1
|
Li H, Sun Z, Zheng T, Chen M, Lei X, Yu X, Ning Z. CD46 inhibits the replication of swine influenza viruses by promoting the production of type I IFNs in PK-15 cells. Vet Res Commun 2024; 48:1111-1119. [PMID: 38153594 DOI: 10.1007/s11259-023-10289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Swine flu caused by swine influenza A virus (swIAV) is an acute respiratory viral disease that is spreading in swine herds worldwide. Although the effect of some host factors on replication of swIAV has been identified, the role of CD46 in this process is unclear. Here, we report that CD46 inhibits the replication of swIAV by promoting the production of type I interferons (IFNs) in porcine kidney (PK-15) cells. CD46 knockout (CD46-KO) and stably expressing (CD46-overexpression) PK-15 cells were prepared using lentivirus-mediated CRISPR/Cas9 gene editing and seamless cloning technology. The results of virus infection in CD46-overexpression PK-15 cells showed that the replication of H1N1 and H3N2 swIAVs were inhibited, and the production of type I IFNs (IFN-α, IFN-β), interferon regulatory factor (IRF) 3, and mitochondrial antiviral-signaling protein (MAVS) was enhanced. Virus infection in CD46-KO PK-15 cells showed the opposite results. Further results showed that CD46-KO PK-15 cells have a favorable ability to proliferate influenza viruses compared to Madin-Darby canine kidney (MDCK) and PK-15 cells. These findings indicate that CD46 acts as promising target regulating the replication of swIAV, and help to develop new agents against infection and replication of the virus.
Collapse
Affiliation(s)
- Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenzhen Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xianglong Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
2
|
Yuan Y, Fang A, Wang H, Wang C, Sui B, Zhao J, Fu ZF, Zhou M, Zhao L. Lyssavirus M protein degrades neuronal microtubules by reprogramming mitochondrial metabolism. mBio 2024; 15:e0288023. [PMID: 38349129 PMCID: PMC10936203 DOI: 10.1128/mbio.02880-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
Infection with neurotropic viruses may result in changes in host behavior, which are closely associated with degenerative changes in neurons. The lyssavirus genus comprises highly neurotropic viruses, including the rabies virus (RABV), which has been shown to induce degenerative changes in neurons, marked by the self-destruction of axons. The underlying mechanism by which the RABV degrades neuronal cytoskeletal proteins remains incomplete. In this study, we show that infection with RABV or overexpression of its M protein can disrupt mitochondrial metabolism by binding to Slc25a4. This leads to a reduction in NAD+ production and a subsequent influx of Ca2+ from the endoplasmic reticulum and mitochondria into the cytoplasm of neuronal cell lines, activating Ca2+-dependent proteinase calpains that degrade α-tubulin. We further screened the M proteins of different lyssaviruses and discovered that the M protein of the dog-derived RABV strain (DRV) does not degrade α-tubulin. Sequence analysis of the DRV M protein and that of the lab-attenuated RABV strain CVS revealed that the 57th amino acid is vital for M-induced microtubule degradation. We generated a recombinant RABV with a mutation at the 57th amino acid position in its M protein and showed that this mutation reduces α-tubulin degradation in vitro and axonal degeneration in vivo. This study elucidates the mechanism by which lyssavirus induces neuron degeneration.IMPORTANCEPrevious studies have suggested that RABV (rabies virus, the representative of lyssavirus) infection induces structural abnormalities in neurons. But there are few articles on the mechanism of lyssavirus' effect on neurons, and the mechanism of how RABV infection induces neurological dysfunction remains incomplete. The M protein of lyssavirus can downregulate cellular ATP levels by interacting with Slc25a4, and this decrease in ATP leads to a decrease in the level of NAD+ in the cytosol, which results in the release of Ca2+ from the intracellular calcium pool, the endoplasmic reticulum, and mitochondria. The presence of large amounts of Ca2+ in the cytoplasm activates Ca2+-dependent proteases and degrades microtubule proteins. The amino acid 57 of M protein is the key site determining its disruption of mitochondrial metabolism and subsequent neuron degeneration.
Collapse
Affiliation(s)
- Yueming Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - An Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haoran Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Caiqian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Baokun Sui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianqing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
3
|
Gao X, Feng J, Wei L, Dong P, Chen J, Zhang L, Yang Y, Xu L, Wang H, Luo J, Qin M. Defensins: A novel weapon against Mycobacterium tuberculosis? Int Immunopharmacol 2024; 127:111383. [PMID: 38118315 DOI: 10.1016/j.intimp.2023.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Tuberculosis (TB) is a serious airborne communicable disease caused by organisms of the Mycobacterium tuberculosis (Mtb) complex. Although the standard treatment antimicrobials, including isoniazid, rifampicin, pyrazinamide, and ethambutol, have made great progress in the treatment of TB, problems including the rising incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB), the severe toxicity and side effects of antimicrobials, and the low immunity of TB patients have become the bottlenecks of the current TB treatments. Therefore, both safe and effective new strategies to prevent and treat TB have become a top priority. As a subfamily of cationic antimicrobial peptides, defensins are rich in cysteine and play a vital role in resisting the invasion of microorganisms and regulating the immune response. Inspired by studies on the roles of defensins in host defence, we describe their research history and then review their structural features and antimicrobial mechanisms, specifically for fighting Mtb in detail. Finally, we discuss the clinical relevance, therapeutic potential, and potential challenges of defensins in anti-TB therapy. We further debate the possible solutions of the current application of defensins to provide new insights for eliminating Mtb.
Collapse
Affiliation(s)
- Xuehan Gao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jihong Feng
- Department of Oncology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui 323000, China
| | - Linna Wei
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Pinzhi Dong
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jin Chen
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Langlang Zhang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yuhan Yang
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lin Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiyan Wang
- Department of Epidemiology and Health Statistics, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Junmin Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Ming Qin
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Special Key Laboratory of Gene Detection & Therapy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
4
|
Su G, Huang S, Jiang S, Chen L, Yang F, Liu Z, Wang G, Huang J. Porcine β-Defensin 114: Creating a Dichotomous Response to Inflammation. Int J Mol Sci 2024; 25:1016. [PMID: 38256090 PMCID: PMC10816359 DOI: 10.3390/ijms25021016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The immunity-related functions of defensins seem to be dependent on environmental stimuli, the cell type, and the concentration of peptides. However, the function and mechanism of porcine β-defensin 114 (pBD114) in regulating the inflammatory response to macrophages are unclear. Therefore, the modulatory effects of porcine pBD114 on the inflammatory response were investigated by treating the mouse monocyte macrophage cell line RAW264.7 with different concentrations of pBD114 with or without lipopolysaccharide (LPS). RNA-seq analysis was performed to investigate the mechanisms underlying pBD114's regulation of inflammatory responses in macrophages. In addition, the inflammatory response-modulating effects of pBD114 were also further verified with a mouse assay. The results showed that 100 μg/mL of pBD114 significantly promoted the secretion of TNF-α and IL-10 in RAW264.7. However, the LPS-induced increase in TNFα in the RAW264.7 cell cultures was significantly decreased with 10 μg/mL of pBD114. These results suggest that pBD114 can exhibit pro-inflammatory activities under normal physiological conditions with 100 μg/mL of pBD114, and anti-inflammatory activities during an excessive inflammatory response with 10 μg/mL of pBD114. RNA-seq analysis was performed to gain further insights into the effects of pBD114 on the inflammatory response. Among the pBD114-promoting RAW264.7 pro-inflammatory responses, pBD114 significantly up-regulated 1170 genes and down-regulated 724 genes. KEGG enrichment showed that the differentially expressed genes (DEGs) were significantly enriched in the immune- and signal-transduction-related signaling pathways. Protein-Protein Interaction (PPI) and key driver analysis (KDA) analyses revealed that Bcl10 and Bcl3 were the key genes. In addition, pBD114 significantly up-regulated 12 genes and down-regulated 38 genes in the anti-inflammatory response. KEGG enrichment analysis revealed that the DEGs were mainly enriched in the "Cytokine-cytokine receptor interaction" signaling pathway, and PPI and KDA analyses showed that Stat1 and Csf2 were the key genes. The results of qRT-PCR verified those of RNA-seq. In vivo mouse tests also confirmed the pro- or anti-inflammatory activities of pBD114. Although the inflammatory response is a rapid and complex physiological reaction to noxious stimuli, this study found that pBD114 plays an essential role mainly by acting on the genes related to immunity, signal transduction, signaling molecules, and interactions. In conclusion, this study provides a certain theoretical basis for the research and application of defensins.
Collapse
Affiliation(s)
- Guoqi Su
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Sheng Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Shan Jiang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Li Chen
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Feiyun Yang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zuohua Liu
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China; (G.S.); (L.C.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
5
|
Li Q, Zhang M, Sun J, Li Y, Zu S, Xiang Y, Jin X. Porcine β-defensin-2 alleviates aflatoxin B1 induced intestinal mucosal damage via ROS-Erk 1/2 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167201. [PMID: 37734607 DOI: 10.1016/j.scitotenv.2023.167201] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic fungal toxin that causes severe damage to animal intestines. Porcine beta-defensin-2 (pBD-2) is a well-studied antimicrobial peptide in pigs that can protect animal intestines and improve productivity. This study aimed to investigate the molecular mechanisms of pBD-2 in alleviating AFB1-induced oxidative stress and intestinal mucosal damage using porcine intestinal epithelial cells (IPEC-J2 cells) and Kunming (KM) mice. The maximum destructive concentration of AFB1 for IPEC-J2 cells and the optimal therapeutic concentration of pBD-2 were determined by CCK-8 and RT-qPCR. We then investigated the oxidative stress and intestinal damage induced by AFB1 and the alleviating effect of pBD-2 by detecting changes of reactive oxygen species (ROS), inflammatory cytokines, tight junction proteins (TJPs) and mucin. Finally, the molecular mechanism of pBD-2 mitigates AFB1-induced oxidative stress and intestinal mucosal damage were explored by adding ROS and Erk1/2 pathway inhibitors to comparative analysis. In vivo, the therapeutic effect of pBD-2 on AFB1-induced intestinal damage was analyzed from aspects such as average daily gain (ADG), pathological damage, inflammation, and mucosal barrier in KM mice. The study found that low doses of pBD-2 promoted cell proliferation and prevented AFB1-induced cell death, and pBD-2 significantly restored the feed conversion rate and ADG of KM mice reduced by long-term exposed AFB1. Increasing the intracellular ROS and the expression and phosphorylation of Erk1/2, AFB1 promoted inflammation by altering inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-8, and disrupted the mucosal barrier by interfering with Claudin-3, Occludin, and MUC2, while pBD-2 significantly reduced ROS and decreased the expression and phosphorylation of Erk1/2 to restored their expression to alleviate AFB1-induced oxidative stress and intestinal mucosal damage in IPEC-J2 cells and the small intestine of mice.
Collapse
Affiliation(s)
- Qinghao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Man Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, Henan, China
| | - Juan Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Yilei Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Yuqiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China
| | - Xin Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan, China.
| |
Collapse
|
6
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|