994334 DOI: 10.1111/tbed.13497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 01/12/2023]
Abstract
Foot-and-mouth disease virus (FMDV) causes a widely extended contagious disease of livestock. We have previously reported that a synthetic dendrimeric peptide, termed B2 T(mal), consisting of two copies of a B-cell epitope [VP1(140-158)] linked through maleimide groups to a T-cell epitope [3A(21-35)] of FMDV, elicits potent B- and T-cell-specific responses and confers solid protection in pigs to type O FMDV challenge. Longer duration of the protective response and the possibility of inducing protection after a single dose are important requirements for an efficient FMD vaccine. Herein, we show that administration of two doses of B2 T(mal) elicited high levels of specific total IgGs and neutralizing antibodies that lasted 4-5 months after the peptide boost. Additionally, concomitant levels of IFN-γ-producing specific T cells were observed. Immunization with two doses of B2 T(mal) conferred a long-lasting reduced susceptibility to FMDV infection, up to 136 days (19/20 weeks) post-boost. Remarkably, a similar duration of the protective response was achieved by a single dose of B2 T(mal). The effect on the B2 T(mal) vaccine of RNA transcripts derived from non-coding regions in the FMDV genome, known to enhance the immune response and protection induced by a conventional inactivated vaccine, was also analysed. The contribution of our results to the development of FMD dendrimeric vaccines is discussed.
Collapse
Affiliation(s)
| | - Mar Forner
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Sira Defaus
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | | | - Patricia de León
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Elisa Torres
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - María J Bustos
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Belén Borrego
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Esther Blanco
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Spain
| | - David Andreu
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Francisco Sobrino
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| |
Collapse
|
16
|
Foot-and-Mouth Disease Virus: Immunobiology, Advances in Vaccines and Vaccination Strategies Addressing Vaccine Failures-An Indian Perspective. Vaccines (Basel) 2019; 7:vaccines7030090. [PMID: 31426368 PMCID: PMC6789522 DOI: 10.3390/vaccines7030090] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
A mass vaccination campaign in India seeks to control and eventually eradicate foot-and-mouth disease (FMD). Biosanitary measures along with FMD monitoring are being conducted along with vaccination. The implementation of the FMD control program has drastically reduced the incidence of FMD. However, cases are still reported, even in regions where vaccination is carried out regularly. Control of FMD outbreaks is difficult when the virus remains in circulation in the vaccinated population. Various FMD risk factors have been identified that are responsible for FMD in vaccinated areas. The factors are discussed along with strategies to address these challenges. The current chemically inactivated trivalent vaccine formulation containing strains of serotype O, A, and Asia 1 has limitations including thermolability and induction of only short-term immunity. Advantages and disadvantages of several new-generation alternate vaccine formulations are discussed. It is unfeasible to study every incidence of FMD in vaccinated animals/areas in such a big country as India with its huge livestock population. However, at the same time, it is absolutely necessary to identify the precise reason for vaccination failure. Failure to vaccinate is one reason for the occurrence of FMD in vaccinated areas. FMD epidemiology, emerging and re-emerging virus strains, and serological status over the past 10 years are discussed to understand the impact of vaccination and incidences of vaccination failure in India. Other factors that are important in vaccination failure that we discuss include disrupted herd immunity, health status of animals, FMD carrier status, and FMD prevalence in other species. Recommendations to boost the search of alternate vaccine formulation, strengthen the veterinary infrastructure, bolster the real-time monitoring of FMD, as well as a detailed investigation and documentation of every case of vaccination failure are provided with the goal of refining the control program.
Collapse
|
17
|
Development and modeling of two-dimensional fast protein liquid chromatography for producing nonstructural protein-free food-and-mouth diseases virus vaccine. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:113-121. [PMID: 30170289 DOI: 10.1016/j.jchromb.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/07/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022]
Abstract
Concerns for the use of non-purified or incompletely purified inactivated foot-and-mouth disease (FMD) vaccine, like difficulties for differentiation vaccinated from infected animals, can be a motivation in order to develop methods based on size exclusion chromatography (SEC). In this study, a two dimensional size exclusion chromatography (2D-SEC) system was successfully constructed using two different SEC column media to achieve a high-throughput purification system for the cell culture-derived foot and mouth diseases virus (FMDV). A mathematical model was also utilized to predict and to get a better insight into the separation process. Column and the packing particles characteristics such as column void volume, total column volume, particle porosity and accessible particle porosity was acquired experimentally. Retention times and elution profile of two different molecules, blue dextran and bovine serum albumin, were used for evaluating the capability of SEC media for separating two critical impurities (residual DNA (rDNA) and non-structural protein (NSP)) from active ingredient of vaccine (FMDV particle). Experiments were carried out with two different commercial columns (XK 26/60) and (XK 16/100) and with four different packing media superdex 200 prep grade, sephacryl S-500 HR, Sephacryl S-400 HR and Sephacryl S-300HR. The mathematical model was first validated by experimental chromatographic data of different SEC media and was then used to propose the best 2D-SEC system for downstream processing of the FMDV vaccine. The loading capacity of the constructed 2D-SEC sample was increased to 12.5% of total column volume and the purity of the final product was more than 90%. The entire purification process was performed with 77% FMDV recovery and 79.1% virus yield. Based on the high-performance size exclusion chromatography (HPSEC), the purity of the final NSP-free FMDV was about 90% and over 94.6% of host cell DNA was removed. Analyses of the purified FMDV by HPSEC, transmission electron microscopy (TEM) and dynamic light scattering (DLS) indicated that the final product had spherical shape with mean size about 30 nm and their structure remained intact.
Collapse
|
18
|
Ma XX, Ma LN, Chang QY, Ma P, Li LJ, Wang YY, Ma ZR, Cao X. Type I Interferon Induced and Antagonized by Foot-and-Mouth Disease Virus. Front Microbiol 2018; 9:1862. [PMID: 30150977 PMCID: PMC6099088 DOI: 10.3389/fmicb.2018.01862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022] Open
Abstract
Viral infections trigger the innate immune system, serving as the first line of defense, and are characterized by the production of type I interferon (IFN). Type I IFN is expressed in a broad spectrum of cells and tissues in the host and includes various subtypes (IFN-α, IFN-β, IFN-δ, IFN-ε, IFN-κ, IFN-τ, IFN-ω, IFN-ν, and IFN-ζ). Since the discovery of type I IFN, our knowledge of the biology of type I IFN has accumulated immensely, and we now have a substantial amount of information on the molecular mechanisms of the response and induction of type I IFN, as well as the strategies utilized by viruses to evade the type I IFN response. Foot-and-mouth disease virus (FMDV) can selectively alter cellular pathways to promote viral replication and evade antiviral immune activation of type I IFN. RNA molecules generated by FMDV are sensed by the cellular receptor for pathogen-associated molecular patterns (PAMPs). FMDV preferentially activates different sensor molecules and various signal transduction pathways. Based on knowledge of the virus or RNA pathogen specificity as well as the function-structure relationship of RNA sensing, it is necessary to summarize numerous signaling adaptors that are reported to participate in the regulation of IFN gene activation.
Collapse
Affiliation(s)
- Xiao-Xia Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Li-Na Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiu-Yan Chang
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Peng Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Lin-Jie Li
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Yue-Ying Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhong-Ren Ma
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China
| | - Xin Cao
- Center for Biomedical Research, Northwest Minzu University, Lanzhou, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
19
|
Rodríguez Pulido M, Sánchez-Aparicio MT, Martínez-Salas E, García-Sastre A, Sobrino F, Sáiz M. Innate immune sensor LGP2 is cleaved by the Leader protease of foot-and-mouth disease virus. PLoS Pathog 2018; 14:e1007135. [PMID: 29958302 PMCID: PMC6042790 DOI: 10.1371/journal.ppat.1007135] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/12/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022] Open
Abstract
The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-β mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.
Collapse
Affiliation(s)
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, United States of America
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | | | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| |
Collapse
|
20
|
Rodríguez Pulido M, Del Amo L, Sobrino F, Sáiz M. Synthetic RNA derived from the foot-and-mouth disease virus genome elicits antiviral responses in bovine and porcine cells through IRF3 activation. Vet Microbiol 2018; 221:8-12. [PMID: 29981712 DOI: 10.1016/j.vetmic.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022]
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly transmissible disease affecting wild and domestic animals including pigs, cattle and sheep. The ability of synthetic RNA transcripts mimicking distinct domains in the non-coding regions of the FMDV genome (ncRNAs) to induce a potent innate immune response in swine cultured cells and mice has been previously described, as well as their enhancing effect on conventional inactivated FMD vaccines. Here, we provide evidence of the activation of interferon regulatory factor 3 (IRF3), a key transcriptional regulator of type I interferon (IFN)-dependent immune responses after transfection of swine and bovine cells with transcripts corresponding to the FMDV 3´ non-coding region (3´NCR). Induction of IFN-β and Mx1expression, concomitantly with antiviral activity and IRF3 activation was observed in bovine MDBK cells transfected with the 3´NCR. Our results link the stimulation of the innate immune response observed in 3´NCR-transfected cells to the intracellular type I IFN signaling pathway and suggest the potential use of these molecules for antiviral strategies in cattle.
Collapse
Affiliation(s)
| | - Laura Del Amo
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Francisco Sobrino
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| |
Collapse
|
21
|
Rodríguez Pulido M, Sáiz M. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response. Front Cell Infect Microbiol 2017; 7:252. [PMID: 28660175 PMCID: PMC5468379 DOI: 10.3389/fcimb.2017.00252] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/31/2017] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.
Collapse
Affiliation(s)
- Miguel Rodríguez Pulido
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| | - Margarita Sáiz
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-UAM)Madrid, Spain
| |
Collapse
|