1
|
Schmitt DL, Dranchak P, Parajuli P, Blivis D, Voss T, Kohnhorst CL, Kyoung M, Inglese J, An S. High-throughput screening identifies cell cycle-associated signaling cascades that regulate a multienzyme glucosome assembly in human cells. PLoS One 2023; 18:e0289707. [PMID: 37540718 PMCID: PMC10403072 DOI: 10.1371/journal.pone.0289707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
We have previously demonstrated that human liver-type phosphofructokinase 1 (PFK1) recruits other rate-determining enzymes in glucose metabolism to organize multienzyme metabolic assemblies, termed glucosomes, in human cells. However, it has remained largely elusive how glucosomes are reversibly assembled and disassembled to functionally regulate glucose metabolism and thus contribute to human cell biology. We developed a high-content quantitative high-throughput screening (qHTS) assay to identify regulatory mechanisms that control PFK1-mediated glucosome assemblies from stably transfected HeLa Tet-On cells. Initial qHTS with a library of pharmacologically active compounds directed following efforts to kinase-inhibitor enriched collections. Consequently, three compounds that were known to inhibit cyclin-dependent kinase 2, ribosomal protein S6 kinase and Aurora kinase A, respectively, were identified and further validated under high-resolution fluorescence single-cell microscopy. Subsequent knockdown studies using small-hairpin RNAs further confirmed an active role of Aurora kinase A on the formation of PFK1 assemblies in HeLa cells. Importantly, all the identified protein kinases here have been investigated as key signaling nodes of one specific cascade that controls cell cycle progression in human cells. Collectively, our qHTS approaches unravel a cell cycle-associated signaling network that regulates the formation of PFK1-mediated glucosome assembly in human cells.
Collapse
Affiliation(s)
- Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Patricia Dranchak
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Prakash Parajuli
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Dvir Blivis
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Ty Voss
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Casey L. Kohnhorst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - James Inglese
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
- National Institutes of Health, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Strang BL. Toward inhibition of human cytomegalovirus replication with compounds targeting cellular proteins. J Gen Virol 2022; 103. [PMID: 36215160 DOI: 10.1099/jgv.0.001795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antiviral therapy for human cytomegalovirus (HCMV) currently relies upon direct-acting antiviral drugs. However, it is now well known that these drugs have shortcomings, which limit their use. Here I review the identification and investigation of compounds targeting cellular proteins that have anti-HCMV activity and could supersede those anti-HCMV drugs currently in use. This includes discussion of drug repurposing, for example the use of artemisinin compounds, and discussion of new directions to identify compounds that target cellular factors in HCMV-infected cells, for example screening of kinase inhibitors. In addition, I highlight developing areas such as the use of machine learning and emphasize how interaction with fields outside virology will be critical for development of anti-HCMV compounds.
Collapse
Affiliation(s)
- Blair L Strang
- Institute for Infection & Immunity, St George's, University of London, London, UK
| |
Collapse
|
3
|
Falci Finardi N, Kim H, Hernandez LZ, Russell MRG, Ho CMK, Sreenu VB, Wenham HA, Merritt A, Strang BL. Identification and characterization of bisbenzimide compounds that inhibit human cytomegalovirus replication. J Gen Virol 2021; 102. [PMID: 34882533 PMCID: PMC8744270 DOI: 10.1099/jgv.0.001702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The shortcomings of current anti-human cytomegalovirus (HCMV) drugs has stimulated a search for anti-HCMV compounds with novel targets. We screened collections of bioactive compounds and identified a range of compounds with the potential to inhibit HCMV replication. Of these compounds, we selected bisbenzimide compound RO-90-7501 for further study. We generated analogues of RO-90-7501 and found that one compound, MRT00210423, had increased anti-HCMV activity compared to RO-90-7501. Using a combination of compound analogues, microscopy and biochemical assays we found RO-90-7501 and MRT00210423 interacted with DNA. In single molecule microscopy experiments we found RO-90-7501, but not MRT00210423, was able to compact DNA, suggesting that compaction of DNA was non-obligatory for anti-HCMV effects. Using bioinformatics analysis, we found that there were many putative bisbenzimide binding sites in the HCMV DNA genome. However, using western blotting, quantitative PCR and electron microscopy, we found that at a concentration able to inhibit HCMV replication our compounds had little or no effect on production of certain HCMV proteins or DNA synthesis, but did have a notable inhibitory effect on HCMV capsid production. We reasoned that these effects may have involved binding of our compounds to the HCMV genome and/or host cell chromatin. Therefore, our data expand our understanding of compounds with anti-HCMV activity and suggest targeting of DNA with bisbenzimide compounds may be a useful anti-HCMV strategy.
Collapse
Affiliation(s)
- Nicole Falci Finardi
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - HyeongJun Kim
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Lee Z Hernandez
- Department of Physics and Astronomy, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Biochemistry and Molecular Biology Program, University of Texas Rio Grande Valley, Edinburg, TX, USA.,Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | | - Catherine M-K Ho
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Vattipally B Sreenu
- MRC - University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Hannah A Wenham
- Institute of Infection & Immunity, St George's, University of London, London, UK
| | - Andy Merritt
- Centre for Therapeutic Discovery, LifeArc, Stevenage, UK
| | - Blair L Strang
- Institute of Infection & Immunity, St George's, University of London, London, UK.,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Innovations and Patent Trends in the Development of USFDA Approved Protein Kinase Inhibitors in the Last Two Decades. Pharmaceuticals (Basel) 2021; 14:ph14080710. [PMID: 34451807 PMCID: PMC8400070 DOI: 10.3390/ph14080710] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Protein kinase inhibitors (PKIs) are important therapeutic agents. As of 31 May 2021, the United States Food and Drug Administration (USFDA) has approved 70 PKIs. Most of the PKIs are employed to treat cancer and inflammatory diseases. Imatinib was the first PKI approved by USFDA in 2001. This review summarizes the compound patents and the essential polymorph patents of the PKIs approved by the USFDA from 2001 to 31 May 2021. The dates on the generic drug availability of the PKIs in the USA market have also been forecasted. It is expected that 19 and 48 PKIs will be genericized by 2025 and 2030, respectively, due to their compound patent expiry. This may reduce the financial toxicity associated with the existing PKIs. There are nearly 535 reported PKs. However, the USFDA approved PKIs target only about 10-15% of the total said PKs. As a result, there are still a large number of unexplored PKs. As the field advances during the next 20 years, one can anticipate that PKIs with many scaffolds, chemotypes, and pharmacophores will be developed.
Collapse
|
5
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
6
|
Adamson CS, Nevels MM. Bright and Early: Inhibiting Human Cytomegalovirus by Targeting Major Immediate-Early Gene Expression or Protein Function. Viruses 2020; 12:v12010110. [PMID: 31963209 PMCID: PMC7019229 DOI: 10.3390/v12010110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
The human cytomegalovirus (HCMV), one of eight human herpesviruses, establishes lifelong latent infections in most people worldwide. Primary or reactivated HCMV infections cause severe disease in immunosuppressed patients and congenital defects in children. There is no vaccine for HCMV, and the currently approved antivirals come with major limitations. Most approved HCMV antivirals target late molecular processes in the viral replication cycle including DNA replication and packaging. “Bright and early” events in HCMV infection have not been exploited for systemic prevention or treatment of disease. Initiation of HCMV replication depends on transcription from the viral major immediate-early (IE) gene. Alternative transcripts produced from this gene give rise to the IE1 and IE2 families of viral proteins, which localize to the host cell nucleus. The IE1 and IE2 proteins are believed to control all subsequent early and late events in HCMV replication, including reactivation from latency, in part by antagonizing intrinsic and innate immune responses. Here we provide an update on the regulation of major IE gene expression and the functions of IE1 and IE2 proteins. We will relate this insight to experimental approaches that target IE gene expression or protein function via molecular gene silencing and editing or small chemical inhibitors.
Collapse
|
7
|
Strang BL, Asquith CRM, Moshrif HF, Ho CMK, Zuercher WJ, Al-Ali H. Identification of lead anti-human cytomegalovirus compounds targeting MAP4K4 via machine learning analysis of kinase inhibitor screening data. PLoS One 2018; 13:e0201321. [PMID: 30048526 PMCID: PMC6062112 DOI: 10.1371/journal.pone.0201321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
Chemogenomic approaches involving highly annotated compound sets and cell based high throughput screening are emerging as a means to identify novel drug targets. We have previously screened a collection of highly characterized kinase inhibitors (Khan et al., Journal of General Virology, 2016) to identify compounds that increase or decrease expression of a human cytomegalovirus (HCMV) protein in infected cells. To identify potential novel anti-HCMV drug targets we used a machine learning approach to relate our phenotypic data from the aforementioned screen to kinase inhibition profiling of compounds used in this screen. Several of the potential targets had no previously reported role in HCMV replication. We focused on one potential anti-HCMV target, MAPK4K, and identified lead compounds inhibiting MAP4K4 that have anti-HCMV activity with little cellular cytotoxicity. We found that treatment of HCMV infected cells with inhibitors of MAP4K4, or an siRNA that inhibited MAP4K4 production, reduced HCMV replication and impaired detection of IE2-60, a viral protein necessary for efficient HCMV replication. Our findings demonstrate the potential of this machine learning approach to identify novel anti-viral drug targets, which can inform the discovery of novel anti-viral lead compounds.
Collapse
Affiliation(s)
- Blair L. Strang
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Christopher R. M. Asquith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hanan F. Moshrif
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - Catherine M-K Ho
- Institute for Infection & Immunity, St George’s, University of London, London, United Kingdom
| | - William J. Zuercher
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Hassan Al-Ali
- Miami Project to Cure Paralysis, University of Miami, Miami, Florida, United States of America
- Department of Neurological Surgery, University of Miami, Miami, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
- Katz Drug Discovery Center, University of Miami, Miami, Florida, United States of America
- Department of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
8
|
Mercorelli B, Luganini A, Celegato M, Palù G, Gribaudo G, Loregian A. Repurposing the clinically approved calcium antagonist manidipine dihydrochloride as a new early inhibitor of human cytomegalovirus targeting the Immediate-Early 2 (IE2) protein. Antiviral Res 2018; 150:130-136. [DOI: 10.1016/j.antiviral.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 01/04/2023]
|