1
|
Dahal S, Clayton K, Cabral T, Cheng R, Jahanshahi S, Ahmed C, Koirala A, Villasmil Ocando A, Malty R, Been T, Hernandez J, Mangos M, Shen D, Babu M, Calarco J, Chabot B, Attisano L, Houry WA, Cochrane A. On a path toward a broad-spectrum anti-viral: inhibition of HIV-1 and coronavirus replication by SR kinase inhibitor harmine. J Virol 2023; 97:e0039623. [PMID: 37706687 PMCID: PMC10617549 DOI: 10.1128/jvi.00396-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.
Collapse
Affiliation(s)
- Subha Dahal
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kiera Clayton
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Tyler Cabral
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahrzad Jahanshahi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Choudhary Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Amrit Koirala
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ramy Malty
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Terek Been
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Javier Hernandez
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Maria Mangos
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - David Shen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mohan Babu
- Research and Innovation Centre, Department of Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - John Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Walid A. Houry
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
Zheng K, Ren Z, Wang Y. Serine-arginine protein kinases and their targets in viral infection and their inhibition. Cell Mol Life Sci 2023; 80:153. [PMID: 37198350 PMCID: PMC10191411 DOI: 10.1007/s00018-023-04808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Accumulating evidence has consolidated the interaction between viral infection and host alternative splicing. Serine-arginine (SR) proteins are a class of highly conserved splicing factors critical for the spliceosome maturation, alternative splicing and RNA metabolism. Serine-arginine protein kinases (SRPKs) are important kinases that specifically phosphorylate SR proteins to regulate their distribution and activities in the central pre-mRNA splicing and other cellular processes. In addition to the predominant SR proteins, other cytoplasmic proteins containing a serine-arginine repeat domain, including viral proteins, have been identified as substrates of SRPKs. Viral infection triggers a myriad of cellular events in the host and it is therefore not surprising that viruses explore SRPKs-mediated phosphorylation as an important regulatory node in virus-host interactions. In this review, we briefly summarize the regulation and biological function of SRPKs, highlighting their involvement in the infection process of several viruses, such as viral replication, transcription and capsid assembly. In addition, we review the structure-function relationships of currently available inhibitors of SRPKs and discuss their putative use as antivirals against well-characterized viruses or newly emerging viruses. We also highlight the viral proteins and cellular substrates targeted by SRPKs as potential antiviral therapeutic candidates.
Collapse
Affiliation(s)
- Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen, 518055, China.
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research On Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
4
|
Song M, Pang L, Zhang M, Qu Y, Laster KV, Dong Z. Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases. Signal Transduct Target Ther 2023; 8:148. [PMID: 37029108 PMCID: PMC10082069 DOI: 10.1038/s41392-023-01409-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
The CLKs (Cdc2-like kinases) belong to the dual-specificity protein kinase family and play crucial roles in regulating transcript splicing via the phosphorylation of SR proteins (SRSF1-12), catalyzing spliceosome molecular machinery, and modulating the activities or expression of non-splicing proteins. The dysregulation of these processes is linked with various diseases, including neurodegenerative diseases, Duchenne muscular dystrophy, inflammatory diseases, viral replication, and cancer. Thus, CLKs have been considered as potential therapeutic targets, and significant efforts have been exerted to discover potent CLKs inhibitors. In particular, clinical trials aiming to assess the activities of the small molecules Lorecivivint on knee Osteoarthritis patients, and Cirtuvivint and Silmitasertib in different advanced tumors have been investigated for therapeutic usage. In this review, we comprehensively documented the structure and biological functions of CLKs in various human diseases and summarized the significance of related inhibitors in therapeutics. Our discussion highlights the most recent CLKs research, paving the way for the clinical treatment of various human diseases.
Collapse
Affiliation(s)
- Mengqiu Song
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Luping Pang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Research Center of Basic Medicine, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Mengmeng Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yingzi Qu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan, 450008, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
- Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
5
|
Yang T, Yang Y, Chen Y, Tang M, Shi M, Tian Y, Yuan X, Yang Z, Chen L. Rational design and appraisal of selective Cdc2-Like kinase 1 (Clk1) inhibitors as novel autophagy inducers for the treatment of acute liver injury (ALI). Eur J Med Chem 2023; 250:115168. [PMID: 36780830 DOI: 10.1016/j.ejmech.2023.115168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023]
Abstract
Autophagy inducers are promising agents for treating certain medical illnesses, while no safe autophagy inducers are in clinical applications. Cdc2-like kinase 1 (Clk1) inhibitors induce autophagy efficiently; however, most Clk1 inhibitors lack selectivity, especially against Dyrk1A kinase. Herein, we report a series of 1H-pyrrolo[2,3-b]pyridin-5-amine derivatives as novel Clk1 inhibitors. Through detailed structural modification and structure-activity relationship studies, compound 10ad shows potent and selective inhibition for Clk1, with an IC50 value of 5 nM and over 300-fold selectivity for Dyrk1A. Related kinase screening also validates the selectivity of compound 10ad. Furthermore, compound 10ad potently induces autophagy in vitro and exhibits significant hepatoprotective effects in the acute liver injury model induced by acetaminophen (paracetamol). In general, due to the excellent potency and selectivity, compound 10ad was worth further investigation in the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Yingxue Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yong Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yang Tian
- Department of Otolaryngology Head and Neck Surgery, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Xue Yuan
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Zhuang Yang
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| | - Lijuan Chen
- State Key Laboratory of Biotherapy and Cancer Center and Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China.
| |
Collapse
|
6
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
7
|
Discovery of novel 5-methoxybenzothiophene hydrazides as metabolically stable Clk1 inhibitors with high potency and unprecedented Clk1 isoenzyme selectivity. Eur J Med Chem 2023; 247:115019. [PMID: 36580731 DOI: 10.1016/j.ejmech.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Clk1 kinase is a key modulator of the pre-mRNA alternative splicing machinery which has been proposed as a promising target for treatment of various tumour types, Duchenne's muscular dystrophy and viral infections such as HIV-1 and influenza. Most reported Clk1 inhibitors showed significant co-inhibition of Clk2 and Clk4 in particular, which limits their usefulness for deciphering the individual roles of the Clk1 isoform in physiology and disease. Herein, we present a new 5-methoxybenzothiophene scaffold, enabling for the first time selective inhibition of Clk1 even among the isoenzymes. The 3,5-difluorophenyl and 3,5-dichlorophenyl derivatives 26a and 27a (Clk1 IC50 = 1.4 and 1.7 nM, respectively) showed unprecedented selectivity factors of 15 and 8 over Clk4, and selectivity factors of 535 and 84 over Clk2. Furthermore, 26a and 27a exhibited good growth inhibitory activity in T24 cancer cells and long metabolic half-lives of almost 1 and 6.4 h, respectively. The overall favorable profile of our new Clk1 inhibitors suggests that they may be used in in vivo disease models or as probes to unravel the physiological or pathogenic roles of the Clk1 isoenzyme.
Collapse
|
8
|
Han YJ, Lee KM, Wu GH, Gong YN, Dutta A, Shih SR. Targeting influenza A virus by splicing inhibitor herboxidiene reveals the importance of subtype-specific signatures around splice sites. J Biomed Sci 2023; 30:10. [PMID: 36737756 PMCID: PMC9895974 DOI: 10.1186/s12929-023-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. METHODS We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. RESULTS M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. CONCLUSIONS The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.
Collapse
Affiliation(s)
- Yi-Ju Han
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Hong Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Avijit Dutta
- grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
9
|
Li Q, Jiang Z, Ren S, Guo H, Song Z, Chen S, Gao X, Meng F, Zhu J, Liu L, Tong Q, Sun H, Sun Y, Pu J, Chang K, Liu J. SRSF5-Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host-Directed Target Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203088. [PMID: 36257906 PMCID: PMC9731694 DOI: 10.1002/advs.202203088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/21/2022] [Indexed: 05/29/2023]
Abstract
Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co-opting of host factors. Here, it is demonstrated that induction of host serine and arginine-rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host-derived antiviral target.
Collapse
Affiliation(s)
- Qiuchen Li
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Zhimin Jiang
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Shuning Ren
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Hui Guo
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhimin Song
- Chinese Academy of Sciences Key Laboratory of Infection and ImmunityInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Saini Chen
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xintao Gao
- Biotechnology Research InstituteChinese Academy of Agricultural SciencesBeijing100081China
| | - Fanfeng Meng
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Junda Zhu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Litao Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Qi Tong
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Honglei Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Yipeng Sun
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Juan Pu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Kin‐Chow Chang
- School of Veterinary Medicine and ScienceUniversity of NottinghamSutton Bonington CampusSutton BoningtonLE12 5RDUK
| | - Jinhua Liu
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry DiseasesKey Laboratory of Animal EpidemiologyMinistry of AgricultureCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
10
|
Prokhorova D, Zhukova (Eschenko) N, Lemza A, Sergeeva M, Amirkhanov R, Stepanov G. Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Viruses 2022; 14:v14020437. [PMID: 35216030 PMCID: PMC8879999 DOI: 10.3390/v14020437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza A virus (IAV) causes a respiratory infection that affects millions of people of different age groups and can lead to acute respiratory distress syndrome. Currently, host genes, receptors, and other cellular components critical for IAV replication are actively studied. One of the most convenient and accessible genome-editing tools to facilitate these studies is the CRISPR/Cas9 system. This tool allows for regulating the expression of both viral and host cell genes to enhance or impair viral entry and replication. This review considers the effect of the genome editing system on specific target genes in cells (human and chicken) in terms of subsequent changes in the influenza virus life cycle and the efficiency of virus particle production.
Collapse
Affiliation(s)
- Daria Prokhorova
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Natalya Zhukova (Eschenko)
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Anna Lemza
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Mariia Sergeeva
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Laboratory of Vector Vaccines, Smorodintsev Research Institute of Influenza, Ministry of Health of the Russian Federation, 197376 Saint Petersburg, Russia
| | - Rinat Amirkhanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
| | - Grigory Stepanov
- Laboratory of Genome Editing, Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.P.); (N.Z.); (A.L.); (M.S.); (R.A.)
- Correspondence: ; Tel.: +7-383-3635189
| |
Collapse
|
11
|
Shen Y, Zhang H, Yao S, Su F, Wang H, Yin J, Fang Y, Tan L, Zhang K, Fan X, Zhong M, Zhou Q, He J, Zhang Z. Methionine oxidation of CLK4 promotes the metabolic switch and redox homeostasis in esophageal carcinoma via inhibiting MITF selective autophagy. Clin Transl Med 2022; 12:e719. [PMID: 35092699 PMCID: PMC8800482 DOI: 10.1002/ctm2.719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Metabolic reprogramming and redox homeostasis contribute to esophageal squamous cell carcinoma (ESCC). CDC-like kinase 4 (CLK4) is a dual-specificity kinase that can phosphorylate substrates' tyrosine or serine/threonine residue. However, the role and mechanism of CLK4 in ESCC remain unknown. METHODS CLK4 expression was analysed using publicly available datasets and confirmed in ESCC tissues and cell lines. The biological roles of CLK4 were studied with gain and loss-of-function experiments. Mass spectrometry was employed to examine the effects of CLK4 on metabolic profiling. In vitro kinase assay, co-immunoprecipitation, glutathione S-transferase pulldown, chromatin immunoprecipitation and luciferase reporter were used to elucidate the relationship among CLK4, microphthalmia-associated transcription factor (MITF), COP1 and ZRANB1. RESULTS CLK4 down-regulation was observed in ESCC cell lines and clinical samples and associated with the methylation of its promoter. Low levels of CLK4 promoted ESCC development by affecting the purine synthesis pathway and nicotinamide adenine dinucleotide phosphate (NADPH)/nicotinamide adenine dinucleotide phosphate (NADP+ ) ratio. Interestingly, CLK4 inhibited ESCC development by blocking MITF-enhanced de novo purine synthesis and redox balance. Mechanistically, wild type CLK4 (WT-CLK4) but not kinase-dead CLK4-K189R mutant phosphorylated MITF at Y360. This modification promoted its interaction with E3 ligase COP1 and its K63-linked ubiquitination at K308/K372, leading to sequestosome 1 recognition and autophagic degradation. However, the deubiquitinase ZRANB1 rescued MITF ubiquitination and degradation. In turn, MITF bound to E- rather than M-boxes in CLK4 promoter and transcriptionally down-regulated its expression in ESCC. Clinically, the negative correlations were observed between CLK4, MITF, and purine metabolic markers, which predicts a poor clinical outcome of ESCC patients. Notably, CLK4 itself was a redox-sensitive kinase, and its methionine oxidation at M307 impaired kinase activity, enhanced mitochondria length and inhibited lipid peroxidation, contributing to ESCC. CONCLUSIONS Our data highlight the potential role of CLK4 in modulating redox status and nucleotide metabolism, suggesting potential therapeutic targets in ESCC treatment.
Collapse
Affiliation(s)
- Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heng Zhang
- Department of Histology and Embryology, Xiang Ya School of Medicine, Central South University, Changsha, China
| | - Shihua Yao
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Fang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kaiguang Zhang
- Department of Digestive Disease, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China
| | - Xiangshan Fan
- Department of Pathology, The affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ming Zhong
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyong Zhang
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Nanning, China
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
12
|
Bayoumi M, Munir M. Potential Use of CRISPR/Cas13 Machinery in Understanding Virus-Host Interaction. Front Microbiol 2021; 12:743580. [PMID: 34899631 PMCID: PMC8664230 DOI: 10.3389/fmicb.2021.743580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022] Open
Abstract
Prokaryotes have evolutionarily acquired an immune system to fend off invading mobile genetic elements, including viral phages and plasmids. Through recognizing specific sequences of the invading nucleic acid, prokaryotes mediate a subsequent degradation process collectively referred to as the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) (CRISPR-Cas) system. The CRISPR-Cas systems are divided into two main classes depending on the structure of the effector Cas proteins. Class I systems have effector modules consisting of multiple proteins, while class II systems have a single multidomain effector. Additionally, the CRISPR-Cas systems can also be categorized into types depending on the spacer acquisition components and their evolutionary features, namely, types I-VI. Among CRISPR/Cas systems, Cas9 is one of the most common multidomain nucleases that identify, degrade, and modulate DNA. Importantly, variants of Cas proteins have recently been found to target RNA, especially the single-effector Cas13 nucleases. The Cas13 has revolutionized our ability to study and perturb RNAs in endogenous microenvironments. The Cas13 effectors offer an excellent candidate for developing novel research tools in virological and biotechnological fields. Herein, in this review, we aim to provide a comprehensive summary of the recent advances of Cas13s for targeting viral RNA for either RNA-mediated degradation or CRISPR-Cas13-based diagnostics. Additionally, we aim to provide an overview of the proposed applications that could revolutionize our understanding of viral-host interactions using Cas13-mediated approaches.
Collapse
Affiliation(s)
- Mahmoud Bayoumi
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Virology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
13
|
Lindberg MF, Meijer L. Dual-Specificity, Tyrosine Phosphorylation-Regulated Kinases (DYRKs) and cdc2-Like Kinases (CLKs) in Human Disease, an Overview. Int J Mol Sci 2021; 22:6047. [PMID: 34205123 PMCID: PMC8199962 DOI: 10.3390/ijms22116047] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/09/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRK1A, 1B, 2-4) and cdc2-like kinases (CLK1-4) belong to the CMGC group of serine/threonine kinases. These protein kinases are involved in multiple cellular functions, including intracellular signaling, mRNA splicing, chromatin transcription, DNA damage repair, cell survival, cell cycle control, differentiation, homocysteine/methionine/folate regulation, body temperature regulation, endocytosis, neuronal development, synaptic plasticity, etc. Abnormal expression and/or activity of some of these kinases, DYRK1A in particular, is seen in many human nervous system diseases, such as cognitive deficits associated with Down syndrome, Alzheimer's disease and related diseases, tauopathies, dementia, Pick's disease, Parkinson's disease and other neurodegenerative diseases, Phelan-McDermid syndrome, autism, and CDKL5 deficiency disorder. DYRKs and CLKs are also involved in diabetes, abnormal folate/methionine metabolism, osteoarthritis, several solid cancers (glioblastoma, breast, and pancreatic cancers) and leukemias (acute lymphoblastic leukemia, acute megakaryoblastic leukemia), viral infections (influenza, HIV-1, HCMV, HCV, CMV, HPV), as well as infections caused by unicellular parasites (Leishmania, Trypanosoma, Plasmodium). This variety of pathological implications calls for (1) a better understanding of the regulations and substrates of DYRKs and CLKs and (2) the development of potent and selective inhibitors of these kinases and their evaluation as therapeutic drugs. This article briefly reviews the current knowledge about DYRK/CLK kinases and their implications in human disease.
Collapse
Affiliation(s)
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France;
| |
Collapse
|
14
|
Unconventional viral gene expression mechanisms as therapeutic targets. Nature 2021; 593:362-371. [PMID: 34012080 DOI: 10.1038/s41586-021-03511-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Unlike the human genome that comprises mostly noncoding and regulatory sequences, viruses have evolved under the constraints of maintaining a small genome size while expanding the efficiency of their coding and regulatory sequences. As a result, viruses use strategies of transcription and translation in which one or more of the steps in the conventional gene-protein production line are altered. These alternative strategies of viral gene expression (also known as gene recoding) can be uniquely brought about by dedicated viral enzymes or by co-opting host factors (known as host dependencies). Targeting these unique enzymatic activities and host factors exposes vulnerabilities of a virus and provides a paradigm for the design of novel antiviral therapies. In this Review, we describe the types and mechanisms of unconventional gene and protein expression in viruses, and provide a perspective on how future basic mechanistic work could inform translational efforts that are aimed at viral eradication.
Collapse
|
15
|
Pastor F, Shkreta L, Chabot B, Durantel D, Salvetti A. Interplay Between CMGC Kinases Targeting SR Proteins and Viral Replication: Splicing and Beyond. Front Microbiol 2021; 12:658721. [PMID: 33854493 PMCID: PMC8040976 DOI: 10.3389/fmicb.2021.658721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/04/2021] [Indexed: 12/27/2022] Open
Abstract
Protein phosphorylation constitutes a major post-translational modification that critically regulates the half-life, intra-cellular distribution, and activity of proteins. Among the large number of kinases that compose the human kinome tree, those targeting RNA-binding proteins, in particular serine/arginine-rich (SR) proteins, play a major role in the regulation of gene expression by controlling constitutive and alternative splicing. In humans, these kinases belong to the CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group and several studies indicate that they also control viral replication via direct or indirect mechanisms. The aim of this review is to describe known and emerging activities of CMGC kinases that share the common property to phosphorylate SR proteins, as well as their interplay with different families of viruses, in order to advance toward a comprehensive knowledge of their pro- or anti-viral phenotype and better assess possible translational opportunities.
Collapse
Affiliation(s)
- Florentin Pastor
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Lulzim Shkreta
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Benoit Chabot
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Durantel
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| |
Collapse
|
16
|
Thompson MG, Dittmar M, Mallory MJ, Bhat P, Ferretti MB, Fontoura BM, Cherry S, Lynch KW. Viral-induced alternative splicing of host genes promotes influenza replication. eLife 2020; 9:55500. [PMID: 33269701 PMCID: PMC7735754 DOI: 10.7554/elife.55500] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infection induces the expression of numerous host genes that impact the outcome of infection. Here, we show that infection of human lung epithelial cells with influenza A virus (IAV) also induces a broad program of alternative splicing of host genes. Although these splicing-regulated genes are not enriched for canonical regulators of viral infection, we find that many of these genes do impact replication of IAV. Moreover, in several cases, specific inhibition of the IAV-induced splicing pattern also attenuates viral infection. We further show that approximately a quarter of the IAV-induced splicing events are regulated by hnRNP K, a host protein required for efficient splicing of the IAV M transcript in nuclear speckles. Finally, we find an increase in hnRNP K in nuclear speckles upon IAV infection, which may alter accessibility of hnRNP K for host transcripts thereby leading to a program of host splicing changes that promote IAV replication.
Collapse
Affiliation(s)
- Matthew G Thompson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Mark Dittmar
- Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Michael J Mallory
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| | - Prasanna Bhat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Max B Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Beatriz Ma Fontoura
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, United States
| | - Sara Cherry
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Kristen W Lynch
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, United States.,Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
17
|
Martín Moyano P, Němec V, Paruch K. Cdc-Like Kinases (CLKs): Biology, Chemical Probes, and Therapeutic Potential. Int J Mol Sci 2020; 21:E7549. [PMID: 33066143 PMCID: PMC7593917 DOI: 10.3390/ijms21207549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Protein kinases represent a very pharmacologically attractive class of targets; however, some members of the family still remain rather unexplored. The biology and therapeutic potential of cdc-like kinases (CLKs) have been explored mainly over the last decade and the first CLK inhibitor, compound SM08502, entered clinical trials only recently. This review summarizes the biological roles and therapeutic potential of CLKs and their heretofore published small-molecule inhibitors, with a focus on the compounds' potential to be utilized as quality chemical biology probes.
Collapse
Affiliation(s)
- Paula Martín Moyano
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
| | - Václav Němec
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (P.M.M.); (V.N.)
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
18
|
Dekel N, Eisenberg-Domovich Y, Karlas A, Meyer TF, Bracher F, Lebendiker M, Danieli T, Livnah O. Expression, purification and crystallization of CLK1 kinase - A potential target for antiviral therapy. Protein Expr Purif 2020; 176:105742. [PMID: 32866611 DOI: 10.1016/j.pep.2020.105742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Cdc-like kinase 1 (CLK1) is a dual-specificity kinase capable of autophosphorylation on tyrosine residues and Ser/Thr phosphorylation of its substrates. CLK1 belongs to the CLK kinase family that regulates alternative splicing through phosphorylation of serine-arginine rich (SR) proteins. Recent studies have demonstrated that CLK1 has an important role in the replication of influenza A and chikungunya viruses. Furthermore, CLK1 was found to be relevant for the replication of HIV-1 and the West Nile virus, making CLK1 an interesting cellular candidate for the development of a host-directed antiviral therapy that might be efficient for treatment of newly emerging viruses. We describe here our attempts and detailed procedures to obtain the recombinant kinase domain of CLK1 in suitable amounts for crystallization in complex with specific inhibitors. The key solution for the reproducibility of crystals resides in devising and refining expression and purification protocols leading to homogeneous protein. Co-expression of CLK1 with λ-phosphatase and careful purification has yielded crystals of CLK1 complexed with the KH-CB19 inhibitor that diffracted to 1.65 Å. These results paved the path to the screening of more structures of CLK1 complexed compounds, leading to further optimization of their inhibitory activity. Moreover, since kinases are desired targets in numerous pathologies, the approach we report here, the co-expression of kinases with λ-phosphatase, previously used in other kinases, can be adopted as a general protocol in numerous kinase targets for obtaining reproducible and homogenic non-phosphorylated (inactive) forms suitable for biochemical and structural studies thus facilitating the development of novel inhibitors.
Collapse
Affiliation(s)
- Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yael Eisenberg-Domovich
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Franz Bracher
- Ludwig-Maximilians University, Department of Pharmacy-Center for Drug Research, Butenandstrasse 5-13, 81377, Munich, Germany
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; Department of Biological Chemistry, Alexander Silverman Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
19
|
Nilsson K, Abdurahman S, Schwartz S. Influenza virus natural sequence heterogeneity in segment 8 affects interactions with cellular RNA-binding proteins and splicing efficiency. Virology 2020; 549:39-50. [PMID: 32829114 DOI: 10.1016/j.virol.2020.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Segment 8 mRNAs of influenza virus A/Brevig Misson/1918/1 (H1N1) are poorly spliced compared to segment 8 mRNAs of influenza virus A/Netherlands/178/95 (H3N2). Using oligonucleotide-mediated protein pull down with oligos spanning the entire length of segment 8 of either influenza virus H1N1 or influenza virus H3N2 we identified cellular RNA binding proteins that interacted with oligonucleotides derived from either H1N1 or H3N2 sequences. When the identified hot spots for RNA binding proteins in H1N1 segment 8 mRNAs were replaced by H3N2 sequences, splicing efficiency increased significantly. Replacing as few as three nucleotides of the H1N1 mRNA with sequences from H3N2 mRNA, enhanced splicing of the H1N1 mRNAs. Cellular proteins U2AF65 and HuR interacted preferentially with the 3'-splice site of H3N2 and overexpression of HuR reduced the levels of unspliced H1N1 mRNAs, suggesting that U2AF65 and HuR contribute to control of influenza virus mRNA splicing.
Collapse
MESH Headings
- A549 Cells
- Alternative Splicing
- ELAV-Like Protein 1/genetics
- ELAV-Like Protein 1/metabolism
- Genetic Variation
- HeLa Cells
- Host-Pathogen Interactions/genetics
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/metabolism
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Plasmids/chemistry
- Plasmids/metabolism
- Protein Binding
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Transfection
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/metabolism
Collapse
Affiliation(s)
- Kersti Nilsson
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden
| | - Samir Abdurahman
- Department of Science and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, BMC-B13, Lund University, 221 84, Lund, Sweden.
| |
Collapse
|
20
|
Haltenhof T, Kotte A, De Bortoli F, Schiefer S, Meinke S, Emmerichs AK, Petermann KK, Timmermann B, Imhof P, Franz A, Loll B, Wahl MC, Preußner M, Heyd F. A Conserved Kinase-Based Body-Temperature Sensor Globally Controls Alternative Splicing and Gene Expression. Mol Cell 2020; 78:57-69.e4. [PMID: 32059760 DOI: 10.1016/j.molcel.2020.01.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022]
Abstract
Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.
Collapse
Affiliation(s)
- Tom Haltenhof
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Ana Kotte
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Francesca De Bortoli
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Samira Schiefer
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Stefan Meinke
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Ann-Kathrin Emmerichs
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Kristina Katrin Petermann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, Ihnestraße 63-73, Berlin 14195, Germany
| | - Petra Imhof
- Freie Universität Berlin, Institute of Theoretical Physics, Arnimallee 14, 14195 Berlin, Germany
| | - Andreas Franz
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustrasse 6, 14195 Berlin, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Takustrasse 6, 14195 Berlin, Germany.
| |
Collapse
|