1
|
Montazersaheb S, Farahzadi R, Fathi E, Alizadeh M, Abdolalizadeh Amir S, Khodaei Ardakan A, Jafari S. Investigation the apoptotic effect of silver nanoparticles (Ag-NPs) on MDA-MB 231 breast cancer epithelial cells via signaling pathways. Heliyon 2024; 10:e26959. [PMID: 38455550 PMCID: PMC10918200 DOI: 10.1016/j.heliyon.2024.e26959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Background The discovery of novel cancer therapeutic strategies leads to the development of nanotechnology-based methods for cancer treatment. Silver nanoparticles (Ag-NPs) have garnered considerable interest owing to their size, shape, and capacity to modify chemical, optical, and photonic properties. This study aimed to investigate the impact of Ag-NPs on inducing of apoptosis in MDA-MB 231 cells by examining specific signaling pathways. Materials and methods The cytotoxicity of Ag-NPs was determined using an MTT assay in MDA-MB 231 cells. The apoptotic effects were assessed using the Annexin-V/PI assay. Real-time PCR and western blotting were conducted to analyze the expression of apoptosis-related genes and proteins, respectively. Levels of ERK1/2 and cyclin D1 were measured using ELISA. Cell cycle assay was determined by flow cytometry. Cell migration was evaluated by scratch assay. Results The results revealed that Ag-NPs triggered apoptosis and cell cycle arrest in MDA-MB 231 cells. The expression level of Bax (pro-apoptotic gene) was increased, while Bcl-2 (anti-apoptotic gene) expression was decreased. Increased apoptosis was correlated with increased levels of p53 and PTEN. Additionally, notable alterations were observed in protein expression related to the Janus kinase/Signal transducers (JAK/STAT) pathway, including p-AKT. Additionally, reduced expression of h-TERT was observed following exposure to Ag-NPs. ELISA results demonstrated a significant reduction in p-ERK/Total ERK and cyclin D1 levels in Ag-NPs-exposed MDA-MB 231 cells. Western blotting analysis also confirmed the reduction of p-ERK/Total ERK and cyclin D1. Decreased level of cyclin D is associated with suppression of cell cycle progression. The migratory ability of MDA-MB-231 cells was reduced upon treatment with Ag-NPs. Conclusions Our findings revealed that Ag-NPs influenced the proliferation, apoptosis, cell cycle, and migration in MDA-MB 231 cells, possibly by modulating protein expression of the AKT/ERK/Cyclin D1 axis.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Shahabaddin Abdolalizadeh Amir
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Alireza Khodaei Ardakan
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
3
|
Selective targeting of gold nanoparticles for radiosensitization of somatostatin 2 receptor-expressing cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Badr HA, Sayed SA, Obiedallah M. Eco-friendly synthesis of silver nanoparticles using Eisenia bicyclis seaweed, their antimicrobial and anticancer activities. Lett Appl Microbiol 2023; 76:ovad002. [PMID: 36695424 DOI: 10.1093/lambio/ovad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/17/2022] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
Silver nanoparticle (AgNPs) production with antibacterial and antitumor properties is an important application in the medical field. This study introduces a novel organism that can be used for the large-scale production of AgNPs. The edible brown alga Eisenia bicyclis was used as a reducing agent to biosynthesize stable AgNPs. In this study, we achieved producing 50 mg AgNPs using only 1 g dried E. bicyclis seaweed. AgNP biosynthesis was performed at optimized conditions of a reaction temperature of 90°C, a seaweed extract concentration of 0.4%, and an AgNO3 concentration of 0.5 mM within 20 min, and the results showed that the formed nanoparticles are spherical and monodispersed with an average size 18.5 ± 1.2 nm. The antibacterial activity of biosynthesized AgNPs was evaluated against some human clinical pathogens. Results showed that AgNPs had antibacterial activity against all tested bacterial strains, with the appearance of a clear zone equal to or larger than positive controls. Also, there was a concentration-dependent growth inhibition of in vitro cultured breast cancer cells treated with AgNPs and overexpression of p53 and Bax, and underexpression of Bcl-2. AgNPs synthesized by this method provide a potential source for antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Hoida Ali Badr
- Botany and Microbiology Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| | - Sherif A Sayed
- Clinical Pathology Department, Faculty of Medicine, Sohag University, 82524 Sohag, Egypt
| | - Marwa Obiedallah
- Botany and Microbiology Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt
| |
Collapse
|
5
|
Cytokine Therapy Combined with Nanomaterials Participates in Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14122606. [PMID: 36559100 PMCID: PMC9788370 DOI: 10.3390/pharmaceutics14122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy has gradually become an emerging treatment modality for tumors after surgery, radiotherapy, and chemotherapy. Cytokine therapy is a promising treatment for cancer immunotherapy. Currently, there are many preclinical theoretical bases to support this treatment strategy and a variety of cytokines in clinical trials. When cytokines were applied to tumor immunotherapy, it was found that the efficacy was not satisfactory. As research on tumor immunity has deepened, the role of cytokines in the tumor microenvironment has been further explored. Meanwhile, the study of nanomaterials in drug delivery has been fully developed in the past 20 years. Researchers have begun to think about the possibility of combining cytokine therapy with nanomaterials. Herein, we briefly review various nano-delivery systems that can directly deliver cytokines or regulate the expression of cytokines in tumor cells for cancer immunotherapy. We further discussed the feasibility of the combination of various therapies. We looked forward to the main challenges, opportunities, and prospects of tumor immunotherapy with multiple cytokines and a nano-delivery system.
Collapse
|
6
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Sangour MH, Ali IM, Atwan ZW, Al Ali AAALA. Effect of Ag nanoparticles on viability of MCF-7 and Vero cell lines and gene expression of apoptotic genes. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-020-00120-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The newly emerged technology, nanotechnology, represents a promising solution for many medical and industrial problems. Random targeting, resistance, and side effects are the main disadvantages of the available cancer chemotherapy which are critical aspects needed to be managed. So the aim of the study was to suggest the nanoparticles as an alternative therapy for the available therapies through detecting the cytotoxic effect of Ag nanoparticles against cancer and normal cell lines and how they affect the apoptotic function and the genes involved.
Results
Ag NPs exhibited a killing rate of 40% in MCF-7 cells (the cancer cell model) at a concentration of 100 μg/ml with almost no effect on Vero cells (the normal cell model). Concerning the phenotypic apoptotic changes that were analyzed by Acridine orange and eosin and hematoxylin, Ag NPs caused the apoptosis and Vacuole degeneration as well as cell formation and the emergence of Necrotic cells in MCF-7 cells, whereas in the normal cell line Vero, no change appears in its phenotype.
Treating MCF-7 and Vero cells with Ag NPs upregulated the P53 and P21 gene expression in Vero cells, but their expression was downregulated in MCF-7 cells. PTEN was augmented in both MCF-7 and Vero cells compared to the control.
Conclusions
The AgNPs displayed selective effect in their cytotoxicity and both induced the apoptosis effect and might be suggested as a potential therapy since an increase in PTEN expression (up to 250-fold more compared to the control) due to the treatment with AgNPs augments the tumor suppressor effects of the PTEN.
Collapse
|
8
|
Darabpour E, Kashef N, Amini SM, Kharrazi S, Djavid GE. Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2016.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|