1
|
Castro JT, Brito R, Hojo-Souza NS, Azevedo B, Salazar N, Ferreira CP, Junqueira C, Fernandes AP, Vasconcellos R, Cardoso JM, Aguiar-Soares RDO, Vieira PMA, Carneiro CM, Valiate B, Toledo C, Salazar AM, Caballero O, Lannes-Vieira J, Teixeira SR, Reis AB, Gazzinelli RT. ASP-2/Trans-sialidase chimeric protein induces robust protective immunity in experimental models of Chagas' disease. NPJ Vaccines 2023; 8:81. [PMID: 37258518 DOI: 10.1038/s41541-023-00676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/16/2023] [Indexed: 06/02/2023] Open
Abstract
Immunization with the Amastigote Surface Protein-2 (ASP-2) and Trans-sialidase (TS) antigens either in the form of recombinant protein, encoded in plasmids or human adenovirus 5 (hAd5) confers robust protection against various lineages of Trypanosoma cruzi. Herein we generated a chimeric protein containing the most immunogenic regions for T and B cells from TS and ASP-2 (TRASP) and evaluated its immunogenicity in comparison with our standard protocol of heterologous prime-boost using plasmids and hAd5. Mice immunized with TRASP protein associated to Poly-ICLC (Hiltonol) were highly resistant to challenge with T. cruzi, showing a large decrease in tissue parasitism, parasitemia and no lethality. This protection lasted for at least 3 months after the last boost of immunization, being equivalent to the protection induced by DNA/hAd5 protocol. TRASP induced high levels of T. cruzi-specific antibodies and IFNγ-producing T cells and protection was primarily mediated by CD8+ T cells and IFN-γ. We also evaluated the toxicity, immunogenicity, and efficacy of TRASP and DNA/hAd5 formulations in dogs. Mild collateral effects were detected at the site of vaccine inoculation. While the chimeric protein associated with Poly-ICLC induced high levels of antibodies and CD4+ T cell responses, the DNA/hAd5 induced no antibodies, but a strong CD8+ T cell response. Immunization with either vaccine protected dogs against challenge with T. cruzi. Despite the similar efficacy, we conclude that moving ahead with TRASP together with Hiltonol is advantageous over the DNA/hAd5 vaccine due to pre-existing immunity to the adenovirus vector, as well as the cost-benefit for development and large-scale production.
Collapse
Affiliation(s)
- Julia T Castro
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rory Brito
- Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Natalia S Hojo-Souza
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Bárbara Azevedo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Natalia Salazar
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Caroline Junqueira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | | | | | | | | | - Bruno Valiate
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | - Cristiane Toledo
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | - Santuza R Teixeira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Ricardo T Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte, Brazil.
- Centro de Pesquisas Rene Rachou, Fundação Osvaldo Cruz, Rio de Janeiro, Brazil.
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz-Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
History and impact of the mouse-adapted Ebola virus model. Antiviral Res 2023; 210:105493. [PMID: 36567023 DOI: 10.1016/j.antiviral.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV) is a member of the filoviridae family, which are comprised of negative sense, enveloped RNA hemorrhagic fever viruses that can cause severe disease and high lethality rates. These viruses require BSL-4 containment laboratories for study. Early studies of EBOV pathogenesis relied heavily on the use of nonhuman primates, which are expensive and cumbersome to handle in large numbers. Guinea pig models were also developed, but even to this day limited reagents are available in this model. In 1998, Mike Bray and colleagues developed a mouse-adapted EBOV (maEBOV) that caused lethality in adult immunocompetent mice. This model had significant advantages, including being inexpensive, allowing for higher animal numbers for statistical analysis, availability of reagents for studying pathogenesis, and availability of a vast array of genetically modified strains. The model has been used to test vaccines, therapeutic drugs, EBOV mutants, and pathogenesis, and its importance is demonstrated by the hundreds of citations referencing the original publication. This review will cover the history of the maEBOV model and its use in filovirus research.
Collapse
|
3
|
Liu X, Pappas EJ, Husby ML, Motsa BB, Stahelin RV, Pienaar E. Mechanisms of phosphatidylserine influence on viral production: A computational model of Ebola virus matrix protein assembly. J Biol Chem 2022; 298:102025. [PMID: 35568195 PMCID: PMC9218153 DOI: 10.1016/j.jbc.2022.102025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) infections continue to pose a global public health threat, with high mortality rates and sporadic outbreaks in Central and Western Africa. A quantitative understanding of the key processes driving EBOV assembly and budding could provide valuable insights to inform drug development. Here, we use a computational model to evaluate EBOV matrix assembly. Our model focuses on the assembly kinetics of VP40, the matrix protein in EBOV, and its interaction with phosphatidylserine (PS) in the host cell membrane. It has been shown that mammalian cells transfected with VP40-expressing plasmids are capable of producing virus-like particles (VLPs) that closely resemble EBOV virions. Previous studies have also shown that PS levels in the host cell membrane affects VP40 association with the plasma membrane inner leaflet and that lower membrane PS levels result in lower VLP production. Our computational findings indicate that PS may also have a direct influence on VP40 VLP assembly and budding, where a higher PS level will result in a higher VLP budding rate and filament dissociation rate. Our results further suggest that the assembly of VP40 filaments follow the nucleation-elongation theory, where initialization and oligomerization of VP40 are two distinct steps in the assembly process. Our findings advance the current understanding of VP40 VLP formation by identifying new possible mechanisms of PS influence on VP40 assembly. We propose that these mechanisms could inform treatment strategies targeting PS alone or in combination with other VP40 assembly steps.
Collapse
Affiliation(s)
- Xiao Liu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Ethan J Pappas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Monica L Husby
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Balindile B Motsa
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Elsje Pienaar
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
4
|
Tamir H, Melamed S, Erez N, Politi B, Yahalom-Ronen Y, Achdout H, Lazar S, Gutman H, Avraham R, Weiss S, Paran N, Israely T. Induction of Innate Immune Response by TLR3 Agonist Protects Mice against SARS-CoV-2 Infection. Viruses 2022; 14:v14020189. [PMID: 35215785 PMCID: PMC8878863 DOI: 10.3390/v14020189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Sharon Melamed
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Boaz Politi
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Hagit Achdout
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Shlomi Lazar
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (S.L.); (H.G.)
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (S.L.); (H.G.)
| | - Roy Avraham
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological Research, P.O. Box 19, Ness Ziona 7410001, Israel; (H.T.); (S.M.); (N.E.); (B.P.); (Y.Y.-R.); (H.A.); (R.A.); (S.W.); (N.P.)
- Correspondence:
| |
Collapse
|
5
|
Bradfute SB. The discovery and development of novel treatment strategies for filoviruses. Expert Opin Drug Discov 2021; 17:139-149. [PMID: 34962451 DOI: 10.1080/17460441.2022.2013800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Filoviruses are negative-stranded, enveloped RNA viruses that can cause hemorrhagic fever in humans and include Ebola and Marburg viruses. Lethality rates can reach 90% in isolated outbreaks. The 2013-2016 Ebola virus epidemic demonstrated the global threat of filoviruses and hastened development of vaccines and therapeutics. There are six known filoviruses that cause disease in humans, but still few therapeutics are available for treatment. AREAS COVERED This review summarizes identification, testing, and development of therapeutics based on the peer-reviewed scientific literature beginning with the discovery of filoviruses in 1967. Small molecules, antibodies, cytokines, antisense, post-exposure vaccination, and host-targeted therapeutic approaches are discussed. An emphasis is placed on therapeutics that have shown promise in in vivo studies. EXPERT OPINION Two monoclonal antibody regimens are approved for use in humans for one filovirus (Ebola virus), and preclinical nonhuman primate studies suggest that other monoclonal-based therapies are likely to be effective against other filoviruses. Significant progress has been made in small-molecule antivirals and host-targeted approaches. An important consideration is the necessity of pan-filovirus therapeutics via broadly effective small molecules, antibody cocktails, and cross-reactive antibodies. The use of filovirus therapeutics as prophylactic treatment or in chronically infected individuals should be considered.
Collapse
Affiliation(s)
- Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, USA
| |
Collapse
|
6
|
Chakravarty D, Nair SS, Hammouda N, Ratnani P, Gharib Y, Wagaskar V, Mohamed N, Lundon D, Dovey Z, Kyprianou N, Tewari AK. Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Commun Biol 2020; 3:374. [PMID: 32641750 PMCID: PMC7343823 DOI: 10.1038/s42003-020-1088-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
The recent outbreak of infections and the pandemic caused by SARS-CoV-2 represent one of the most severe threats to human health in more than a century. Emerging data from the United States and elsewhere suggest that the disease is more severe in men. Knowledge gained, and lessons learned, from studies of the biological interactions and molecular links that may explain the reasons for the greater severity of disease in men, and specifically in the age group at risk for prostate cancer, will lead to better management of COVID-19 in prostate cancer patients. Such information will be indispensable in the current and post-pandemic scenarios.
Collapse
Affiliation(s)
- Dimple Chakravarty
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Sujit S Nair
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nada Hammouda
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Parita Ratnani
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yasmine Gharib
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vinayak Wagaskar
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nihal Mohamed
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dara Lundon
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zachary Dovey
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natasha Kyprianou
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ashutosh K Tewari
- Department of Urology and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|