1
|
Marins EF, Nunes GN, Vasconcelos BB, David GB, Oppelt L, Rocha Junior VDA, Alberton CL. Exploring police ergonomics: Effects of personal protective equipment, holster position and perceived discomfort on different gait intensities. APPLIED ERGONOMICS 2024; 125:104441. [PMID: 39647394 DOI: 10.1016/j.apergo.2024.104441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/29/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVES This study investigated the impact of personal protective equipment (PPE) and holster positions on gait kinematics and discomfort in Brazilian police officers. METHODS A crossover study included 20 active-duty police officers assessed two-dimensional kinematic and self-reported data. Three PPE use conditions (control, PPE + thigh holster, PPE + hip holster) were investigated during walking and sprint acceleration. RESULTS PPE use increased stride length and gait speed in the weapon side compared to the free side during walking and reduced the stride length of the free side during sprint acceleration. PPE also increased back and knee discomfort during walking, with sprint acceleration proving more comfortable for the knee when using a thigh holster compared to a hip holster. CONCLUSION PPE significantly affects gait mechanics and discomfort, especially during sprinting. Holster placement is critical to officer mobility and comfort, emphasizing the need for ergonomic improvements in PPE design.
Collapse
Affiliation(s)
- Eduardo Frio Marins
- Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil; Research group on biodynamics and epidemiology of physical activity in law enforcement, National Police Academy, Federal Police, Brasília, Brazil.
| | - Gabriela Neves Nunes
- Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil
| | | | - Gabriela Barreto David
- Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil
| | - Lorena Oppelt
- Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil
| | - Valdinar de Araújo Rocha Junior
- Research group on biodynamics and epidemiology of physical activity in law enforcement, National Police Academy, Federal Police, Brasília, Brazil
| | - Cristine Lima Alberton
- Postgraduate Program in Physical Education, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Rožac D, Kasović M, Knjaz D. Spatiotemporal Gait Asymmetries Remain Unaffected by Increased Load Carriage in Professional Intervention Police Officers. Bioengineering (Basel) 2024; 11:1140. [PMID: 39593800 PMCID: PMC11592255 DOI: 10.3390/bioengineering11111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Although evidence indicates that load carriage may have an influence on walking patterns, the specific impacts of progressively increased loads on spatial and temporal gait asymmetries remain underexplored. Therefore, the primary aim of this study was to examine whether an increased load carriage had an effect on spatiotemporal gait asymmetries among intervention police officers. METHODS For the purpose of this study, 96 male intervention police officers were recruited and assessed under four load conditions: (i) "No load", (ii) "a 5 kg load", (iii) "a 25 kg load", and (iv) "a 45 kg load". Spatial and temporal gait parameters were measured using a pedobarographic platform (Zebris FDM). The spatial and temporal gait parameters, along with the ground reaction forces beneath different foot regions, were examined. The gait asymmetry for each parameter was calculated using the formula (xright - xleft)/0.5 × (xright + xleft)*100%, where "x" represents the numerical value of each parameter for the left and right sides of the body. RESULTS The findings indicated no statistically significant differences in the spatiotemporal parameters, nor ground reaction force gait asymmetries between the left and right foot, during walking under a progressively increased load carriage. Additionally, the parameter values for both the left and right sides of the body remained consistent, with a high intercorrelation observed across all of the loading conditions. The gait speed and ground reaction forces, which served as covariates, did not significantly change the spatiotemporal gait asymmetries. CONCLUSIONS In summary, this study demonstrates that an increased load carriage did not lead to a progressive rise in spatiotemporal gait asymmetries in professional intervention police officers. However, further examination using an advanced 3-D gait analysis and an assessment of physiological patterns and adaptations is recommended to identify and confirm the key factors influencing gait asymmetry.
Collapse
Affiliation(s)
- Davor Rožac
- Department of Kinesiology of Sport, Faculty of Kinesiology, University of Zagreb, 10 000 Zagreb, Croatia;
| | - Mario Kasović
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, 10 000 Zagreb, Croatia
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, 625 00 Brno, Czech Republic
| | - Damir Knjaz
- Department of Sports Kinesiology, Faculty of Kinesiology, University of Zagreb, 10 000 Zagreb, Croatia;
| |
Collapse
|
3
|
Kasović M, Štefan A, Štefan L. Carrying Police Load Increases Gait Asymmetry in Ground Reaction Forces and Plantar Pressures Beneath Different Foot Regions in a Large Sample of Police Recruits. Bioengineering (Basel) 2024; 11:895. [PMID: 39329637 PMCID: PMC11428323 DOI: 10.3390/bioengineering11090895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Although carrying external load has negative effects on gait biomechanics, little evidence has been provided regarding its impact on body asymmetry. The main purpose of the present study was to examine, whether standardized equipment produced greater gait asymmetries in ground reaction force and plantar pressure. METHODS For the purpose of this study, we recruited 845 police recruits (609 men and 236 women; 72.1% men and 27.9% women) measured in two conditions: (i) 'no load' and (ii) 'a 3.5 kg load'. Absolute values in ground reaction forces and plantar pressures beneath the different foot regions were assessed with pedobarographic platform (Zebris FDM). Asymmetry was calculated as (xright - xleft)/0.5 × (xright + xleft) × 100%, where 'x' represented a given parameter being calculated and a value closer to 0 denoted greater symmetry. RESULTS Significant differences in ground reaction forces and plantar pressures between the left and right foot were observed, when adding 'a 3.5 kg load'. Compared to the 'no load' condition, carrying 'a 3.5 kg load' significantly increased gait asymmetries for maximal ground reaction forces beneath the forefoot (ES = 0.29), midfoot (ES = 0.20) and hindfoot (ES = 0.19) regions of the foot. For maximal plantar pressures, only the asymmetry beneath the midfoot region of the foot significantly increased (ES = 0.19). CONCLUSIONS Findings of this study indicate that 'a 3.5 kg load' significantly increases ground reaction force and plantar pressure gait asymmetries beneath the forefoot and midfoot regions, compared to 'no load' condition. Due to higher loads, increases in kinetic gait asymmetries may have negative effects on future pain and discomfort in the foot area, possibly causing stress fractures and deviated gait biomechanics in police recruits.
Collapse
Affiliation(s)
- Mario Kasović
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, 625 00 Brno, Czech Republic
| | - Andro Štefan
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, 10000 Zagreb, Croatia
| | - Lovro Štefan
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, 625 00 Brno, Czech Republic
- Department of Physical Education and Sport, Faculty of Education, Catholic University in Ružomberok, 034 01 Ružomberok, Slovakia
| |
Collapse
|
4
|
Brink KJ, McKenzie KL, Straight CR, O'Fallon KS, Kim SK, Likens AD. Altered movement dynamics in soldiers undergoing multiple bouts of load carriage. APPLIED ERGONOMICS 2024; 119:104315. [PMID: 38754256 DOI: 10.1016/j.apergo.2024.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/26/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Affiliation(s)
- Kolby J Brink
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| | - Kari L McKenzie
- US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Chad R Straight
- US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Kevin S O'Fallon
- US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Seung Kyeom Kim
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Aaron D Likens
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| |
Collapse
|
5
|
Lundervold A, Ellison M, Madsen K, Werkhausen A, Rice H. Altered trunk-pelvis kinematics during load carriage with a compliant versus a rigid system. ERGONOMICS 2024:1-11. [PMID: 39137297 DOI: 10.1080/00140139.2024.2390125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Load carriage is a key component of hiking and military activity. The design of the load carriage system (LCS) could influence performance and injury risk. This study aimed to compare a traditional and a compliant LCS during walking and a step-up task to quantify differences in oxygen consumption and trunk-pelvis kinematics. Fourteen participants completed the tasks whilst carrying 16 kg in a rigid and a compliant LCS. There were no differences in oxygen consumption between conditions during either task (p > 0.05). There was significantly greater trunk-pelvis axial rotation (p = 0.041) and lateral flexion (p = 0.001) range of motion when carrying the compliant LCS during walking, and significantly greater trunk-pelvis lateral flexion range of motion during the step-up task (p = 0.003). Carrying 16 kg in a compliant load carriage system results in greater lateral flexion range of motion than a traditional, rigid system, without influencing oxygen uptake.
Collapse
Affiliation(s)
- Anders Lundervold
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Matthew Ellison
- Department of Public Health and Sports Sciences, University of Exeter, Exeter, United Kingdom
| | - Klavs Madsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Life Science and Health, Section for Pharmacy, Intelligent Health Initiative, Oslo Metropolitan University, Oslo, Norway
| | - Hannah Rice
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
6
|
Štefan A, Kasović M, Štefan L. Does a Standardized Load Carriage Increase Spatiotemporal Gait Asymmetries in Police Recruits? A Population-based Study. Mil Med 2024:usae358. [PMID: 39028219 DOI: 10.1093/milmed/usae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Although the effects of carrying loads on gait biomechanics have been well-documented, to date, little evidence has been provided whether such loads may impact spatial and temporal gait asymmetries under the different foot regions. Therefore, the main purpose of the study was to examine the effects of carrying a standardized police equipment on spatiotemporal gait parameters. MATERIALS AND METHODS In this population-based study, participants were 845 first-year police recruits (age: 21.2 ± 2.3 years; height: 178.1 ± 10.2 cm; weight: 78.4 ± 11.3 kg; body mass index: 24.7 ± 3.2 kg/m2; 609 men and 236 women; 72.1% men and 27.9% women) measured in 2 conditions: (i) "no load" and (ii) "a 3.5 kg load." Spatiotemporal gait parameters were derived from the FDM Zebris pressure platform. Asymmetry was calculated as (xright-xleft)/0.5*(xright + xleft)*100%, where "x" represented a given parameter being calculated and a value closer to 0 denoted greater symmetry. RESULTS When compared to "no load" condition, a standardized 3.5 kg/7.7 lb load significantly increased asymmetries in spatial gait parameters as follows: gait phases of stance (mean diff. = 1.05), load response (mean diff. = 0.31), single limb support (mean diff. = 0.56), pre-swing (mean diff. = 0.22), and swing (mean diff. = 0.90) phase, while no significant asymmetries in foot rotation, step, and stride length were observed. For temporal gait parameters, we observed significant asymmetries in step time (mean diff. = -0.01), while no differences in cadence and gait speed were shown. CONCLUSIONS The findings indicate that the additional load of 3.5 kg/7.7 lb is more likely to increase asymmetries in spatial gait cycle components, opposed to temporal parameters. Thus, external police load may have hazardous effects in increasing overall body asymmetry, which may lead to a higher injury risk and a decreased performance for completing specific everyday tasks.
Collapse
Affiliation(s)
- Andro Štefan
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, Zagreb 10 000, Croatia
| | - Mario Kasović
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, Zagreb 10 000, Croatia
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Brno 625 00, Czech Republic
| | - Lovro Štefan
- Department of Physical Activities and Health Sciences, Faculty of Sport Studies, Masaryk University, Brno 625 00, Czech Republic
- Department of Physical Education and Sport, Faculty of Education, Catholic University in Ružomberok, Ružomberok 034 01, Slovakia
| |
Collapse
|
7
|
Brambilla C, Beltrame G, Marino G, Lanzani V, Gatti R, Portinaro N, Molinari Tosatti L, Scano A. Biomechanical Analysis of Human Gait When Changing Velocity and Carried Loads: Simulation Study with OpenSim. BIOLOGY 2024; 13:321. [PMID: 38785803 PMCID: PMC11118041 DOI: 10.3390/biology13050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
Walking is one of the main activities of daily life and gait analysis can provide crucial data for the computation of biomechanics in many fields. In multiple applications, having reference data that include a variety of gait conditions could be useful for assessing walking performance. However, limited extensive reference data are available as many conditions cannot be easily tested experimentally. For this reason, a musculoskeletal model in OpenSim coupled with gait data (at seven different velocities) was used to simulate seven carried loads and all the combinations between the two parameters. The effects on lower limb biomechanics were measured with torque, power, and mechanical work. The results demonstrated that biomechanics was influenced by both speed and load. Our results expand the previous literature: in the majority of previous work, only a subset of the presented conditions was investigated. Moreover, our simulation approach provides comprehensive data that could be useful for applications in many areas, such as rehabilitation, orthopedics, medical care, and sports.
Collapse
Affiliation(s)
- Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (C.B.); (V.L.); (L.M.T.)
| | - Giulia Beltrame
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, 20122 Milan, Italy; (G.B.); (N.P.)
| | - Giorgia Marino
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20098 Milan, Italy; (G.M.); (R.G.)
| | - Valentina Lanzani
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (C.B.); (V.L.); (L.M.T.)
| | - Roberto Gatti
- Physiotherapy Unit, IRCCS Humanitas Research Hospital, Rozzano, 20098 Milan, Italy; (G.M.); (R.G.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Nicola Portinaro
- Residency Program in Orthopedics and Traumatology, Universitá degli Studi di Milano, 20122 Milan, Italy; (G.B.); (N.P.)
- Department of Pediatric Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Lorenzo Molinari Tosatti
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (C.B.); (V.L.); (L.M.T.)
| | - Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), 20133 Milan, Italy; (C.B.); (V.L.); (L.M.T.)
| |
Collapse
|
8
|
Liu Y, Chen C, Wang Z, Tian Y, Wang S, Xiao Y, Yang F, Wu X. Continuous Locomotion Mode and Task Identification for an Assistive Exoskeleton Based on Neuromuscular-Mechanical Fusion. Bioengineering (Basel) 2024; 11:150. [PMID: 38391636 PMCID: PMC10886133 DOI: 10.3390/bioengineering11020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Human walking parameters exhibit significant variability depending on the terrain, speed, and load. Assistive exoskeletons currently focus on the recognition of locomotion terrain, ignoring the identification of locomotion tasks, which are also essential for control strategies. The aim of this study was to develop an interface for locomotion mode and task identification based on a neuromuscular-mechanical fusion algorithm. The modes of level and incline and tasks of speed and load were explored, and seven able-bodied participants were recruited. A continuous stream of assistive decisions supporting timely exoskeleton control was achieved according to the classification of locomotion. We investigated the optimal algorithm, feature set, window increment, window length, and robustness for precise identification and synchronization between exoskeleton assistive force and human limb movements (human-machine collaboration). The best recognition results were obtained when using a support vector machine, a root mean square/waveform length/acceleration feature set, a window length of 170, and a window increment of 20. The average identification accuracy reached 98.7% ± 1.3%. These results suggest that the surface electromyography-acceleration can be effectively used for locomotion mode and task identification. This study contributes to the development of locomotion mode and task recognition as well as exoskeleton control for seamless transitions.
Collapse
Affiliation(s)
- Yao Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunjie Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhuo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yongtang Tian
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sheng Wang
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Xiao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fangliang Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Hudson S, Barwood M, Low C, Wills J, Fish M. A systematic review of the physiological and biomechanical differences between males and females in response to load carriage during walking activities. APPLIED ERGONOMICS 2024; 114:104123. [PMID: 37625283 DOI: 10.1016/j.apergo.2023.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
The purpose of this review was to systematically assess literature on differences between males and females in the physiological and biomechanical responses to load carriage during walking. PubMed, CINAHL, Scopus, Web of Science and the Cochrane library were searched. A total of 4637 records were identified and screened. Thirty-three papers were included in the review. Participant characteristics, load carriage conditions, study protocol, outcome measures and main findings were extracted and qualitatively synthesised. Absolute oxygen uptake and minute ventilation were consistently greater in males but there were limited sex-specific differences when these were expressed relative to physical characteristics. There is limited evidence of sex-specific differences in spatio-temporal variables, ground reaction forces (normalised to body mass) or sagittal plane joint angles with load. However, differences have been found in hip and pelvic motions in the frontal and horizontal planes, which might partly explain an economical advantage for females proposed by some authors.
Collapse
Affiliation(s)
- Sean Hudson
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom.
| | - Martin Barwood
- School of Health, Sport and Life Sciences, Leeds Trinity University, United Kingdom
| | - Chris Low
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Jodie Wills
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Michael Fish
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
10
|
Cofré Lizama LE, Wheat J, Slattery P, Middleton K. Can handling a weapon make soldiers more unstable? ERGONOMICS 2023; 66:1246-1254. [PMID: 36326486 DOI: 10.1080/00140139.2022.2143906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Gait stability in soldiers can be affected by task constraints that may lead to injuries. This study determined the effects of weapon handling and speed on gait stability in seventeen soldiers walking on a treadmill with and without a replica weapon at self-selected (SS), 3.5 km·h-1, 5.5 km·h-1, and 6.5 km·h-1 while carrying a 23-kg load. Local dynamic stability was measured using accelerometry at the sacrum (LDESAC) and sternum (LDESTR). No significant weapon and speed interaction were found. A significant effect of speed for the LDESAC, and a significant effect of speed and weapon for the LDESTR were found. Per plane analyses showed that the weapon effect was consistent across all directions for the LDESTR but not for LDESAC. Weapon handling increased trunk but did not affect pelvis stability. Speed decreased stability when walking slower than SS and increased when faster. These findings can inform injury prevention strategies in the military. Practitioner summary: We determined the effects of two constraints in soldier's walking stability, weapon handling and speed, measured at the trunk and sacrum. No constraints interactions were found, however, lower stability when walking slow and greater stability with the weapon at the trunk can inform preventive strategies in military training.
Collapse
Affiliation(s)
- L Eduardo Cofré Lizama
- Applied Biomechanics Laboratory, Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Jonathan Wheat
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, United Kingdom
| | - Patrick Slattery
- Applied Biomechanics Laboratory, Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| | - Kane Middleton
- Applied Biomechanics Laboratory, Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia
| |
Collapse
|
11
|
Kong PW, Iskandar MNS, Koh AH, Ho MYM, Lim CXE. Validation of In-Shoe Force Sensors during Loaded Walking in Military Personnel. SENSORS (BASEL, SWITZERLAND) 2023; 23:6465. [PMID: 37514763 PMCID: PMC10384313 DOI: 10.3390/s23146465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The loadsol® wireless in-shoe force sensors can be useful for in-field measurements. However, its accuracy is unknown in the military context, whereby soldiers have to carry heavy loads and walk in military boots. The purpose of this study was to establish the validity of the loadsol® sensors in military personnel during loaded walking on flat, inclined and declined surfaces. Full-time Singapore Armed Forces (SAF) personnel (n = 8) walked on an instrumented treadmill on flat, 10° inclined, and 10° declined gradients while carrying heavy loads (25 kg and 35 kg). Normal ground reaction forces (GRF), perpendicular to the contact surface, were simultaneously measured using both the loadsol® sensors inserted in the military boots and the Bertec instrumented treadmill as the gold standard. A total of eight variables of interest were compared between loadsol® and treadmill, including four kinetic (impact peak force, active peak force, impulse, loading rate) and four spatiotemporal (stance time, stride time, cadence, step length) variables. Validity was assessed using Bland-Altman plots and 95% Limits of Agreement (LoA). Bias was calculated as the mean difference between the values obtained from loadsol® and the instrumented treadmill. Results showed similar force-time profiles between loadsol® sensors and the instrumented treadmill. The bias of most variables was generally low, with a narrow range of LoA. The high accuracy and good agreement with standard laboratory equipment suggest that the loadsol® system is a valid tool for measuring normal GRF during walking in military boots under heavy load carriage.
Collapse
Affiliation(s)
- Pui Wah Kong
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Muhammad Nur Shahril Iskandar
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Ang Hong Koh
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Mei Yee Mavis Ho
- Physical Education and Sports Science Academic Group, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Cheryl Xue Er Lim
- Centre of Excellence for Soldier Performance, Singapore Armed Forces, Singapore 637901, Singapore
| |
Collapse
|
12
|
Künzler M, Herger S, De Pieri E, Egloff C, Mündermann A, Nüesch C. Effect of load carriage on joint kinematics, vertical ground reaction force and muscle activity: Treadmill versus overground walking. Gait Posture 2023; 104:1-8. [PMID: 37263066 DOI: 10.1016/j.gaitpost.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Previous studies have investigated the effect of either different load or different surface conditions, such as overground or treadmill walking, on human biomechanics. However, studies combining these two aspects are scarce. RESEARCH QUESTION The purpose of this study was to quantify the difference in spatiotemporal parameters, lower extremity joint kinematics, vertical ground reaction forces (vGRF) and muscle activity between normal bodyweight (100 %BW) and 20 % increased bodyweight (120 %BW) during overground and treadmill walking. METHODS Ten healthy young adults walked overground at self-selected speed and on an instrumented treadmill set to the overground speed. Spatiotemporal parameters, 3-dimensional lower extremity kinematics, vGRF and muscle activity were measured and compared between conditions. RESULTS The stance phase was longer for 120 %BW than 100 %BW in both overground and treadmill walking. Further, the stance phase was longer and cadence higher in treadmill than overground walking for both load conditions. Knee flexion angles were more than 3° greater in the second half of swing in treadmill than in overground walking. The vGRF was higher for 120 %BW compared to 100 %BW on both surfaces (treadmill, first peak: +18.6 %BW; second peak: +13.5 %BW; overground, first peak: +22.2 %BW; second peak: +19.8 %BW). Differences between conditions greater than 20 % were observed in short periods during the gait cycle for vastus medialis, vastus lateralis and semitendinosus. SIGNIFICANCE Results regarding the effects of carrying additional load using a weight vest on joint kinematics during treadmill walking may be translated to overground walking but some changes in muscle activation can be expected.
Collapse
Affiliation(s)
- Marina Künzler
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Simon Herger
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Enrico De Pieri
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Laboratory for Movement Analysis, University of Basel Children's Hospital, Basel, Switzerland
| | - Christian Egloff
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Annegret Mündermann
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Corina Nüesch
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland; Department of Orthopaedics and Traumatology, University Hospital Basel, Basel, Switzerland; Department of Spine Surgery, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University of Basel, Basel, Switzerland.
| |
Collapse
|
13
|
Martin J, Sax van der Weyden M, Fyock-Martin M. Effects of Law Enforcement Load Carriage Systems on Muscle Activity and Coordination during Walking: An Exploratory Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:4052. [PMID: 37112391 PMCID: PMC10141999 DOI: 10.3390/s23084052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Law enforcement officers (LEOs) commonly wear a duty belt (DB) or tactical vest (TV) and from prior findings, these forms of load carriage (LC) likely alter muscular activity. However, studies on the effects of LEO LC on muscular activity and coordination are limited in the current literature. The present study examined the effects of LEO load carriage on muscular activity and coordination. Twenty-four volunteers participated in the study (male = 13, age = 24.5 ± 6.0 years). Surface electromyography (sEMG) sensors were placed on the vastus lateralis, biceps femoris, multifidus, and lower rectus abdominus. Participants completed treadmill walking for two load carriage conditions (duty belt and tactical vest) and a control condition. Mean activity, sample entropy and Pearson correlation coefficients were computed for each muscle pair during the trials. The duty belt and tactical vest resulted in an increase in muscle activity in several muscles; however, no differences between the duty belt and tactical vest were found. Consistently across the conditions, the largest correlations were observed between the left and right multifidus (r = 0.33-0.68) and rectus abdominus muscles (0.34-0.55). There were statistically small effects (p < 0.05, η2 = 0.031 to 0.076) of the LC on intermuscular coordination. No effect (p > 0.05) of the LC on sample entropy was found for any muscle. The findings indicate that LEO LC causes small differences in muscular activity and coordination during walking. Future research should incorporate heavier loads and longer durations.
Collapse
|
14
|
Peng HT, Liu LW, Chen CJ, Chen ZR. The Soft Prefabricated Orthopedic Insole Decreases Plantar Pressure during Uphill Walking with Heavy Load Carriage. Bioengineering (Basel) 2023; 10:bioengineering10030353. [PMID: 36978744 PMCID: PMC10045236 DOI: 10.3390/bioengineering10030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
This study aimed to investigate the effect of varying the hardness of prefabricated orthopedic insoles on plantar pressure and muscle fatigue during uphill walking with a heavy backpack. Fifteen healthy male recreational athletes (age: 20.4 ± 1.0 years, height: 176.9 ± 5.7 cm, weight: 76.5 ± 9.0 kg) wore prefabricated orthopedic insoles with foot arch support; a heel cup with medium (MI), hard (HI), and soft (SI) relative hardnesses; and flat insoles (FI). They performed treadmill walking on uphill gradients with 25 kg backpacks. The plantar pressure and surface electromyographic activity were recorded separately, in 30 s and 6 min uphill treadmill walking trials, respectively. The HI, MI, and SI significantly decreased peak plantar pressure in the lateral heel compared to FI. The MI and SI significantly decreased the peak plantar pressure in the fifth metatarsal compared to FI. The MI significantly reduced the pressure–time integral in the lateral heel compared to FI. The HI significantly increased the peak plantar pressure and pressure–time integral in the toes compared to other insoles, and decreased the contact area in the metatarsal compared to SI. In conclusion, a prefabricated orthopedic insole made of soft material at the fore- and rearfoot, with midfoot arch support and a heel cup, may augment the advantages of plantar pressure distribution during uphill weighted walking.
Collapse
Affiliation(s)
- Hsien-Te Peng
- Department of Physical Education, Chinese Culture University, Taipei 11114, Taiwan;
| | - Li-Wen Liu
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 22143, Taiwan
| | - Chiou-Jong Chen
- Department of Occupational Safety and Health, Chang Jung Christian University, Tainan 711301, Taiwan
| | - Zong-Rong Chen
- Department of Athletic Performance, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Correspondence: ; Tel.: +886-910255773
| |
Collapse
|
15
|
Effect of Load Carriage Lifestyle on Kinematics and Kinetics of Gait. Appl Bionics Biomech 2023; 2023:8022635. [PMID: 36816755 PMCID: PMC9931482 DOI: 10.1155/2023/8022635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023] Open
Abstract
Backpacks are commonly worn by many people for multiple purposes. This study investigated the effects of habitual wearing of backpacks on lower limb kinematics and kinetics. Fourteen participants were recruited for analysis. All participants performed four randomly assigned scenarios, including running and walking at speeds of 3.5 and 1.5 m/s, respectively, with and without load carriage. The motion analysis system and force plate were used to investigate the lower limb kinematics and kinetics. A paired sample t-test was performed for statistical measurement with a significance level of α = .05. The results indicated that active force, breaking force, impact peak, loading rate, active peak, maximum braking, hip flexion, and hip range of motion were substantially higher under load carriage conditions than under walking condition, however, time to peak was lower. Conversely, during load carriage running, active force, braking impulse, time to peak, ankle plantarflexion, and ankle range of motion were all higher than those during running. Carrying a backpack weighing 10% of the body weight induced different foot strike patterns at both speeds; during load carriage walking, the hip tended to flex more; whereas, during load carriage running, the ankle tended to flex more. In conclusion, human body seems to adopt different gait strategies during load carriage walking and running. That is, the hip strategy is used during walking, while the ankle strategy is used during running.
Collapse
|
16
|
De Martino E, Green DA, Ciampi de Andrade D, Weber T, Herssens N. Human movement in simulated hypogravity-Bridging the gap between space research and terrestrial rehabilitation. Front Neurol 2023; 14:1062349. [PMID: 36815001 PMCID: PMC9939477 DOI: 10.3389/fneur.2023.1062349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Human movement is optimized to Earth's gravity and based on highly complex interactions between sensory and neuro-muscular systems. Yet, humans are able to adapt-at least partially-to extreme environments upon and beyond Earth's surface. With upcoming Lunar Gateway and Artemis missions, it is crucial to increase our understanding of the impact of hypogravity-i.e., reduced vertical loading-on physiological and sensory-motor performances to improve countermeasure programs, and define crewmember's readiness to perform mission critical tasks. Several methodologies designed to reduce vertical loading are used to simulate hypogravity on Earth, including body weight support (BWS) devices. Countering gravity and offloading the human body is also used in various rehabilitation scenarios to improve motor recovery in neurological and orthopedic impairments. Thus, BWS-devices have the potential of advancing theory and practice of both space exploration and terrestrial rehabilitation by improving our understanding of physiological and sensory-motor adaptations to reduced vertical loading and sensory input. However, lack of standardization of BWS-related research protocols and reporting hinders the exchange of key findings and new advancements in both areas. The aim of this introduction paper is to review the role of BWS in understanding human movement in simulated hypogravity and the use of BWS in terrestrial rehabilitation, and to identify relevant research areas contributing to the optimization of human spaceflight and terrestrial rehabilitation. One of the main aims of this research topic is to facilitate standardization of hypogravity-related research protocols and outcome reporting, aimed at optimizing knowledge transfer between space research and BWS-related rehabilitation sciences.
Collapse
Affiliation(s)
- Enrico De Martino
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - David A. Green
- Space Medicine Team, European Astronaut Centre, Cologne, Germany,KBR GmbH, Cologne, Germany,Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Daniel Ciampi de Andrade
- Department of Health Science and Technology, Center for Neuroplasticity and Pain, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, Cologne, Germany,KBR GmbH, Cologne, Germany
| | - Nolan Herssens
- Space Medicine Team, European Astronaut Centre, Cologne, Germany,*Correspondence: Nolan Herssens ✉
| |
Collapse
|
17
|
Friedl KE, Looney DP. With life there is motion. Activity biomarkers signal important health and performance outcomes. J Sci Med Sport 2023:S1440-2440(23)00027-0. [PMID: 36775676 DOI: 10.1016/j.jsams.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Measures of human motion provide a rich source of health and physiological status information. This paper provides examples of motion-based biomarkers in the form of patterns of movement, quantified physical activity, and characteristic gaits that can now be assessed with practical measurement technologies and rapidly evolving physiological models and algorithms, with research advances fed by the increasing access to motion data and associated contextual information. Quantification of physical activity has progressed from step counts to good estimates of energy expenditure, useful to weight management and to activity-based health outcomes. Activity types and intensity durations are important to health outcomes and can be accurately classified even from carried smart phone data. Specific gaits may predict injury risk, including some re-trainable injurious running or modifiable load carriage gaits. Mood status is reflected in specific types of human movement, with slumped posture and shuffling gait signaling depression. Increased variability in body sway combined with contextual information may signify heat strain, physical fatigue associated with heavy load carriage, or specific neuropsychological conditions. Movement disorders might be identified earlier and chronic diseases such as Parkinson's can be better medically managed with automatically quantified information from wearable systems. Increased path tortuosity suggests head injury and dementia. Rapidly emerging wear-and-forget systems involving global positioning system and inertial navigation, triaxial accelerometry, smart shoes, and functional fiber-based clothing are making it easier to make important health and performance outcome associations, and further refine predictive models and algorithms that will improve quality of life, protect health, and enhance performance.
Collapse
Affiliation(s)
- Karl E Friedl
- U.S. Army Research Institute of Environmental Medicine, USA.
| | - David P Looney
- U.S. Army Research Institute of Environmental Medicine, USA
| |
Collapse
|
18
|
Martin J, Kearney J, Nestrowitz S, Burke A, Sax van der Weyden M. Effects of load carriage on measures of postural sway in healthy, young adults: A systematic review and meta-analysis. APPLIED ERGONOMICS 2023; 106:103893. [PMID: 36152447 DOI: 10.1016/j.apergo.2022.103893] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Load carriage (LC) is a contributing factor to musculoskeletal injury in many occupations. Given that falls are a common mechanism of injury for those frequently engaging in LC, understanding the effects of LC on postural stability (PS) is necessary. A systematic review and meta-analysis was conducted to examine effects of LC on PS. Sixteen and 9 studies were included in the qualitative and quantitative synthesis, respectively. In most studies, it was found that LC leads to a decrease in PS with significant effects on center of pressure (COP) sway area (standardized mean difference = 0.45; p < 0.005) and COP anterior-posterior excursion (standardized mean difference = 0.52; p < 0.05). Furthermore, load magnitude and load placement are factors which can significantly affect COP measures of PS. It is recommended to minimize load magnitude and equally distribute load when possible to minimize LC effects on PS. Future research should examine additional factors contributing to differences in individual PS responses to LC such as changes in muscle activation and prior LC experience.
Collapse
Affiliation(s)
- Joel Martin
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, USA.
| | - James Kearney
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, USA
| | - Sara Nestrowitz
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, USA
| | - Adam Burke
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, USA
| | - Megan Sax van der Weyden
- Sports Medicine Assessment Research & Testing (SMART) Laboratory, George Mason University, Virginia, USA
| |
Collapse
|
19
|
Kasović M, Vespalec T, Štefan L. Effects of Load Carriage on Postural Sway and Relative Ground Reaction Forces in Special Police Officers: A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16710. [PMID: 36554591 PMCID: PMC9779499 DOI: 10.3390/ijerph192416710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Although excessive load carriage results in biomechanical gait changes, little evidence has been provided regarding its impact on postural sway. Therefore, the main purpose of this study was to determine whether heavier loads have effects on changing foot stability and postural sway in special police officers. Thirty male special police officers (age = 40 ± 6 years, height = 180 ± 5 cm, weight = 89 ± 8 kg) were assessed in four conditions: (1) carrying no load, (2) carrying a 5 kg load, (3) carrying a 25 kg load, and (4) carrying a 45 kg load. Foot characteristics during standing were assessed with Zebris pedobarographic pressure platform. Heavier loads increased the center of pressure (COP) path length and average velocity, length of minor and major axis, and 95% confidence ellipse area, while a decrease in angle between Y and major axis was observed. Relative forces beneath the left forefoot and right backfoot regions decreased and an increase in relative forces beneath the left backfoot and right forefoot was observed. When carrying heavy loads, static foot parameters rapidly changed, especially in COP path length and average velocity.
Collapse
Affiliation(s)
- Mario Kasović
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, 10 000 Zagreb, Croatia
- Department of Sport Motorics and Methodology in Kinanthropology, Faculty of Sports Studies, Masaryk University, 62 500 Brno, Czech Republic
| | - Tomaš Vespalec
- Department of Kinesiology, Faculty of Sports Studies, Masaryk University, 62 500 Brno, Czech Republic
| | - Lovro Štefan
- Department of General and Applied Kinesiology, Faculty of Kinesiology, University of Zagreb, 10 000 Zagreb, Croatia
- Department of Sport Motorics and Methodology in Kinanthropology, Faculty of Sports Studies, Masaryk University, 62 500 Brno, Czech Republic
- Department of Research and Examination (RECETOX), Faculty of Science, Masaryk University, 62 500 Brno, Czech Republic
| |
Collapse
|
20
|
Faghy MA, Shei R, Armstrong NCD, White M, Lomax M. Physiological impact of load carriage exercise: Current understanding and future research directions. Physiol Rep 2022; 10:e15502. [PMID: 36324291 PMCID: PMC9630762 DOI: 10.14814/phy2.15502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Load carriage (LC) refers to the use of personal protective equipment (PPE) and/or load-bearing apparatus that is mostly worn over the thoracic cavity. A commonplace task across various physically demanding occupational groups, the mass being carried during LC duties can approach the wearer's body mass. When compared to unloaded exercise, LC imposes additional physiological stress that negatively impacts the respiratory system by restricting chest wall movement and altering ventilatory mechanics as well as circulatory responses. Consequently, LC activities accelerate the development of fatigue in the respiratory muscles and reduce exercise performance in occupational tasks. Therefore, understanding the implications of LC and the effects specific factors have on physiological capacities during LC activity are important to the implementation of effective mitigation strategies to ameliorate the detrimental effects of thoracic LC. Accordingly, this review highlights the current physiological understanding of LC activities and outlines the knowledge and efficacy of current interventions and research that have attempted to improve LC performance, whilst also highlighting pertinent knowledge gaps that must be explored via future research activities.
Collapse
Affiliation(s)
- Mark A. Faghy
- Biomedical Research Theme, School of Human SciencesUniversity of DerbyDerbyUK
| | - Ren‐Jay Shei
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Nicola C. D. Armstrong
- Defence Science and Technology LaboratorySalisburyUK
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| | - Mark White
- Rocky Mountain University of Health ProfessionsProvoUtahUSA
| | - Mitch Lomax
- Extreme Environments Laboratory, School of Sport, Health and Exercise ScienceUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
21
|
Task demand and load carriage experience affect gait variability among military cadets. Sci Rep 2022; 12:18347. [PMID: 36319838 PMCID: PMC9626617 DOI: 10.1038/s41598-022-22881-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Load carriage is an inevitable daily task for soldiers. The purposes of this study were to explore the extent to which gait variability (GV) is affected by load carriage and experience among military cadets, and whether experience-related differences in GV are dependent on task demand. Two groups of cadets (30 experienced, 30 less experienced) completed a load carriage task in each of three load conditions (no load, 16 kg, 32 kg). Three categories of GV measures were obtained: spatiotemporal variability, joint kinematic variability, and Lyapunov exponents. Compared to traditional mean gait measures, GV measures were more discriminative of experience: although both groups showed similar mean gait measures, the experienced participants had reduced variability in spatiotemporal measures (p ≤ 0.008) and joint kinematics (p ≤ 0.004), as well as lower levels of long-term local dynamic stability at the ankle (p = 0.040). In both groups, heavier loads were also caused increased GV (p ≤ 0.018) and enhanced short-term local dynamic stability at the knee (p = 0.014). These results emphasize the importance of GV measures, which may provide a more complete description of adaptability, stability, and control; highlight alternate movement strategies during more difficult load carriage; and capture experience-related differences in load carriage strategies.
Collapse
|
22
|
Effects of vision on energy expenditure and kinematics during level walking. Eur J Appl Physiol 2022; 122:1231-1237. [PMID: 35235031 PMCID: PMC9012730 DOI: 10.1007/s00421-022-04914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Purpose We have previously observed substantially higher oxygen uptake in soldiers walking on terrain at night than when performing the same walk in bright daylight. The aims of the present study were to investigate the influence of vision on mechanical efficiency during slow, horizontal, constant-speed walking, and to determine whether any vision influence is modified by load carriage. Methods Each subject (n = 15) walked (3.3 km/h) for 10 min on a treadmill in four different conditions: (1) full vision, no carried load, (2) no vision, no carried load, (3) full vision with a 25.5-kg rucksack, (4) no vision with a 25.5-kg rucksack. Results Oxygen uptake was 0.94 ± 0.12 l/min in condition (1), 1.15 ± 0.20 l/min in (2), 1.15 ± 0.12 l/min in (3) and 1.35 ± 0.19 l/min in (4). Thus, lack of vision increased oxygen uptake by about 19%. Analyses of movement pattern, by use of optical markers attached to the limbs and torso, revealed considerably shorter step length (12 and 10%) in the no vision (2 and 4) than full vision conditions (1 and 3). No vision conditions (2 and 4) increased step width by 6 and 6%, and increased vertical foot clearance by 20 and 16% compared to full vision conditions (1 and 3). Conclusion The results suggest that vision has a marked influence on mechanical efficiency even during entrained, repetitive movements performed on an obstacle-free horizontal surface under highly predictable conditions.
Collapse
|
23
|
Gaffney CJ, Cunnington J, Rattley K, Wrench E, Dyche C, Bampouras TM. Weighted vests in CrossFit increase physiological stress during walking and running without changes in spatiotemporal gait parameters. ERGONOMICS 2022; 65:147-158. [PMID: 34319864 DOI: 10.1080/00140139.2021.1961876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
This study quantified the physiological and biomechanical effects of the 20 lb (9.07 kg, males) and 14 lb (6.35 kg, females) weighted vest used in CrossFit, and whether they were predisposed to injury. Twenty subjects (10 males, 10 females) undertook walking (0%, 5% and 10% gradient) and running trials in two randomised study visits (weighted vest/no weighted vest). Physiological demand during walking was increased with the vest at 10% but not 5% or 0% with no change in gait variables. In the running trial, the weighted vest increased oxygen uptake (males; females) (+0.22L/min, p < 0.01; +0.07 L/min, p < 0.05), heart rate (+11bpm, p < 0.01; +11bpm, p < 0.05), carbohydrate oxidation (+0.6 g/min, p < 0.001; +0.2 g/min, p < 0.01), and energy expenditure (+3.8 kJ/min, p < 0.001; +1.5 kJ/min, p < 0.05) whilst blood lactate was increased only in males (+0.6 mmol/L, p < 0.05). There was no change in stride length or frequency. Weighted vest training increases physiological stress and carbohydrate oxidation without affecting measured gait parameters. Practitioner summary: We examined the effect of weighted vest training prescribed in CrossFit (20 lb/9.07 kg, males and 14 lb/6.35 kg, females) in a randomised controlled trial. We found that physiological stress is increased in both sexes, although three-fold greater in males, but with no change in biomechanical gait that predisposes to lower-limb injury.
Collapse
Affiliation(s)
- Christopher J Gaffney
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Jack Cunnington
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Kate Rattley
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Elizabeth Wrench
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Chloe Dyche
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
- Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Theodoros M Bampouras
- Human Performance Laboratory, Lancaster Medical School, Lancaster University, Lancaster, UK
| |
Collapse
|
24
|
Walsh GS, Harrison I. Gait and neuromuscular dynamics during level and uphill walking carrying military loads. Eur J Sport Sci 2021; 22:1364-1373. [PMID: 34231431 DOI: 10.1080/17461391.2021.1953154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The neuromuscular system responds to perturbation and increasing locomotor task difficulty by altering the stability of neuromuscular output signals. The purpose of this study was to determine the effects of two different military load carriage systems on the dynamic stability of gait and muscle activation signals. 14 army office cadets (20 ± 1 years) performed 4-minute treadmill walking trials on level (0%) and uphill (10%) gradients while unloaded, and with 11 kg backpack and 11 kg webbing loads while the activity of 6 leg and trunk muscles and the motion of the centre of mass (COM) were recorded. Loaded and uphill walking decreased stability and increased magnitude of muscle activations compared to loaded and level gradient walking. Backpack loads increased the medio-lateral stability of COM and uphill walking decreased stability of vertical COM motion and increased stride time variability. However, there was no difference between the two load carriage systems for any variable. The reduced stability of muscle activations in loaded and uphill conditions indicates an impaired ability of the neuromuscular control systems to accommodate perturbations in these conditions which may have implications on the operational performance of military personnel. However, improved medio-lateral stability in backpack conditions may indicate that participants were able to compensate for the loads used in this study, despite the decreased vertical stability and increased stride time variability evident in uphill walking. This study did not find differences between load carriage systems however, specific load carriage system effects may be elicited by greater load carriage masses.Highlights Loaded and uphill walking decreased dynamic stability of muscle activationsLower activation stability indicates impaired neuromotor resistance to perturbationBackpack and webbing loads produced similar effects on muscle activations.
Collapse
Affiliation(s)
- Gregory S Walsh
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| | - Isabel Harrison
- Department of Sport, Health Sciences and Social Work, Oxford Brookes University, Oxford, UK
| |
Collapse
|
25
|
High-Tech Defense Industries: Developing Autonomous Intelligent Systems. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After the Cold War, the defense industries found themselves at a crossroads. However, it seems that they are gaining new momentum, as new technologies such as robotics and artificial intelligence are enabling the development of autonomous, highly innovative and disruptive intelligent systems. Despite this new impetus, there are still doubts about where to invest limited financial resources to boost high-tech defense industries. In order to shed some light on the topic, we decided to conduct a systematic literature review by using the PRISMA protocol and content analysis. The results indicate that autonomous intelligent systems are being developed by the defense industry and categorized into three different modes—fully autonomous operations, partially autonomous operations, and smart autonomous decision-making. In addition, it is also important to note that, at a strategic level of war, there is limited room for automation given the need for human intervention. However, at the tactical level of war, there is a high probability of growth in industrial defense, since, at this level, structured decisions and complex analytical-cognitive tasks are carried out. In the light of carrying out those decisions and tasks, robotics and artificial intelligence can make a contribution far superior to that of human beings.
Collapse
|