1
|
Nie Z, Zhai F, Zhang H, Zheng H, Pei J. The multiple roles of viral 3D pol protein in picornavirus infections. Virulence 2024; 15:2333562. [PMID: 38622757 PMCID: PMC11020597 DOI: 10.1080/21505594.2024.2333562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.
Collapse
Affiliation(s)
- Zhenyu Nie
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Fengge Zhai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Han Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Pei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
2
|
De Clercq E. A scientific career from the early 1960s till 2023: A tale of the various protagonists. Biochem Pharmacol 2024; 228:116248. [PMID: 38701868 DOI: 10.1016/j.bcp.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
In this era spanning more than 60 years (from the early 1960s till today (2023), a broad variety of actors played a decisive role: Piet De Somer, Tom C. Merigan, Paul A. Janssen, Maurice Hilleman, and Georges Smets. Two protagonists (Antonín Holý and John C. Martin) formed with me a unique triangle (the Holý Trinity). Walter Fiers' group (with the help of Jean Content) contributed to the cloning of human β-interferon, and Piet Herdewijn accomplished the chemical synthesis of an array of anti-HIV 2',3'-dideoxynucleoside analogues. Rudi Pauwels, Masanori Baba, Dominique Schols, Johan Neyts, Lieve Naesens, Anita Van Lierde, Graciela Andrei, Robert Snoeck and Dirk Daelemans, as members of my team, helped me in achieving the intended goal, the development of a selective therapy for virus infections. The collaboration with "Lowie" (Guangdi Li) generated a new dimension for the future.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven, Rega Institute for Medical Research, Herestraat 49, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Assessing In Vitro Resistance Development in Enterovirus A71 in the Context of Combination Antiviral Treatment. ACS Infect Dis 2021; 7:2801-2806. [PMID: 34529400 DOI: 10.1021/acsinfecdis.0c00872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are currently no antivirals available to treat infection with enterovirus A71 (EV-A71) or any other enterovirus. The extensively studied capsid binders rapidly select for drug-resistant variants. We here explore whether the combination of two direct-acting enterovirus inhibitors with a different mechanism of action may delay or prevent resistance development to the capsid binders. To that end, the in vitro dynamics of resistance development to the capsid binder pirodavir was studied either alone or in combination with a viral 2C-targeting compound (SMSK_0213), a viral 3C-protease inhibitor (rupintrivir) or a viral RNA-dependent RNA polymerase inhibitor (7DMA). We demonstrate that combining pirodavir with either rupintrivir or 7DMA delays the development of resistance to pirodavir and that no resistance to the protease or polymerase inhibitor develops. The combination of pirodavir with the 2C inhibitor results in a double-resistant virus population, where only the minority carries the resistant mutation.
Collapse
|
4
|
Lin X, Liang C, Zou L, Yin Y, Wang J, Chen D, Lan W. Advance of structural modification of nucleosides scaffold. Eur J Med Chem 2021; 214:113233. [PMID: 33550179 PMCID: PMC7995807 DOI: 10.1016/j.ejmech.2021.113233] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022]
Abstract
With Remdesivir being approved by FDA as a drug for the treatment of Corona Virus Disease 2019 (COVID-19), nucleoside drugs have once again received widespread attention in the medical community. Herein, we summarized modification of traditional nucleoside framework (sugar + base), traizole nucleosides, nucleoside analogues assembled by other drugs, macromolecule-modified nucleosides, and their bioactivity rules. 2'-"Ara"-substituted by -F or -CN group, and 3'-"ara" substituted by acetylenyl group can greatly influence their anti-tumor activities. Dideoxy dehydrogenation of 2',3'-sites can enhance antiviral efficiencies. Acyclic nucleosides and L-type nucleosides mainly represented antiviral capabilities. 5-F Substituted uracil analogues exihibit anti-tumor effects, and the substrates substituted by -I, -CF3, bromovinyl group usually show antiviral activities. The sugar coupled with 1-N of triazolid usually displays anti-tumor efficiencies, while the sugar coupled with 2-N of triazolid mainly represents antiviral activities. The nucleoside analogues assembled by cholesterol, polyethylene glycol, fatty acid and phospholipid would improve their bioavailabilities and bioactivities, or reduce their toxicities.
Collapse
Affiliation(s)
- Xia Lin
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China; Guangxi Medical College, Nanning, 530023, China
| | | | - Lianjia Zou
- Guangxi Medical College, Nanning, 530023, China
| | - Yanchun Yin
- Guangxi Medical College, Nanning, 530023, China
| | - Jianyi Wang
- Medical College, Guangxi University, Nanning, 530004, China; College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| | - Dandan Chen
- Guangxi Medical College, Nanning, 530023, China
| | - Weisen Lan
- College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
5
|
Kabuga AI, Nejati A, Soheili P, Shahmahmoodi S. Human parechovirus are emerging pathogens with broad spectrum of clinical syndromes in adults. J Med Virol 2020; 92:2911-2916. [PMID: 32761910 DOI: 10.1002/jmv.26395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Parechoviruses are emerging pathogens of humans often affecting the pediatric age group, with a growing line of evidence implicating them as agents of a broad spectrum of clinical syndromes in adults. However, because many clinicians are not familiar with the manifestation of the infections, they are not included in the list of diagnostic pathogens. Furthermore, due to the indistinguishable feature of the infection compared with other common pathogens, a large number of cases are likely to go unchecked. Some may develop asymptomatic infection and recover without overt clinical disease. In this manuscript, we reviewed available literature on parechovirus infection in adult and summarized information relating to epidemiology, clinical manifestation, laboratory diagnosis, and therapeutics. The information provided should help in early case detection and support an evidence-based clinical decision.
Collapse
Affiliation(s)
- Auwal Idris Kabuga
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology and Parasitology, Faculty of Clinical Sciences, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Soheili
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li LH, Kaptein SJF, Schmid MA, Zmurko J, Leyssen P, Neyts J, Dallmeier K. A dengue type 2 reporter virus assay amenable to high-throughput screening. Antiviral Res 2020; 183:104929. [PMID: 32898584 DOI: 10.1016/j.antiviral.2020.104929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Dengue virus (DV) is an important mosquito-borne flavivirus threatening almost half of the world's population. Prophylaxis and potent anti-DV drugs are urgently needed. Here, we developed a high content imaging-based (HCI) assay with DV type 2 expressing the fluorescent protein mCherry (DV2/mCherry) to improve the efficiency and robustness of the drug discovery process. For the construction of the reporter virus, the mCherry gene followed by the ribosome-skipping 2A sequence of the Thosea asigna virus (T2A) was placed upstream of the full DV2 open reading frame. The biological characteristics including mCherry expression, virus replication rate, and plaque phenotype was examined and validated in BHK-21, Vero and C6/36 cells. A robust image-based antiviral assay combined with an automated robotic system was then developed, with a Z' factor of 0.73. To validate the image-based antiviral assay, a panel of reference compounds with different molecular mechanisms of anti-DV activity was assessed: (i) the glycosylation inhibitor, Celgosivir, (ii) two NS4b-targeting compounds: a 3-Acyl-indole derivative and NITD618, and (iii) two nucleoside viral polymerase inhibitors, 2'CMC and 7DMA. The inhibition profiles were quantified and obtained by means of HCI and RT-qPCR. Both methods resulted in very comparable inhibition profiles. In conclusion, a powerful and robust assay was developed with a fully automated data generation and processing pipeline. It makes the new reporter virus assay amenable to high-throughput screening of large libraries of small molecules.
Collapse
Affiliation(s)
- Li-Hsin Li
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; Molecular Vaccinology and Vaccine Discovery Group, Canada; GVN, Global Virus Network, USA
| | - Suzanne J F Kaptein
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; GVN, Global Virus Network, USA
| | - Michael A Schmid
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Joanna Zmurko
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; Molecular Vaccinology and Vaccine Discovery Group, Canada
| | - Pieter Leyssen
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; GVN, Global Virus Network, USA
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; Molecular Vaccinology and Vaccine Discovery Group, Canada; GVN, Global Virus Network, USA
| | - Kai Dallmeier
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium; Molecular Vaccinology and Vaccine Discovery Group, Canada; GVN, Global Virus Network, USA.
| |
Collapse
|
7
|
Antifungal Triazole Posaconazole Targets an Early Stage of the Parechovirus A3 Life Cycle. Antimicrob Agents Chemother 2020; 64:AAC.02372-19. [PMID: 31818821 DOI: 10.1128/aac.02372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses in species Parechovirus A (Picornaviridae) are associated with a wide variety of clinical manifestations. Parechovirus A3 (PeV-A3) is known to cause sepsis-like illness, meningitis, and encephalitis in infants and young children. To date, no specific therapies are available to treat PeV-A3-infected children. We had previously identified two FDA-cleared antifungal drugs, itraconazole (ITC) and posaconazole (POS), with potent and specific antiviral activity against PeV-A3. Time-of-addition and synchronized infection assays revealed that POS targets an early stage of the PeV-A3 life cycle. POS exerts an antiviral effect, evidenced by a reduction in viral titer following the addition of POS to Vero-P cells before infection, coaddition of POS and PeV-A3 to Vero-P cells, incubation of POS and PeV-A3 prior to Vero-P infection, and at attachment. POS exerts less of an effect on virus entry. A PeV-A3 enzyme-linked immunosorbent assay inhibition experiment, using an anti-PeV-A3 monoclonal antibody, suggested that POS binds directly to the PeV-A3 capsid. POS-resistant PeV-A3 strains developed by serial passage in the presence of POS acquired substitutions in multiple regions of the genome, including the capsid. Reverse genetics confirmed substitutions in capsid proteins VP0, VP3, and VP1 and nonstructural proteins 2A and 3A. Single mutants VP0_K66R, VP0_A124T, VP3_N88S, VP1_Y224C, 2A_S78L, and 3A_T1I were 4-, 9-, 12-, 34-, 51-, and 119-fold more resistant to POS, respectively, than the susceptible prototype strain. Our studies demonstrate that POS may be a valuable tool in developing an antiviral therapy for PeV-A3.
Collapse
|